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ABSTRACT: 
 
In this paper, a computational optimized 3D reconstruction system for airborne image sequences is described and tested. The 
onboard system is designed to generate automatically and continuously the Digital Elevation Model (DEM) for large observation 
areas during the flight. The aim is to provide near real-time applications such as supporting rescue teams for prompt evaluation and 
timely reactions after natural disasters such as floodings, landslides or earthquakes. In addition, the proposed system enables the fast 
and accurate processing of 3D reconstruction for urban areas. The different optimization aspects and software-hardware methods are 
combined in the system as a compact solution to squeeze the potential performance of devices and to shorten the calculation time. 
Currently, most real-time stereo systems are applied only to small image sizes deriving a fast processing. Implementations on 
Graphics Processing Units (GPUs) are posed as image rendering. In this paper, a computational orientated concept for stereo 
processing using large images without special hardware is introduced. The data is partitioned according to the memory architecture 
of the programmable GPUs by parallel processing. This optimization is implemented on GPU with Compute Unified Device 
Architecture (CUDA). First results demonstrate the potential of the proposed real-time strategy.  
 
 

1. INSTRODUCTION 

In this paper, a computational optimized 3D reconstruction 
system using programmable Graphics Processing Units (GPU) 
is described and evaluated. Real-time stereo reconstruction 
systems are much in demand for many applications including 
support after natural disasters such as floodings, landslides or 
earthquakes, the derivation of a fast 3D reconstruction of urban 
areas and close range applications. Commercial Central 
Processing Unit (CPU) implementation is unable to perform the 
generation of Digital Elevation Model (DEM) at a continuously 
frame-rate for large observation areas. Since last year modern 
GPUs permeate steadily in scientific and engineering fields by 
means of their specialized design for compute-intensive, 
massively data parallel computation. In 2007, NVIDIA 
introduced a new and flexible concept, the Compute Unified 
Device Architecture (CUDA) (NVIDIA, 2007) that enables the 
General-Purpose Computation on Graphics Hardware (GPGPU) 
in the familiar C programming language. It affords directly 
management on memories with different characteristics. Thus, 
it is no more necessary to disguise algorithms such image 
rendering. 
 
In the proposed system, the input images are firstly rectified 
according to a compact rectification algorithm (Fusiello & 
Trucco, 2000). The important advantage of rectification is that 
computing stereo correspondences is done along the horizontal 
or vertical lines of the rectified images. It simplifies the index 
searching and leads a sequential movement in memory. 
Currently, almost all implementations for real-time accurate 
dense 3D reconstruction are based on global stereo approaches. 
They are more accurate than local methods at the cost of their 

computation complexity (Scharstein & Szeliski, 2002). The 
Semi-Global Matching (SGM) (Hirschmüller, 2009) is selected 
for the stereo algorithm, because the Middlebury online 
evaluation (Scharstein & Szelisk, 2010) demonstrates that it is 
one of the currently best global stereo methods. However, 
providing accurate results, the run-time of SGM for large 
images is still the bottleneck for 3D reconstruction processing. 
On the other site, its parallel execution model accords with 
Single Instruction Multiple Threads (SIMT) architecture. Thus, 
the proposed efficient processing in this paper is based on a 
CUDA implementation. The novel core of the approach is to 
optimize the SGM method for large images considering a 
suitable data tiling on GPU.  
 
The implementation of the SGM is so far realized on GPUs 
with OpenGL/C for Graphics (Cg) which utilizes older-
generation GPUs having fewer capabilities and less 
programmability (Ernst & Hirschmüller, 2008). In contrast, 
CUDA is much less constrained by general purpose 
computation. In addition, the real-time processing above was 
reached 4.2 fps on GeForce 8800 ULTRA for images having 
640×480 pixels of 128 pixels disparity range.. In the work of 
(Hirschmüller, 2008) large image sizes are used, but the 
matching of one image (86 MPixel) against six neighbors took 
around 5.5 hours on one 2.2 GHz Opteron CPU. In the paper of 
Gibson and Marques (Gibson & Marques, 2008) the execution 
time for cost aggregation in their CUDA Implementation is not 
explicitly declared. Besides, the run-time for 450×375 images 
with 64 disparity depth are even worse as the OpenGL approach 
reaching an efficient of 3 times better than their CPU 
implementation.  



