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ABSTRACT: 

 

Regarding the increasing demands for high quality spatial information, many researchers have emphasized the need for multi-

sensor/platform integration for more rapid and economical generation of such spatial data. Most systems employing a set of frame 

cameras may have suffered from their small fields of view and poor base-distance ratio. These limitations can be significantly 

improved by employing an omni-directional camera that is capable of acquiring images in every direction. Using a GMMS integrated 

with this camera, we can enlarge the mapping coverage and observe objects from a variety of directions and positions. Bundle Block 

Adjustment (BBA) is one of the existing georeferencing methods to determine the exterior orientation parameters of two or more 

images. In this study, by expanding the concept of the traditional BBA method, we attempt to develop a mathematical model of BBA 

for omni-directional images with GPS/INS data and Ground Control Points (GCPs). The proposed mathematical model includes two 

main parts; observation equations based on the collinearity equations newly derived for omni-directional images and stochastic 

constraints imposed from GPS/INS data and GCPs. We also report the experimental results from the application of our proposed 

BBA to the real data obtained mainly in urban areas. With the different combinations of the constraints, we applied four slightly 

different types of mathematical models. The type where only GCPs are used as the constraints provides the most accurate results, less 

than 5 cm of RMSE in the estimated ground point coordinates. In future, we plan to perform more sophisticated lens calibration for 

the omni-directional camera to improve the georeferencing accuracy of omni-directional images. These georeferenced omni-

directional images can be effectively utilized for city modelling, particularly autonomous texture mapping for realistic street view. 

 

 

1. INTRODUCTION 

As the demand for high quality spatial information such as 

sophisticated 3D city model are being increased, many 

researchers have attempted multi-sensor/platform integration 

to obtain spatial data more rapidly and economically. One of 

the most promising systems to acquire spatial information 

along roads is a Ground Mobile Mapping System (GMMS) 

usually equipped with imaging cameras, laser scanners, and 

GPS/INS (Gontran, 2003; Vincent, 2005). 

 

Most systems employing a set of single frame cameras may 

have problems due to limited Field Of View (FOV) and poor 

base-distance ratio. These problems can be substantially 

solved by incorporating an omni-directional camera which 

can acquire an omni-directional field of view at a time 

without any movement or rotation of the camera (Aizawa, 

2004). 

 

Using a GMMS with this camera, we can observe objects 

from almost entire directions. Such capability allows us to 

generate more complete and realistic street view. In past, 

most omni-directional cameras utilize spherical mirrors with 

a single detector, inherently retaining significant level of 

distortions (Silpa, 2005). Many researchers should attempt to 

remove or reduce such distortions (Beauchemin, 2001). 

 

Later some recent omni-directional cameras such as Ladybug 

(Point Grey Research, 2008) are integrated with a set of 

single frame cameras and generate a large image showing 

scenes in all directions by stitching each image together. 

Such a camera can generally obtain high resolution omni-

directional images with small distortions, which may be also 

useful for 3D precision mapping of road-side objects. The 

mapping process requires accurately georeferenced omni-

directional images. 

 

Georeferencing is a process to determine the exterior 

orientation parameters of images, that is, the position and 

attitude of the camera at the time of exposure for each image 

(Choi, 2009). One of the most popular georeferencing 

methods is Bundle Block Adjustment (BBA), where we can 

estimate exterior orientation parameters and ground point 

coordinates by adjusting the light bundles originating from 

image points.  

 

Traditionally, the BBA method has been defined for a set of 

frame camera images and intensively used for 2D or 3D 

mapping from these images. To apply this well-established 

method to omni-directional images rather than frame camera 

images, we have to modify its mathematical models. Hence, 

in this study, we attempt to develop the mathematical models 

of BBA for omni-directional images with GPS/INS data and 

GCPs. 

 

The proposed mathematical model is derived through two 

steps. First, we derive new collinearity equations for omni-

directional images, representing the geometric relationships 

between a ground point and the corresponding image point 

on an omni-directional image. A set of observation equations 

based on these collinearity equations are then established.  

Second, from GPS/INS data and GCPs, we formulate two 

kinds of stochastic constraints for BBA. Based on these two 

step derivation results, we finally present four different 

models according to the selection of different unknowns and 

constraints. 

