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ABSTRACT: 
 
Terrestrial LiDAR provides many disciplines with an effective and efficient means of producing realistic three-dimensional models 
of real work objects. With the advent of mobile terrestrial LiDAR, this ability has been expanded to include the rapid collection of 
three-dimensional models of large urban scenes.  For all its usefulness, it does have drawbacks.  One of the major problems faced by 
the LiDAR industry today is the automatic removal of outlying data points from LiDAR point clouds.  This paper will discuss the 
development and implementation of two methods of performing outlier detection in georeferenced point clouds. These methods will 
make use of the raw data available from most time-of-flight mobile terrestrial LiDAR scanners in both the temporal and spatial 
domains.  The first method involves a moving fixed interval smoother derived from the well-known α-β-γ filter. The second method 
fits a quadratic curved surface to sections of LiDAR data. The use of these routines is discussed through examples with real LiDAR 
data. 
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1. INTRODUCTION 

 
LiDAR (Light Detection and Ranging) is a tool, which allows 
for the fast and efficient capture of three-dimensional spatial 
information from real world targets. This ability has allowed 
both terrestrial based and airborne LiDAR to be used in a 
variety of applications (Antova, 2006; Lu, et al, 2003; etc.). 
Until recently, terrestrial based LiDAR has been relegated to 
stationary tripod mounts with comparatively low scanning 
speeds (2,500 points per second) when compared to airborne 
LiDAR systems (300,000 points per second).  With the advent 
of mobile terrestrial LiDAR, this is no longer the case. 
Terrestrial based scenes can now be collected faster than ever, 
firstly because they are being collected from a moving platform 
and secondly, because collection speeds have greatly increased 
(200,000 points per second). This increase in the number of 
terrestrial based data points collected during a survey, means 
greater and greater amounts of data are being produced faster. 
To complicate matters, due to the fact that the scanners are now 
immersed in the scene being scanned, instead of flying high 
above it, the geometry contained in these massive data files is 
more complex than those encountered previously. This makes 
filtering of the data harder than previously encountered, but 
even more necessary.  Specifically, detecting and eliminating 
erroneously collected points, or outliers, becomes critical. 
 
Several sources (Sotoodeh, 2006; Lu, et al, 2003; Zheng, et al, 
2008) provide definitions for the term outlier with LiDAR point 
clouds. Simply stated, an outlier is a point which differs from 
its neighbours or neighbourhood significantly. The 
determination of what the term significantly means is, of 
course, up to the individual user of the data.  Outliers in LiDAR 
data occur for a variety of reasons.  Some of these reasons, such 
as boundaries of occlusion, surface reflectance and multi-path 

reflection are described in Sotoodeh (2006). To this list can be 
added moving objects which pass through the scan area faster 
than they can be captured and particulate matter, such as snow, 
rain, dust, etc., in the air, which reflect the laser energy.  
 
In this study, two different algorithms for outlier detection are 
proposed and studied. These algorithms employ two separate 
concepts, one in the temporal domain and the other in the 
spatial domain. The algorithm in the temporal domain detects 
outliers by testing the difference between the raw measurement 
of a point and its predicted measurement as the central point of 
a specified data interval through a modified version of the 
moving fixed interval smoother derived from the α-β-γ filter 
(Wang, 1997). This method will make use of the precise 
timings available from LiDAR either mobile or static time-of-
flight LiDAR in a PVA (Position, Velocity, Acceleration) 
Kalman filter to predict point positions based on its 
neighbourhood and remove those points which deviate from 
their predicted positions. The second algorithm involves using a 
best-fit quadratic curved-surface to spatially measure each point 
in the cloud and compare it to the points in its neighbourhood. 
Their performance is numerically studied. The sequential use of 
the spatial domain algorithm after the temporal domain 
algorithm should provide for an overall better result. 
 
  

2. THE MATEMATICAL MODELS 

2.1 The Moving Fixed Interval Smoothing Method  

Given a discrete time series )(,),2(),1( nzzz K  of a continuous 

time signal with their standard deviations nσσσ ,,, 21 K  and 

the associated precise timings nttt ,,, 21 K , if )(kx denotes the 



 

state of )(kz  at time instant kt , the state equation of the α-β-γ 
filter is given by 
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without considering the process noise, and the measurement 
equation is 

 

)()()( kkxkz Δ+=                                                                (4) 

 

Where )(kΔ  is the white noise with zero expectation and a 

variance of 2
kσ . The moving fixed-interval smoother estimates 

the state for a time instant k (e.g. the central time instant) by 
using the measurements over a specified window (see Figure 1). 