 

The goal of this paper is to parallelize the massive computation 
parts on GPU, to optimize the data transformation in the 
processing steps and between them and, finally, to reach a near 
real-time stereo processing. The presented work refers mainly 
to three parts: in the next Section 2, the used methods are 
described. In Section 3, the design idea of parallelization using 
modern GPUs is illustrated. In Section 4, first experimental 
results of the realized implementation are analyzed. Finally, 
further work is discussed in Section 5.  
 
 
2. 3D RECONSTRUCTION USING SEMI-GLOBAL 

MATCHING 

2.1 Strategy for 3D reconstruction 

In this section, the methodical steps of the stereo processing are 
demonstrated, shown as flow diagram in Figure 1. The input 
images using Global Positioning System (GPS) data and camera 
parameters are corrected and rectified to epipolar images, which 
enable a linear storage in memory. Afterwards, a 
correspondence method, the Semi-Global Matching, is used to 
generate disparity images. Generally, the Semi-Global 
Matching method consists of four steps like most methods in 
global category: matching cost computation, cost aggregation, 
disparity computation and disparity refinement.  
 

 
Figure 1: Flow diagram for stereo 3D reconstruction 

 
 
2.2 Rectification of stereo pairs 

The perspective transformation for homogeneous coordinates of 
object points X


into the image coordinate system can be 

presented with the following equation:  
 
   H T H H

3×3 0 3×3 0x = KR I -X × X = Q I -X × X      
           (1) 

 
The vectors Hx


 and HX


 present the image and object points in 

the homogeneous coordinate system, respectively. 
0X


is the 

camera centre. The Q matrix summarizes the rotation matrix 

R and the camera matrix K . The idea of rectification is to 
define two new perspective projection matrices obtained by 
rotating the old ones around their optical centres until focal 
planes becomes coplanar containing the baseline. The new 
projection matrices have the same rotation matrix:  
 

                     
T

nL nL n 3×3 0L

T
nR nR n 3×3 0R

P = K R I -X

P = K R I -X

  
  

 

 
   (2)  

 

nLP  and 
nRP  are the new projection matrices for the left and 

right epipolar images. They vary in the principal point in x-
direction included in

nLK and 
nRK and their projection centres 

between 
0LX


and 
0RX


. According to epipolar geometry, the 

pixels in the original image and in the new generated epipolar 
image have the following relation:  
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It is essential that:  
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In a similar way, the transformation matrix can be derived for 
the right image. Via this pair of rectifying projection matrices 
the conjugate epipolar lines become collinear and parallel to 
one of the image axes. This preprocessing simplifies the 
subsequent dense stereo matching.  
 
2.3 Correspondence research using Semi-Global Matching 

Two factors are considered when choosing a method for 
correspondence searching on GPU. First, global matching 
methods are more accurate than local methods (Scharstein & 
Szeliski, 2002), but their run-time makes them unsuitable for 
real-time applications. As an exception, the cost complexity of 
the Semi-Global Matching is O(width×height×disparity_range) 
like local methods (Hirschmüller, 2008). Second, its methodical 
realization has a regular structure and maps the SIMT 
mechanism of GPUs (NVIDIA, 2009a). Thus, an efficient 
computation using programmable GPUs is possible.  
 
The matching cost for two pixels can be derived from different 
methods. The absolute differences between pixel intensities are 
used as correspondence cost. An extension with i.e. Mutual 
Information (MI) is suitable which performs a better matching 
(Hirschmüller & Scharstein, 2007). In the disparity range 
belong epipolar lines the gray values are read and pointed into 
the cost table, which is generated from the histogram of 
intensities of both images:  
 
 C(p, d) = L(p) - R(p + d)   (6) 

 
where  C = cost for pixel for p at d 
 d = absolute disparity from p  
 L (p) = intensity of  pixel  p in the left image 

 R (p+d) = intensity of  pixel (p+d) in the right  
                           image.  



