
COMPUTATIONAL OPTIMIZED 3D RECONSTRUCTION SYSTEM
FOR AIRBORNE IMAGE SEQUENCES

K. Zhu1, M. Butenuth1 & P. d´Angelo2

1Technische Universität München, Remote Sensing Technology, D-80333 München, Germany,

{ke.zhu, matthias.butenuth}@bv.tum.de
2German Aerospace Center (DLR), Remote Sensing Technology Institute, D-82234 Wessling, Germany

pablo.angelo@dlr.de

Commission I

KEY WORDS: Near Real-time 3D Reconstruction, Semi-Global Matching (SGM), Graphics Processing Unit (GPU), Compute

Unified Device Architecture (CUDA)

ABSTRACT:

In this paper, a computational optimized 3D reconstruction system for airborne image sequences is described and tested. The
onboard system is designed to generate automatically and continuously the Digital Elevation Model (DEM) for large observation
areas during the flight. The aim is to provide near real-time applications such as supporting rescue teams for prompt evaluation and
timely reactions after natural disasters such as floodings, landslides or earthquakes. In addition, the proposed system enables the fast
and accurate processing of 3D reconstruction for urban areas. The different optimization aspects and software-hardware methods are
combined in the system as a compact solution to squeeze the potential performance of devices and to shorten the calculation time.
Currently, most real-time stereo systems are applied only to small image sizes deriving a fast processing. Implementations on
Graphics Processing Units (GPUs) are posed as image rendering. In this paper, a computational orientated concept for stereo
processing using large images without special hardware is introduced. The data is partitioned according to the memory architecture
of the programmable GPUs by parallel processing. This optimization is implemented on GPU with Compute Unified Device
Architecture (CUDA). First results demonstrate the potential of the proposed real-time strategy.

1. INSTRODUCTION

In this paper, a computational optimized 3D reconstruction
system using programmable Graphics Processing Units (GPU)
is described and evaluated. Real-time stereo reconstruction
systems are much in demand for many applications including
support after natural disasters such as floodings, landslides or
earthquakes, the derivation of a fast 3D reconstruction of urban
areas and close range applications. Commercial Central
Processing Unit (CPU) implementation is unable to perform the
generation of Digital Elevation Model (DEM) at a continuously
frame-rate for large observation areas. Since last year modern
GPUs permeate steadily in scientific and engineering fields by
means of their specialized design for compute-intensive,
massively data parallel computation. In 2007, NVIDIA
introduced a new and flexible concept, the Compute Unified
Device Architecture (CUDA) (NVIDIA, 2007) that enables the
General-Purpose Computation on Graphics Hardware (GPGPU)
in the familiar C programming language. It affords directly
management on memories with different characteristics. Thus,
it is no more necessary to disguise algorithms such image
rendering.

In the proposed system, the input images are firstly rectified
according to a compact rectification algorithm (Fusiello &
Trucco, 2000). The important advantage of rectification is that
computing stereo correspondences is done along the horizontal
or vertical lines of the rectified images. It simplifies the index
searching and leads a sequential movement in memory.
Currently, almost all implementations for real-time accurate
dense 3D reconstruction are based on global stereo approaches.
They are more accurate than local methods at the cost of their

computation complexity (Scharstein & Szeliski, 2002). The
Semi-Global Matching (SGM) (Hirschmüller, 2009) is selected
for the stereo algorithm, because the Middlebury online
evaluation (Scharstein & Szelisk, 2010) demonstrates that it is
one of the currently best global stereo methods. However,
providing accurate results, the run-time of SGM for large
images is still the bottleneck for 3D reconstruction processing.
On the other site, its parallel execution model accords with
Single Instruction Multiple Threads (SIMT) architecture. Thus,
the proposed efficient processing in this paper is based on a
CUDA implementation. The novel core of the approach is to
optimize the SGM method for large images considering a
suitable data tiling on GPU.