 

 



 

 

 

2. METHODOLOGY 

2.1 Overview 

As the main input, the proposed BBA method requires tie 

points (TPs) manually or automatically selected from omni-

directional images. In addition, to overcome the datum 

deficiency, it also uses GPS/INS data and (or) GCPs. With 

these inputs, as like the traditional BBA methods, the 

proposed method is also to estimate the EOPs of each omni-

directional image and GPs (Ground Points) corresponding to 

all the TPs. 

 

The mathematical models for the proposed BBA method 

consists of two main parts. The first one is the observation 

equations associated with TPs, expressed as Eq. (1). The 

second one is the stochastic constraints associated with 

GPS/INS data and GCPs, expressed as Eq. (2) and (3), 

respectively. 

 

 

A. Observations: Y = F ΞE , ΞP + ey  (1) 

B. Constraints: Z1 = G1 ΞE + ez1 (2) 

 Z2 = G2 ΞP + ez2 (3) 

 

 

where  Y = observations derived from TPs 

 Z1 = constraints derived from GPS/INS data 

 Z2 = constraints derived from GCPs 

 ey  = the measurement errors associated with Y 

 ez1 = the measurement errors associated with Z1 

 ez2 = the measurement errors associated with Z2 

 ΞE  = unknowns for EOPs 

 ΞP  = unknowns for GPs 

 

The observation equations are based on the new collinearity 

equations associated with an omni-directional images rather 

than ordinary frame camera images. GPS/INS data and GCPs 

are used as the stochastic constraints for EOP and GPs, 

respectively. More detail derivations in both parts are 

presented in the following sections. 

 

2.2 Observation Equations based on Collinearity 

Equations 

The collinearity equations indicate the relationship between 

ground points and image points. An ordinary frame camera 

generates an image through the perspective projection of a 

3D scene to a 2D focal plane. However, an omni-directional 

camera generates an image through the perspective (central) 

projection to 3D spherical surface. Therefore, we should 

derive new collinearity equations for omni-directional images 

with some modifications to the existing equations. 

 

Let assume that GP is the coordinate vector of a ground point 

expressed in a ground coordinate system (GCS). This point 

can be expressed as GP in the camera coordinate system (CCS) 

using the coordinate transformation in Eq. (4). Here, O 
G

C   is 

the origin of CCS expressed in GCS and RG
C  is a rotation 

matrix from GCS to CCS. 

 

 

                          CP = RG
C  P 

G − O 
G

C  (4) 

 

 

The ground point is then projected to a spherical surface 

toward the projection center, that is, the origin of CCS, as 

shown in Figure 1. The projected image point ρ  can be 

expressed with a horizontal angle (α) and a vertical angle (β). 

These angles are expressed as Eq. (5), where 

P 
C

x , P 
C

y  and P 
C

z   indicate the 3D coordinates of CP. 

 

 
Figure 1. Central projection of GP to a spherical surface 

 

 

ρ =  
α

β =  
atan2 P 

C
y , P 

C
x 

asin⁡( P 
C

z/|| P 
C ||) 

         (5) 

 

 

By combining Eq. (4) and (5), we can express the 

relationship between a GP ( P 
G ) and the corresponding image 

point (ρ) on an omni-directional image with its EOP of RG
C  

and O 
G

C . The combined equations indicate the collinearity 

equations for omni-directional images. 

 

Based on the collinearity equations, the observation equations 

for an image point can be expressed as Eq. (6), where σ0
2 is 

the variance of the image point measurement errors and I2 is 

2 by 2 identity matrix. The equations actually involves nine 

parameters, the ground point  G P = ( P 
G

x , P 
G

y , P 
G

z) , the 

projection center O 
G

C = (XC , YC , ZC ) , and the rotational 

angles (ω, ϕ, κ ) for RG
C . 

 

 

ρ =  
α

β =  
atan2 P 

C
y , P 

C
x 

asin⁡( P 
C

z/|| P 
C ||) 

  +  e, e ~(0, σ0
2I2)     (6) 

 

 

The nonlinear equations in Eq. (6) can be linearized into Eq. 