 

An example of this step is visualized in Figure 2: u and v are the 
intensities in the left and the right image, c is the cost from the 
table on the right size.  

 
Figure 2: Cost generation from lookup table 

 
The SGM method approximates the minimization of the global 
energy E(D): 
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The first term sums the costs of all pixels in the image with 
their particular disparities

PD . The next two terms penalize the 

discontinuities with penalty factors 
1P and

2P , which differ in 

small or large disparity difference within a neighbourhood q of 

the pixel p . This minimization approximation is realized by 

aggregating S(p, d) of path wise costs into a cost volume:  

 
                         

r
r

S(p, d) = L(p, d)   (8) 

 
( , )rL p d  in (8) represents the cost of pixel p  with disparity 

d along one direction r. It is described as following:  
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This smoothed cost function considers the change continuity in 
a direction of cost aggregation as well as non identical 
disparities of the local pixel with prior pixel. The disparity at 
each pixel is selected as index of the minimum cost from the 
cost cube.  
 
 

3. COMPUTATIONAL OPTIMIZATION ON GPU 

3.1 Strategy of real-time stereo processing 

From the hardware viewpoint, the GPUs consist of a set of 
Streaming Multiprocessors (SM), each of them computing 
several warps of threads. Warp is the unit definition about a 
group of 32 threads, which is the minimum data processing size 
in SIMT fashion in SM (NVIDIA, 2010). All threads run the 
same codes on GPU and communicate with each other via 
shared memory. The basic idea of the aimed strategy is the 

partitioning of the related data, tiling them from global memory 
on device into the private shared memory of the multiprocessors, 
performing each thread with localized data and, afterwards, 
copying the results back to global memory.  
 
Figure 3 visualises the data flow diagram in different memory 
levels of CPU and GPU during stereo processing. Firstly, the 
input images are loaded from CPU memory to the global 
memory on GPU. The remaining processing stays in GPU until 
copying the results back. Important is here, the available data 
resides in GPU to avoid the lagged data transformation between 
host and device via PCI-Express bus (Nukada et al. 2008). 
Secondly, in the cost calculation step, the rectified images are 
stored in global memory as texture and tiled line-by-line into 
shared memory in SM, whose latency is roughly 100× lower 
than global memory latency (NVIDIA, 2009b). Thirdly, each 
data element in the cost cube maps a thread in GPU and is 
pathwise aggregated.  
 

 
 

Figure 3: Data flow in CPU and GPU memories during 3D 
reconstruction 
 
 
3.2 Rectification on GPU 

The parallelization of the rectification step requires no iterative 
data use. The values of all pixels from the original image are 
tiled in blocks. The image index is mapped from the 
combination of the block ID and thread ID according to their 
declaration. Two transformation matrices 

LT  and 
RT must be 

defined locally in the kernel-function in order to use the quick 
caching of broadcast mechanism. It means, the required data 
will be read only once and propagated for all threads. The 
pixels are rectified concurrently with the matrix using the 
Equation 4. Their intensities are rewritten with the new 
coordinates in the rectified image, which is allocated in the 
global memory.  
 
3.3 Matching cost computation 

The costs in the cost lookup table are simply identical with the 
absolute intensity difference. This table can be refined with 



 

hierarchical mutual information (Hirschmüller, 2008). In the 
cost computation step, each pixel in the left image is compared 
with all reference pixels in the disparity range from the right 
image. The accordant matching costs are read from the cost 
table using their intensities as indices. In fact, a pixel from the 
left image is related with all pixels between minimum and 
maximum disparity in the right image. Storing of image 
intensities in global memory induces large memory accesses: 
for cost calculation on one pixel, 

rangedis  times private 

readings is required, however the coming pixel could share 

1rangedis −  already read data with the previous pixel. The 

values in the image are partitioned line-by-line and tiled into 
the shared memory to reduce the memory accesses on global 
memory and increase the data utilization rate. The ground 
design ideal is visualized in Figure 4.  
 