The implementation of the SGM is so far realized on GPUs
with OpenGL/C for Graphics (Cg) which utilizes older-
generation GPUs having fewer capabilities and less
programmability (Ernst & Hirschmüller, 2008). In contrast,
CUDA is much less constrained by general purpose
computation. In addition, the real-time processing above was
reached 4.2 fps on GeForce 8800 ULTRA for images having
640×480 pixels of 128 pixels disparity range.. In the work of
(Hirschmüller, 2008) large image sizes are used, but the
matching of one image (86 MPixel) against six neighbors took
around 5.5 hours on one 2.2 GHz Opteron CPU. In the paper of
Gibson and Marques (Gibson & Marques, 2008) the execution
time for cost aggregation in their CUDA Implementation is not
explicitly declared. Besides, the run-time for 450×375 images
with 64 disparity depth are even worse as the OpenGL approach
reaching an efficient of 3 times better than their CPU
implementation.

The goal of this paper is to parallelize the massive computation
parts on GPU, to optimize the data transformation in the
processing steps and between them and, finally, to reach a near
real-time stereo processing. The presented work refers mainly
to three parts: in the next Section 2, the used methods are
described. In Section 3, the design idea of parallelization using
modern GPUs is illustrated. In Section 4, first experimental
results of the realized implementation are analyzed. Finally,
further work is discussed in Section 5.

2. 3D RECONSTRUCTION USING SEMI-GLOBAL

MATCHING

2.1 Strategy for 3D reconstruction

In this section, the methodical steps of the stereo processing are
demonstrated, shown as flow diagram in Figure 1. The input
images using Global Positioning System (GPS) data and camera
parameters are corrected and rectified to epipolar images, which
enable a linear storage in memory. Afterwards, a
correspondence method, the Semi-Global Matching, is used to
generate disparity images. Generally, the Semi-Global
Matching method consists of four steps like most methods in
global category: matching cost computation, cost aggregation,
disparity computation and disparity refinement.

Figure 1: Flow diagram for stereo 3D reconstruction

2.2 Rectification of stereo pairs

The perspective transformation for homogeneous coordinates of
object points X


into the image coordinate system can be

presented with the following equation:

 H T H H

3×3 0 3×3 0x = KR I -X × X = Q I -X × X      
      (1)

The vectors Hx


 and HX


 present the image and object points in

the homogeneous coordinate system, respectively.
0X


is the

camera centre. The Q matrix summarizes the rotation matrix

R and the camera matrix K . The idea of rectification is to
define two new perspective projection matrices obtained by
rotating the old ones around their optical centres until focal
planes becomes coplanar containing the baseline. The new
projection matrices have the same rotation matrix:

T

nL nL n 3×3 0L

T
nR nR n 3×3 0R

P = K R I -X

P = K R I -X

  
  

 

 
 (2)

nLP and
nRP are the new projection matrices for the left and

right epipolar images. They vary in the principal point in x-
direction included in

nLK and
nRK and their projection centres

between
0LX


and
0RX


. According to epipolar geometry, the

pixels in the original image and in the new generated epipolar
image have the following relation:

-1 H T -1 H

0 L L L L L

-1 H T -1 H
0 nL nL nL n nL

X - X = Q x =(K R) x

X- X = Q x =(K R) x

   

   
 (3)

It is essential that:

H H

nL L L

-1 T T -1
L nL L nL n L L

x = T x

T = Q Q =(K R)(K R)

 
 (4)

In a similar way, the transformation matrix can be derived for
the right image. Via this pair of rectifying projection matrices
the conjugate epipolar lines become collinear and parallel to
one of the image axes. This preprocessing simplifies the
subsequent dense stereo matching.

2.3 Correspondence research using Semi-Global Matching

Two factors are considered when choosing a method for
correspondence searching on GPU. First, global matching
methods are more accurate than local methods (Scharstein &
Szeliski, 2002), but their run-time makes them unsuitable for
real-time applications. As an exception, the cost complexity of
the Semi-Global Matching is O(width×height×disparity_range)
like local methods (Hirschmüller, 2008). Second, its methodical
realization has a regular structure and maps the SIMT
mechanism of GPUs (NVIDIA, 2009a). Thus, an efficient
computation using programmable GPUs is possible.