(7) using a Taylor series. Here, Ξ  is the vector of nine 

parameters, Ξ0  is its initial approximation; and f is the 

functions for the collinearity equations. 

 

 

ρ ≃ f(Ξ0 ) + ∂f/ ∂Ξ  | Ξ=Ξ0
(Ξ − Ξ0) +  e, e~(0, σ0

2I2)   

(7) 

 

 

We can express the Jacobian matrix in Eq. (7) as 

 

 

∂F

∂Ξ
=  

∂f1

∂Ξ
∂f2

∂Ξ

 =  

∂atan  t1 

∂t1
 
∂t1

∂Ξ

∂asin  t2 

∂t12
 
∂t2

∂Ξ

 =  

∂atan (t1)

∂t1
 
∂t1

∂ P 
C

∂asin (t2)

∂t12
 
∂t2

∂ P 
C

 
∂ P 

C

∂Ξ
 .  (8)  

 

 

where 

                            
t1

t2
 ≡   

Py 
C / Px 

C  

Pz 
C /∥ P 

C ∥
   (9) 



 

 

The partial differentiation in Eq.(8) is expressed as  

 

 

 

∂ atan  t1 

∂t1

∂ asin  t2 

∂t2

 =   

1

1+ t1 
2

1

 1− t1 
2

             (10) 

 

∂

∂ P 
C

  
t1

t2
 =

∂

∂ P 
C

 

Py 
C

Px 
C

 

Pz 
C

∥ P 
C ∥

 =  
−

Py 
C

Px 
C 2  

1

Px 
C

0

−
Px Pz 

C
 

C

∥ P 
C ∥3

−
Py Pz 

C
 

C

∥ P 
C ∥3

−
Px 

C 2
+ Py 

C 2

∥ P 
C ∥3

   (11) 

 

 

Finally, 
∂ P 

C

∂Ξ
 can be rewritten as Eq. (12) where Ξ1 is GP 

coordinates, Ξ2 is the camera position parameters; and Ξ3 is 

the camera attitude parameters, as defined in Eq. (13-15). 

 

 
∂ P 

C

∂Ξ
≡  

∂ P 
C

∂Ξ1

∂ P 
C

∂Ξ2

∂ P 
C

∂Ξ3
               (12) 

 

Ξ1 ≡  X Y Z T ≡ P 
G     (13) 

 

 Ξ2 ≡  XC YC ZC 
T ≡ O 

G
C                      (14) 

  

 Ξ3 ≡  ω ϕ κ T                   (15) 

 

 

The differentiation of CP with respect to Ξ1, Ξ2 can be simply 

expressed as Eq. (16-17). 

 

 

∂ P 
C

∂Ξ1
=

∂ P 
C

∂ P 
G  =  

∂ RG
C  P 

G − O 
G

C   

∂ P 
G  =  RG

C        (16) 

 

∂ P 
C

∂Ξ2
=

∂ P 
C

∂ O 
G

C
 =  

∂ RG
C  P 

G − O 
G

C   

∂OC
 = − RG

C         (17) 

 

 

The differentiation of CP with respect to Ξ3 is expressed as 

Eq. (18-19), where Rx, Ry and Rz are the rotation matrix for 

each axis.  

 

 

∂ P 
C

∂Ξ3
=  

∂ RG
C  P 

G − O 
G

C   

∂Ξ3
 =  

∂ RG
C

∂ω

∂ RG
C

∂ϕ

∂ RG
C

∂κ
   P 

G − O 
G

C   (18) 

 

RG
C = Rx(ω)Ry(ϕ)Rz(κ)        (19) 

 

 

 

2.3 Mathematical Models with Four Types 

The entire linearized mathematical models for BBA is 

expressed as  

 

 

 
y
z1
z2

 =  

Ae Ap

K1 0
0 K2

  
ξe

ξp
 +  

ey

ez1
ez2

 ,  
ey

ez1
ez2

 ~  0, σ0
2  

Py
−1 0 0

0 PZ1
−1 0

0 0 PZ2
−1

    (20)  

 

 

where ξe  and ξp  are the parameter vectors for the EOP and 

GP, respectively; y is the observation vector for the tie points; 