 

Figure 1: The Fixed Interval Smoother 

 
With the measurements ),(),(,),( kzkznkz 11 −− K   

)(, 2nkz +K , the unbiased linear smoother can be derived 
based on the principle of minimal variance. The smoothed 
solution for the states at k  is given by (Wang, 1997)  
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with their variances 
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where  kikikk ttt −= ++,δ .  
 

By rearranging equation (5), one can produce a model to predict 
the point ( )kz : 
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The difference )()()( kzkzkz p−=δ  is used to detect outliers. 
The variance of this difference can be computed as follows: 
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Accordingly, the standardized difference can be assumed to be 
normally distributed as 
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under the Null hypothesis 0)(:0 =kzH δ  against the 

alternative hypothesis 0)(:1 ≠kzH δ . 
 
A time series will be investigated from equation (15) where 
outliers will be identified through the use of an appropriate 
interval (-n1, n2) as the predictor.  
 
2.2 Quadratic Polynomial Surface Fitting 

The generic model of a quadric curved-surface is given by 
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where ( zyx ,, ) is the coordinate of a point on the surface and 

ja  ( 10,...,1=j ) are the parameters. Due to the ambiguity in 

the surface determination introduced by the parameter 10a , it is 
necessary to constrain ten parameters by 
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Given the measurements ( iii zyx ,, ) of point i  with its 3x3 

variance matrix iiD  and the approximate values ( )0(
10

)0(
1 ,...,aa ) 

of ten parameters, one obtains the linearized form of (18) as  
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Under the assumption that all of the measurement points are not 
correlated to each other, one can define 

}{
iiiiii zzyyxxii vavavavAv ++−=−=                             (28) 

 

To create an equivalent single measurement to the measured 
three coordinate components of a point so that (28) can be 
simplified to 
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for ni ,,2,1 K= .  
 
As can be seen, the combination of (29) and the linearized form 
of (18) is a standard parametric adjustment model with 
constraint. There is no need to provide further detail for its 
solution. For more details, refer to (Wang, 2009).  
  
The test statistic based on the standard residual of each of the 
equivalent measurements can generally be given by 
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where 0σ̂  is the posterior variance of unit weight and 

iivvq is 

the cofactor of iv . 
 
Once a patch size is specified, one can attempt to spatially 
detect outliers by moving this curved-surface fitting process 
through the data set. 
 
 

3. IMPLIMENTATION 

The methods described above were implemented using 
Microsoft Visual C++ 6.0.  Figure 2 shows the basic idea of 
how each of these algorithms works. 
 
The moving fixed interval prediction algorithm recognizes the 
fact that the point cloud can be treated as a series of lines of 
point data (Figure 2(a)). Since a significant portion of any 
terrestrial LiDAR scan is likely to include portions of the sky, 
numerous LiDAR points can be expected to be missing from the 
point cloud. These missing shots effectively segment the 
continuous line being followed by the scanner’s optics, into 
multiple smaller line segments.  Treating these smaller line 



 

segments as independent entities, allows us to apply the Kalman 
filter to each of these subset lines from the point cloud.  Since 
only a section of the total point cloud is being used to compare 
the results from these three methods, allowances have to be 
made for lines shorter that the window size ),( 21 nn− and the 
window size has to be adjusted to accommodate points at the 
start and end of each line.    
 

 
Figure 2: Methods for the Detection of Outliers.  (a) Time 
series of points used to generate predictions (P) for 
measured points (M).  (b) Polynomial surface patch in the 
immediate neighbourhood of the point being tested.  (c) 
Spatial residuals to the best fit polynomial surface, used to 
test multiple points simultaneously.  