The matching cost for two pixels can be derived from different
methods. The absolute differences between pixel intensities are
used as correspondence cost. An extension with i.e. Mutual
Information (MI) is suitable which performs a better matching
(Hirschmüller & Scharstein, 2007). In the disparity range
belong epipolar lines the gray values are read and pointed into
the cost table, which is generated from the histogram of
intensities of both images:

 C(p, d) = L(p) - R(p + d) (6)

where C = cost for pixel for p at d
 d = absolute disparity from p
 L (p) = intensity of pixel p in the left image

 R (p+d) = intensity of pixel (p+d) in the right
 image.

An example of this step is visualized in Figure 2: u and v are the
intensities in the left and the right image, c is the cost from the
table on the right size.

Figure 2: Cost generation from lookup table

The SGM method approximates the minimization of the global
energy E(D):

p

p

p 1 p q
p q N

2 p q
q N

E(D) = (C(p, D) + PT D - D = 1

+ P T D - D > 1

∈

∈

  

  

 


 (7)

The first term sums the costs of all pixels in the image with
their particular disparities

PD . The next two terms penalize the

discontinuities with penalty factors
1P and

2P , which differ in

small or large disparity difference within a neighbourhood q of

the pixel p . This minimization approximation is realized by

aggregating S(p, d) of path wise costs into a cost volume:

r
r

S(p, d) = L(p, d) (8)

(,)rL p d in (8) represents the cost of pixel p with disparity

d along one direction r. It is described as following:

r

r

r 1

r 1

r 2
i

r
i

L (p, d) = C(p, d) +

min{L(p - r, d),

L(p - r, d - 1) + P ,

L(p - r, d + 1) + P ,

minL(p - r,i) + P } -

min L(p - r,i)

 (9)

This smoothed cost function considers the change continuity in
a direction of cost aggregation as well as non identical
disparities of the local pixel with prior pixel. The disparity at
each pixel is selected as index of the minimum cost from the
cost cube.

3. COMPUTATIONAL OPTIMIZATION ON GPU

3.1 Strategy of real-time stereo processing

From the hardware viewpoint, the GPUs consist of a set of
Streaming Multiprocessors (SM), each of them computing
several warps of threads. Warp is the unit definition about a
group of 32 threads, which is the minimum data processing size
in SIMT fashion in SM (NVIDIA, 2010). All threads run the
same codes on GPU and communicate with each other via
shared memory. The basic idea of the aimed strategy is the

partitioning of the related data, tiling them from global memory
on device into the private shared memory of the multiprocessors,
performing each thread with localized data and, afterwards,
copying the results back to global memory.

Figure 3 visualises the data flow diagram in different memory
levels of CPU and GPU during stereo processing. Firstly, the
input images are loaded from CPU memory to the global
memory on GPU. The remaining processing stays in GPU until
copying the results back. Important is here, the available data
resides in GPU to avoid the lagged data transformation between
host and device via PCI-Express bus (Nukada et al. 2008).
Secondly, in the cost calculation step, the rectified images are
stored in global memory as texture and tiled line-by-line into
shared memory in SM, whose latency is roughly 100× lower
than global memory latency (NVIDIA, 2009b). Thirdly, each
data element in the cost cube maps a thread in GPU and is
pathwise aggregated.

Figure 3: Data flow in CPU and GPU memories during 3D
reconstruction

3.2 Rectification on GPU

The parallelization of the rectification step requires no iterative
data use. The values of all pixels from the original image are
tiled in blocks. The image index is mapped from the
combination of the block ID and thread ID according to their
declaration. Two transformation matrices

LT and
RT must be

defined locally in the kernel-function in order to use the quick
caching of broadcast mechanism. It means, the required data
will be read only once and propagated for all threads. The
pixels are rectified concurrently with the matrix using the
Equation 4. Their intensities are rewritten with the new
coordinates in the rectified image, which is allocated in the
global memory.

3.3 Matching cost computation

The costs in the cost lookup table are simply identical with the
absolute intensity difference. This table can be refined with

hierarchical mutual information (Hirschmüller, 2008). In the
cost computation step, each pixel in the left image is compared
with all reference pixels in the disparity range from the right
image. The accordant matching costs are read from the cost
table using their intensities as indices. In fact, a pixel from the
left image is related with all pixels between minimum and
maximum disparity in the right image. Storing of image
intensities in global memory induces large memory accesses:
for cost calculation on one pixel,

rangedis times private

readings is required, however the coming pixel could share

1rangedis − already read data with the previous pixel. The

values in the image are partitioned line-by-line and tiled into
the shared memory to reduce the memory accesses on global
memory and increase the data utilization rate. The ground
design ideal is visualized in Figure 4.