 
 

Figure 4: Data tiling in shared memory for cost computation 
 
The available amount of shared memory in a SM is 16KB, 
which is enough for storing 4000 pixels in float. But the 
maximum number of resident threads per multiprocessor is 
1024 for GPUs with compute capability 1.3. Hence the maximal 
threads number is the decisive factor for parallelization. The 
block dimension is designed in 2D, because the maximum size 
of the x-, y-, and z-dimension of a thread block is limited for all 
GPUs up to Compute Capability 1.3 at 512, 512, and 64, 
respectively (NVIDIA, 2010). One dimension block for large 
image exceeds the hardware competence.  
 
In the kernel function a barrier synchronization call ensures that 
all required data for the next step is already updated to the 
shared memory before their individual calculations. Otherwise, 
threads could get empty values from uninitialized vectors. 
Figure 5 illustrates a block processing for generating a cost wall 
from the tiled data.  
 

 
 

Figure 5: Threads allocation and synchronization by cost wall 
generation 

 

Consequently, each thread in a block answers to a pixel in the 
image line. A threads block generates a part of the complete 
cost cube. The excerpt of the CostCal reports the CUDA 
kernel code:  
 
__global__ void CostCal (…){ 
   const int ix = threadIdx.x; 
   const int iy = blockIdx.x; 
   … 
   __shared__ float1 sData_l[IMG_LENGTH],  
                     sData_r[IMG_LENGTH];  
 
   //Calculation over complete image 
   for (int l = 0; l<imgH; l++){ 
     
     //Update intensities from texture 
     sData_l[ix] = tex2D(l_texImg, ix, l); 
     sData_r[ix] = tex2D(r_texImg, ix, l); 
     __syncthreads(); 
     … 
     //Update intensities from texture 
     for(int DStep = 0; DStep<DDepth; DStep++){ 
   //Calculation 
         cost = tex2D(ct_texImg, ix, iy); 
   d_ccube[DStep*imgW*imgH + imgW*l + ix] 
          = cTable(sData_l[ix].x,sData_r[ix].x); 
      } 
   } 
} 

 
3.4 Cost Aggregation and Disparity selection 

The CPU implementation for cost aggregation is typically a 
serial computation along different paths. In contrast, the 
proposed implementation uses the advantage of the threads 
parallelization of GPUs to calculate more data elements 
synchronously. The cost optimization for each pixel in one 
direction requires two mass groups of data: the own lookup 
costs in the disparity range, which are generated in the past 
section, and the optimized costs from the previous pixel in the 
path. A pixel in the cost cube contains 

rangedis  data elements 

that map the same amount threads. Moreover, the massive 
accessing on same data suits exactly the advantage of shared 
memory on GPUs. The previous optimized costs are repeatedly 
used for all data elements in the next pixel. The memory 
requirement for this step is potentially to the data quantity, 
which has twice over

rangedis  elements for every pixel.  

 
A further challenge is that pixels are no more independently 
with each other like in the cost computation. They take the 
optimized results backward along a path. Instead of rectangular 
data tiling from image matrix, a line scanning of thread 
allocation is swept through the image. This ground ideal for 
parallelization is visualised in Figure 6.  
 

 
 

Figure 6: Parallelization of cost aggregation 
 



 

Traditionally, the sweeping should be executed more times for 
e.g. eight directions SGM. The quick implementation tries just 
two passes, from top to bottom and from bottom to top, to 
achieve the cost optimisation in six directions. The disparity 
selection is done after the cost aggregation in the second 
sweeping. It is simply to extend for more directions, if the 
sweepings start from another sides of the image. This quick 
approach is shown in Figure 7. The border pixels receive their 
( , )C p d as ( , )S p d . Each element in the cost cube maps to a 

thread. In a tiling block 
rangedis BLOCKSIZE×  threads are 

concurrently in cost optimizing according to the Equation 9.  
 