Ae  and Ap  are the design matrix derived from the partial 

differentiation of the collinearity equations corresponding to 

the tie points with respect to the parameters, ξe  and ξp ; z1 is 

the observation vector of the EOP provided by the GPS/INS 

system; z2 is the observation vector of the GCP provided by 

the total station and GPS; K1  and K2  are the design matrix 

associated the constraints; ey , ez1and ez2 are the error vectors 

associated with the corresponding observation vectors; σ0
2 is 

the unknown variance component; Py
−1 is the cofactor matrix 

of ey  which is generally expressed as an identity matrix; 

finally, Pz1
−1  is the cofactor matrix of ez1  reflecting the 

precision of the GPS/INS data and, Pz2
−1 is the cofactor matrix 

of ez2 reflecting the precision of the GCPs. 

 

The mathematical model in Eq. (20) is the most complete one, 

called Type D in this paper. With the different selections of 

the subsets of the unknowns and constraints, we can present 

other three models, Type A-C. In Type A, we estimate only 

the GPs with the fixed EOPs derived from GPS/INS data 

without stochastic constraints. In Type B to D, we estimate 

both GPs and EOPs. As stochastic constraints, we use only 

GPS/INS data in Type B and only GCPs in Type C. Both 

kinds of constraints are used in Type D. The main 

characteristics and mathematical models are summarized in 

Table 1 and 2, respectively. 

 

 

 

Unknowns to be 

estimated 
Constraints to be used 

GP EOP GPS/INS GCP 

A O X X X 

B O O O X 

C O O X O 

D O O O O 

 

Table 1. Characteristics of different mathematical models 

 

 
Mathematical Models 

A y = Ap ξ
p

+ ey ,   ey ~ 0, σ0
2Py

−1  

B  
y
z1

 =  
Ae Ap

K1 0
  

ξ
e

ξ
p
 +  

ey

ez1
 ,  

ey

ez1
 ~  0, σ0

2  
Py

−1 0

0 Pz1
−1

   

C  
y

z2
 =  

Ae Ap

0 K2
  

ξ
e

ξ
p
 +  

ey

ez2
 ,  

ey

ez2
 ~  0, σ0

2  
Py

−1 0

0 Pz2
−1

   

D  
y
z1
z2

 =  

Ae Ap

K1 0
0 K2

  
ξ

e

ξ
p
 +  

ey

ez1
ez2

 ,  
ey

ez1
ez2

 ~  0, σ0
2  

Py
−1 0 0

0 Pz1
−1 0

0 0 Pz2
−1

   

 

Table 2. Mathematical models of different types 

 

 

3. EXPERIMENATAL RESULTS 

3.1 Data Acquisition 

We acquired the experimental data using a GMMS equipped 

with an omni-directional camera and a GPS/INS system. This 

camera is actually integrated with six single frame cameras. 

Its field of view is 360 and 180 in horizontal and vertical 

direction, respectively. The size of an original image is 

1600(H) by 1200(V) pixels while the size of an output 

integrated image is 5400(H) by 2700(V) pixels. Each pixel 

covers 1/15 deg in each direction. The specification of 



 

 

Ladybug, our selected omni-directional camera model, is 

shown in Figure 2 (Point Grey Research, 2008). The example 

of omni-directional image captured by the GMMS is shown 

as Figure 3. We also obtained the position and attitude of the 

camera when driving along a street using a GPS/INS system. 

The specification of GPS/INS system is summarized as Table 

3 (Appanix, 2009).  

 

 

 
 

Figure 2. Ladybug and GMMS 

 

 
 

Figure 3. Example of omni-directional images 

 

X,Y Position Error (m) 0.02 

Z Position Error (m) 0.05 

Roll and Pitch Error (°) 0.02 

True Heading Error (°) 0.05 

 

Table 3. Specification of GPS/INS systems (POS-LV) 

 

 

3.2 Data Preparation 

In this study, we used 24 successive omni-directional images 

of an area near a road in front of a city hall in a small city, 

Osan, in Korea. The whole distance between positions of first 

image and last image is about 100m. The data were obtained 

by GMMS from east to west side as depicted by the yellow 

arrow in Figure 4. 13 GPs were measured by a static GPS and 

total station. Some of them were used as ground control 

points and the others for ground check points. Figure 5 shows 

the locations and indexes of ground control points (red) and 

check points (black). In addition, sufficient number of tie 

points is manually selected to link the successive images. An 

example of a pair of tie points is presented in Figure 6. 