Figure 4: Data tiling in shared memory for cost computation

The available amount of shared memory in a SM is 16KB,
which is enough for storing 4000 pixels in float. But the
maximum number of resident threads per multiprocessor is
1024 for GPUs with compute capability 1.3. Hence the maximal
threads number is the decisive factor for parallelization. The
block dimension is designed in 2D, because the maximum size
of the x-, y-, and z-dimension of a thread block is limited for all
GPUs up to Compute Capability 1.3 at 512, 512, and 64,
respectively (NVIDIA, 2010). One dimension block for large
image exceeds the hardware competence.

In the kernel function a barrier synchronization call ensures that
all required data for the next step is already updated to the
shared memory before their individual calculations. Otherwise,
threads could get empty values from uninitialized vectors.
Figure 5 illustrates a block processing for generating a cost wall
from the tiled data.

Figure 5: Threads allocation and synchronization by cost wall
generation

Consequently, each thread in a block answers to a pixel in the
image line. A threads block generates a part of the complete
cost cube. The excerpt of the CostCal reports the CUDA
kernel code:

__global__ void CostCal (…){
 const int ix = threadIdx.x;
 const int iy = blockIdx.x;
 …
 __shared__ float1 sData_l[IMG_LENGTH],
 sData_r[IMG_LENGTH];

 //Calculation over complete image
 for (int l = 0; l<imgH; l++){

 //Update intensities from texture
 sData_l[ix] = tex2D(l_texImg, ix, l);
 sData_r[ix] = tex2D(r_texImg, ix, l);
 __syncthreads();
 …
 //Update intensities from texture
 for(int DStep = 0; DStep<DDepth; DStep++){
 //Calculation
 cost = tex2D(ct_texImg, ix, iy);
 d_ccube[DStep*imgW*imgH + imgW*l + ix]
 = cTable(sData_l[ix].x,sData_r[ix].x);
 }
 }
}

3.4 Cost Aggregation and Disparity selection

The CPU implementation for cost aggregation is typically a
serial computation along different paths. In contrast, the
proposed implementation uses the advantage of the threads
parallelization of GPUs to calculate more data elements
synchronously. The cost optimization for each pixel in one
direction requires two mass groups of data: the own lookup
costs in the disparity range, which are generated in the past
section, and the optimized costs from the previous pixel in the
path. A pixel in the cost cube contains

rangedis data elements

that map the same amount threads. Moreover, the massive
accessing on same data suits exactly the advantage of shared
memory on GPUs. The previous optimized costs are repeatedly
used for all data elements in the next pixel. The memory
requirement for this step is potentially to the data quantity,
which has twice over

rangedis elements for every pixel.

A further challenge is that pixels are no more independently
with each other like in the cost computation. They take the
optimized results backward along a path. Instead of rectangular
data tiling from image matrix, a line scanning of thread
allocation is swept through the image. This ground ideal for
parallelization is visualised in Figure 6.

Figure 6: Parallelization of cost aggregation

Traditionally, the sweeping should be executed more times for
e.g. eight directions SGM. The quick implementation tries just
two passes, from top to bottom and from bottom to top, to
achieve the cost optimisation in six directions. The disparity
selection is done after the cost aggregation in the second
sweeping. It is simply to extend for more directions, if the
sweepings start from another sides of the image. This quick
approach is shown in Figure 7. The border pixels receive their
(,)C p d as (,)S p d . Each element in the cost cube maps to a

thread. In a tiling block
rangedis BLOCKSIZE× threads are

concurrently in cost optimizing according to the Equation 9.

Figure 7: Fast processing using two sweeping through complete
image

Furthermore, the meanwhile optimized cost wall is written
directly to global memory, but not eliminated from shared
memory, because they can be used for the next line. This
finesse avoids reading data from optimized cost and
economizes the expensive memory accessing to global memory
for each block. The data flow during kernel execution is
presented in Figure 8. This strategy can be used only for the up-
down and down-up directions in the quick approach. The
skewing in the other directions requires a global view of
optimized costs, in order to enable the communication between
blocks.