 

The quadratic curved-surface fitting algorithm generates 
small surface patches in the neighbourhood of each point 
(Figure 2(b)). This is an outlier detector in the spatial 
domain, which relies on the assumption that the points 
immediately adjacent to an outlier will themselves lie on 
surface and not be outliers as well.  The variable in 
implementing this method is the number of point cloud 
coordinates surrounding the point in question which 
should be used. On one hand, at least 10 points are 
required to derive the best fit surface, on the other hand, 
the larger the number of coordinates used, the greater the 
probability that other outliers will be incorporated into 
the calculation of the surface. In fact, when discussing 
LiDAR, the conditions, which cause an outlier, will also 
greatly increase the likelihood that other outliers lie close 
by. Therefore, care must be taken when setting a patch 
size. Instead of computing the polynomial surface for 
numerous small patches, this algorithm can also generate 
the curved surface for much larger sections of the point 
cloud. The idea is to segment the point cloud and 
compute the polynomial surface for user defined sections 
of the point cloud. Using the residual produced from the 
adjustment, one can examine the separation of each point 
from the surface. Using a test statistic, such as the one 
given in equation (31), outliers can be identified.  Due to 
the potential discrepancies in the magnitude of any set of 
outliers, it might be necessary to discard identified 
outliers and re-compute the surface. Iteration in this 
manner should continue until no more outliers are 

identified. This should ensure that all outliers are 
accounted for. 

 
4. ALGORITHM TEST 

The algorithms were tested using mobile terrestrial LiDAR data 
collected with the LYNX Mobile Mapper (www.optech.ca).  
Data was obtained on a section of asphalt from a generic 
parking lot, over which, multiple drive passes where performed.  
Figure 3 shows the three point clouds selected for testing and 
Table 1 gives specifics about the content of these point clouds. 
 

 

Figure 3: Point clouds of the same asphalt strip of 
parking lot, used during testing of the three outlier 
algorithms previously described.  Point cloud A 
contains numerous outliers clustered together in two 
large groups above the asphalt surface.  Point cloud B 
contains numerous outliers as well; however, these 
outliers are more evenly distributed above the asphalt 
surface.  Point cloud C contains few outliers, most of 
which are within centimetres of the asphalt surface. 



 

Table 1: Specifications for point clouds used in algorithm 
testing.  

Point Cloud A B C 
Total No. of 

Points 1098689 295147 237740 

Total No. of 
Outliers 11035 872 31 

Total % of 
Points Which 
are Outliers 

1.00 0.30 0.01 

 
 
Point cloud A contains numerous outliers in two large groups.  
As shown in Table 1, the outliers make up 1.00% of the total 
point cloud.  This data was collected on a day where the asphalt 
was wet, but the temperature was just below 0º Celsius.  The 
prevailing cold wet conditions caused condensation from the 
vehicle’s exhaust pipe to combine with varying high and low 
intensity returns from the standing pools of water.  This caused 
multiple laser reflections to be recorded above the asphalt 
surface. 
 
Point cloud B was collected later the same day as point cloud 
A.  There are far fewer outliers in this point cloud (0.30% from 
Table 1) and they are more spread out.   Conditions were nearly 
the same, however the temperature had risen to just above 0º 
Celsius.  A traffic barrier arm, which restricts vehicle access to 
the parking lot, caused the linear outliers in the top left hand 
corner of point clouds A and B.  The LiDAR system captured 
data on this arm while the arm was is operation.   
 
In contrast, point cloud C was collected on a day where the 
temperature was close to 20º Celsius and the pavement was dry.  
These conditions produced a point cloud with comparatively 
few outliers (0.01% from Table 1).  Many of the outliers which 
do exist in this data set are within centimetres of the asphalt 
surface.  The traffic barrier arm was not captured in operation in 
this scan. 
 
The results from tests conducted using data strips A, B and C 
are given in Table 2 for algorithm (a), in Table 3 for algorithm 
(b) and in Table 4 for algorithm (c).   
 
In addition, a combination of algorithms (a) and (b) was 
performed, where the reduced point cloud produced by 
algorithm (a) was input to algorithm (b).  The results for this 
test conducted using data strips A, B and C are given in Table 
5. 
       

Table 2: Results from trials conducted using Algorithm (a) 
on point clouds A, B and C. 

Point Cloud A B C 
No. of Outliers Identified 3414 291 4 

No. of Non-Outliers 
Identified 55 27 3 

No. of Outliers Missed 7621 581 27 
% of Outliers Identified 30.94 33.37 12.90 

% of Point Cloud Identified 0.32 0.11 0.00 
% of Point Cloud Identified 

Incorrectly 0.01 0.01 0.00 

Table 3: Results from trials conducted using Algorithm (b) 
on point clouds A, B and C. 

Point Cloud A B C 
No. of Outliers Identified 16 33 4 

No. of Non-Outliers 
Identified 0 0 0 

No. of Outliers Missed 11024 839 27 
% of Outliers Identified 0.14 3.78 12.90 

% of Point Cloud Identified 0.00 0.01 0.00 
% of Point Cloud Identified 

Incorrectly 0.00 0.00 0.00 

 

Table 4: Results from trials conducted using Algorithm (c) 
on point clouds A, B and C. 