 

 
 

Figure 4. Map of the test area 

 

ID 1, 2, 3 4,5 

GPs 

  

ID 6, 7, 8 9 10, 11, 12, 13 

GPs 

   
 

Figure 5. Locations of ground control/check points 

 

Image 19th Image 23rd Image 

Tie 

Points 

  

 

Figure 6. A pair of tie points 

 

The total number of GPs corresponding to all the tie points is 

28. Each GP appears in at least 4 images up to 11 images. 

The average number of GP overlapped on two successive 

images is approximately 7.9. The details are summarized in 

Table 4. The existence of each GP along the images is 

summarized in Figure 7. The row indexes represent the GP 

indexes, where the yellow marked indexes indicate the GPs 

with known coordinates to be used for ground control/check 

points. The column indexes are the image indexes. Red color 

indicates the existence of a GP in the corresponding images. 

For example, the 1st GP exists in the 1st image not in the 2nd 

image.  

 



 

 

Figure 7. Existence of GPs in images 

 

Parameters Value 

Distance between Images (m) 4 

No. Images 24 

No. ground control points 4 

No. ground check points 9 

No. ground points 28 

No. image points 212 

Avg. no. image per GP 7.6 

Avg. no. GP per image 8.8 

Avg. no. TP pairs per two successive images 7.9 

 

Table 4. Summary of the experimental data 

 

Finally, we determined the variance-covariance parameters 

for the mathematical model of BBA. We assumed that the 

image point measurement error of 1 deg, the GCP and GPS 

errors of 5 cm, and the INS error of 0.05 deg. 

3.3 Result and Analysis 

Experiments have been conducted with real data for the 

evaluation of the proposed BBA method with the 

mathematical models of four different types. The GPs 

estimated from BBA were compared with those measured by 

a statics GPS and a total station. The GP errors from this 

comparison are described in Table 5.  

 

The RMSE from Type B using only EOP constraints is not 

improved even in comparison with that from Type A using 

no constraint with fixed EOPs. This means that the EOPs 

estimated in Type B are almost the same as the EOPs initially 

provided from GPS/INS data, used as fixed EOPs in Type A. 

This must be caused from the assumption of the significantly 

larger errors in image point measurement comparing to the 

GPS/INS errors. Hence, the relative orientation determined 

from TPs cannot improve the EOP provided from GPS/INS 

data. 

 

In Type C, we performed the BBA with only 4 GCPs (ID 1, 4, 

8 and 10) without any EOP constraints. The RMSE of type C 

is significantly reduced comparing with the errors from other 

types. We can determine GPs with a RMSE of less than 5 

cm. According to this result, GPs can be estimated very 

accurately with a small number of GCPs. To use Type C, 

however, some GCPs have to be measured accurately in 

advance. For Type D, we use 4 GCPs and EOP constraints. 

The RMSE is reduced slightly comparing with Type A and B, 

but not large enough when comparing with Type C.  

 

According to the test results, we can infer that EOPs contain 

systematic bias, and it could be propagated from the 

difference between the GPS/INS coordinate system and CCS. 

In future, the conformal transformation parameters between 

the two coordinate systems will be estimated simultaneously 

during the BBA process. 

 

The residuals between the measured image points (IPs) and 

adjusted IPs are shown in Figure 8 for all four types. Large 

residuals indicate the large difference between the measured 

ID 

Type A : 

No Constraints and 

Fixed EOP 

Type B :  

Only EOP Constraints 

Type C :  

Only GCP Constraints 

Type D :  

Both EOP and GCP 

Constraints  

ΔX ΔY ΔX ΔY ΔZ ΔZ ΔY ΔZ ΔZ ΔX ΔY ΔZ 

1 -0.334 -0.055 -0.734 -0.337 -0.036 -0.759 0.000 0.000 0.000 -0.140 -0.042 -0.289 