 

Figure 7: Fast processing using two sweeping through complete 
image 

 
Furthermore, the meanwhile optimized cost wall is written 
directly to global memory, but not eliminated from shared 
memory, because they can be used for the next line. This 
finesse avoids reading data from optimized cost and 
economizes the expensive memory accessing to global memory 
for each block. The data flow during kernel execution is 
presented in Figure 8. This strategy can be used only for the up-
down and down-up directions in the quick approach. The 
skewing in the other directions requires a global view of 
optimized costs, in order to enable the communication between 
blocks.  
 

 
 

Figure 8: Data flow during cost aggregation (one direction) 
 
 

4. EXPERIMENTAL RESULTS 

The experiment results are computed on a NVIDIA GeForce 
GTX 295 graphics card. One of the both GT200 graphic 
processor is used for the calculation. This device core has 30 

Streaming Multiprocessors on-chip and suffices 1.3 CUDA 
compute capability (NVIDIA, 2010). The compared CPU 
implementation runs on an Intel Core2 Q9450 CPU with 6 MB 
L2 Cache. The resulted disparity image of GPU implementation 
is shown in Figure 10, one of the related input images in Figure 
9. The pair of arranged stereo images has a pixel size of 
1000×1000 with a disparity range of 80.  
 
The un-optimized CPU implementation needs about 5200 ms to 
finish the stereo processing including rectification. In contrast, 
the GPU-accelerated implementation requires just 722 ms 
totally. A comparison of the execution time between CPU and 
GPU implementations with the above referred example are 
presented step by step in Table 1. In each step the improved 
version on GPU is more efficient than un-optimized CPU 
execution. By the critical part, cost aggregation, the GPU 
implementation takes an excellent performance of about 9 times 
faster than the CPU processing. Finally, the GPU improvement  
 

     
 

Figure 9: Left input image, Munich Frauenkirche 
 

 
 

Figure 10: Resultant disparity image of the GPU 
implementation using CUDA 



 

 CPU 
Implementation 

GPU 
Implementation 

Rectification 432 ms 96 ms 

Cost calculation 200 ms 9 ms 
Cost aggregation 
Disparity selection 

4215 ms 
362 ms 

481 ms 
136 ms 

Total 5209 ms 722 ms 

 
Table 1: Comparison of execution times  

 
using CUDA reaches at least seven times as the commercial 
implementation on CPU. By the last step in the table, disparity 
selection, its execution time can be reduced, if an appropriate 
block size is used. This part of implementation uses the 
identical block tiling size in this paper in order to gain the cost 
aggregations from left to right and right to left.  
 
The accuracies between CPU and GPU implementation are 
compared. Generally, they take similar results as shown in 
Figure 11. In this scenario, the disparities on the church roof of 
the GPU result are better than CPU execution, in respect that 
the left to right and right to left cost aggregations on GPU use a 
different 

2P  with other aggregation paths. The used intensity 

based matching cost is very sensitive to illumination differences, 
reflections, etc. Alternatively, mutual information registers 
complex radiometric relationships and can bring better results 
(Hirschmüller, 2009).  
 

 
 

Figure 11: Result comparison between CPU (left) and GPU 
(right) implementation 
 
 

5. CONCLUSIONS 

The proposed work indicates large potential capability of 
common graphics cards for general computation. The 
computational improvement on programmable GPUs stereo 
processing has shown that it is possible to obtain near real-time 
3D reconstruction without special hardware such as Field 
Programmable Gate Array (FPGA) (Gehrig et al., 2009). The 
parallelization using CUDA is not necessary to pretend as 
image rendering using Cg. This enables the developers more 
flexibilities on programming and requires no additional 
software skills about 2D/3D Application Programming Interface 
(APIs).  
 
For the first implementation, the absolute intensity differences 
are used as costs in the lookup table. Future work will contain 
the mutual information. In addition, a full SGM algorithm with 
left and right disparities check will be implemented. The 
pathwise aggregation of SGM is still an obstacle for data 
parallelization, because each template summery S(p, d) of 

optimized costs 
rL (p, d)must be global viewable for all 

blocks. This property caused memory access latency cannot be 
avoided. In future work, different tiling strategies will be 
achieved and compared. A more efficient and accurate stereo 
processing on GPU is on-going work.  
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