Point Cloud A B C 
No. of Outliers Identified 5221 712 15 

No. of Non-Outliers 
Identified 15431 0 193 

No. of Outliers Missed 5060 160 16 
% of Outliers Identified 47.31 81.65 48.39 

% of Point Cloud Identified 1.88 0.24 0.09 
% of Point Cloud Identified 

Incorrectly 1.40 0.00 0.08 

 

Table 5: Results from trials conducted using Algorithm (a) 
preceding Algorithm (b) on point clouds A, B and C 

Point Cloud A B C 
No. of Outliers Identified - 

Routine (a) 3449 290 4 

No. of Outliers Identified - 
Routine (b) 11 24 1 

No. of Non-Outliers 
Identified - Routine (a) 53 25 4 

No. of Non-Outliers 
Identified - Routine (b) 1 0 0 

No. of Outliers Missed 7575 558 27 
% of Outliers Identified 31.35 36.01 16.13 

% of Point Cloud Identified 0.32 0.11 0.00 
% of Point Cloud Identified 

Incorrectly 0.00 0.01 0.00 

 
 

5. DISSCUSSION 

Algorithm (a), was able to identify an average of 25% of the 
outliers between the three point clouds.  The performance 
appears better on point clouds A and B, where there was a fairly 
well defined separation between the road surface and outlying 
data points.  Most of the outliers in point cloud C lie just 
outside the standard deviation limit for an outlier and seem to 
be problematic for the routine.  The non-outliers that were 
wrongly identified by the routine occur in areas of the point 
cloud where the regularly of the time series is disrupted by 
rough objects such as manholes.  Where a manhole was 
encountered, the data density is insufficient to model the raised 
surfaces on the manhole’s lid.  Also, areas of the point cloud 
where the system was collecting data while stationary, 



 

occlusions and changes in surface direction seem to cause false 
detections.  Despite these limitations the data indicate that the 
percentage of miss identified points for point clouds A and B 
are less than 10%. 
   
Algorithm (b), preformed worse at the removal of outliers than 
algorithm (a).  The average percentage of outliers found and 
removed is only about 5%.  This routine did exceptionally 
poorly on data where the outliers were clumped closely together 
as is the case in point cloud A.  This routine had slightly more 
success on point cloud B, where the outliers are more spread 
out on the road surface.  However, in areas of point cloud B 
where outliers are clumped together, this algorithm fails to 
distinguish the outlier from the surface.  The performance of 
this algorithm was comparable with the previous one for point 
cloud C.  In fact, since no points were selected in error, one 
could argue that the performance was slightly better.    
 
Algorithm (c), removed the most outliers compared to the other 
methods.  It also removed far more non-outlier data than the 
other routines.  The results from point cloud B seem to indicate 
that this method works best with sparse outlier data that is 
significantly different from the surface.  When the outlier data 
was clumped together (point cloud A) or the outlier data was 
close to the surface (point cloud C) the number of false alarms 
was excessive.  Removal of so many non-outlier points limits 
the usefulness of this routine, however, it should be noted that 
in all cases the amount of the point cloud identified for removal 
is less than 1%. 
 
Finally, the combinations of methods (a) and (b) was tried to 
see how much benefit could be gleaned.  Do the high rate of 
false alarms; it was decided not to include method (c).  The 
combination of the two routines produced results very similar to 
the addition of the results obtained when the two routines 
operated separately.  This is as expected.           
      
 
6. CONCLUSION 

This paper has discussed two new algorithms for the detection 
and filtering of point clouds collected using mobile terrestrial 
LiDAR.  These routines have taken advantage of the extra 
information that is generally available from this type of 
equipment.  The two mathematical models presented here 
allowed for the creation of three computer routines which 
perform outlier detection in mobile terrestrial point cloud data. 
  
The outlier detection methods, presented here, have proven to 
have value in the filtering and removal of outlier data from 
mobile terrestrial LiDAR point clouds.  While each method has 
proven to have its own strengths and weaknesses, they have 
each proven capable of detecting and removing outliers from 
actual LiDAR data.  More work is needed to optimize the inputs 
to the routines, specifically, to determine accurate error 
estimates for the point cloud coordinates.    
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