2 -0.401 -0.137 -0.683 -0.387 -0.122 -0.704 0.019 -0.042 0.019 -0.370 -0.116 -0.658 

3 -0.253 -0.169 -0.567 -0.261 -0.148 -0.600 0.020 -0.015 0.036 -0.213 -0.125 -0.545 

4 -0.538 -0.481 -0.840 -0.542 -0.455 -0.824 0.000 0.000 -0.001 -0.049 -0.025 -0.073 

5 -0.551 -0.289 -0.901 -0.557 -0.261 -0.883 0.003 -0.012 -0.019 -0.541 -0.257 -0.857 

6 -0.315 -0.482 -0.931 -0.301 -0.505 -0.936 -0.013 0.003 0.050 -0.253 -0.516 -0.904 

7 -0.349 -0.441 -0.926 -0.338 -0.463 -0.930 -0.023 0.048 0.056 -0.290 -0.475 -0.898 

8 -0.302 -0.491 -0.956 -0.289 -0.514 -0.959 0.000 0.000 0.001 -0.106 -0.052 -0.184 

9 -0.290 -0.201 -0.571 -0.290 -0.210 -0.569 0.082 -0.044 0.130 -0.277 -0.199 -0.544 

10 -0.236 -0.442 -0.742 -0.248 -0.439 -0.768 0.000 0.000 0.000 -0.052 -0.109 -0.184 

11 -0.238 -0.444 -0.739 -0.251 -0.442 -0.765 -0.015 -0.001 0.001 -0.202 -0.441 -0.709 

12 -0.234 -0.434 -0.735 -0.241 -0.438 -0.761 0.011 -0.015 -0.004 -0.197 -0.432 -0.704 

13 -0.250 -0.417 -0.737 -0.257 -0.420 -0.762 0.006 0.000 -0.005 -0.214 -0.416 -0.705 

AVG -0.330 -0.345 -0.774 -0.331 -0.342 -0.786 0.007 -0.006 0.020 -0.223 -0.247 -0.558 

STD 0.103 0.148 0.124 0.102 0.157 0.116 0.025 0.022 0.038 0.128 0.177 0.276 

RMSE 0.360 0.390 0.816 0.360 0.392 0.827 0.027 0.024 0.045 0.268 0.316 0.648 

   
      

 
   

Table 5. Comparison of GP errors for Type A-D (unit: m) 



 

 

and adjusted IPs, and EOPs or GCPs may not be estimated 

accurately. According to the statistics of residual for 4 types 

shown in Table 6, the RMS value of the residuals from Type 

C are remarkably small in comparison with those from other 

types. This indicates that the mathematical model of Type C 

is the most accurate. Estimated GPs, EOPs and GCPs for 

Type D are shown in Figure 9, where the blue points are the 

estimated GPs; the red points are the estimated EOPs; the red 

circle are ground control points; the green circle is the ground 

check points. 

 

 

  
Type A Type B 

  
Type C Type D 

 

Figure 8. Residuals between measured and adjusted IPs 

 

Type Min Max AVG STD RMS 

A -2.270  2.136  0.142  0.600  0.616  

B -2.181  2.152  0.117  0.539  0.551  

C -0.166  0.203  0.003  0.056  0.057  

D -2.157  3.752  0.350  0.843  0.912  

 

Table 6. Statistics on residuals 

 

 
 

Figure 9. Plot of EOPs (projection centers), GPs and GCPs 

4. CONCLUSIONS 

In this paper, we developed a BBA method for omni-

directional images obtained from a ground mobile mapping 

system. We derived new collinearity equations for omni-

directional images and proposed the mathematical models 

with four types for BBA. The proposed method has been 

tested with real urban data and could successfully estimate 

GPs using a small number of GCPs with a RMSE of less than 

5cm. This study shows that we can accurately determine 

EOPs and GPs from omni-directional images with the 

accuracy level required for precision road-side 3D mapping. 

Furthermore, this study will be efficiently utilized to generate 

more realistic street view and 3D urban modelling. In future, 

we plan to perform more sophisticated lens calibration for the 

omni-directional camera to improve the georeferencing 

accuracy of the omni-directional images.  
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