Figure 8: Data flow during cost aggregation (one direction)

4. EXPERIMENTAL RESULTS

The experiment results are computed on a NVIDIA GeForce
GTX 295 graphics card. One of the both GT200 graphic
processor is used for the calculation. This device core has 30

Streaming Multiprocessors on-chip and suffices 1.3 CUDA
compute capability (NVIDIA, 2010). The compared CPU
implementation runs on an Intel Core2 Q9450 CPU with 6 MB
L2 Cache. The resulted disparity image of GPU implementation
is shown in Figure 10, one of the related input images in Figure
9. The pair of arranged stereo images has a pixel size of
1000×1000 with a disparity range of 80.

The un-optimized CPU implementation needs about 5200 ms to
finish the stereo processing including rectification. In contrast,
the GPU-accelerated implementation requires just 722 ms
totally. A comparison of the execution time between CPU and
GPU implementations with the above referred example are
presented step by step in Table 1. In each step the improved
version on GPU is more efficient than un-optimized CPU
execution. By the critical part, cost aggregation, the GPU
implementation takes an excellent performance of about 9 times
faster than the CPU processing. Finally, the GPU improvement

Figure 9: Left input image, Munich Frauenkirche

Figure 10: Resultant disparity image of the GPU
implementation using CUDA

 CPU
Implementation

GPU
Implementation

Rectification 432 ms 96 ms

Cost calculation 200 ms 9 ms
Cost aggregation
Disparity selection

4215 ms
362 ms

481 ms
136 ms

Total 5209 ms 722 ms

Table 1: Comparison of execution times

using CUDA reaches at least seven times as the commercial
implementation on CPU. By the last step in the table, disparity
selection, its execution time can be reduced, if an appropriate
block size is used. This part of implementation uses the
identical block tiling size in this paper in order to gain the cost
aggregations from left to right and right to left.

The accuracies between CPU and GPU implementation are
compared. Generally, they take similar results as shown in
Figure 11. In this scenario, the disparities on the church roof of
the GPU result are better than CPU execution, in respect that
the left to right and right to left cost aggregations on GPU use a
different

2P with other aggregation paths. The used intensity

based matching cost is very sensitive to illumination differences,
reflections, etc. Alternatively, mutual information registers
complex radiometric relationships and can bring better results
(Hirschmüller, 2009).

Figure 11: Result comparison between CPU (left) and GPU
(right) implementation

5. CONCLUSIONS

The proposed work indicates large potential capability of
common graphics cards for general computation. The
computational improvement on programmable GPUs stereo
processing has shown that it is possible to obtain near real-time
3D reconstruction without special hardware such as Field
Programmable Gate Array (FPGA) (Gehrig et al., 2009). The
parallelization using CUDA is not necessary to pretend as
image rendering using Cg. This enables the developers more
flexibilities on programming and requires no additional
software skills about 2D/3D Application Programming Interface
(APIs).

For the first implementation, the absolute intensity differences
are used as costs in the lookup table. Future work will contain
the mutual information. In addition, a full SGM algorithm with
left and right disparities check will be implemented. The
pathwise aggregation of SGM is still an obstacle for data
parallelization, because each template summery S(p, d) of

optimized costs
rL (p, d)must be global viewable for all

blocks. This property caused memory access latency cannot be
avoided. In future work, different tiling strategies will be
achieved and compared. A more efficient and accurate stereo
processing on GPU is on-going work.

ACKNOWLEDGEMENTS

The images are provided by the 3K camera system of the
German Aerospace Center.

REFERENCES

Ernst, I., Hirschmüller, H., 2008: Mutual Information based
Semi-Global Stereo Matching on the GPU. In: 4th International
Symposium on Visual Computing (ISVC08), USA.

Fusiello, A., Trucco, E., Verri, A., 2002. A compact algorithm
for rectification of stereo pairs. Machine Vision and
Applications 12(1), pp. 16-22.

Gehrig, S. K., Eberli, F., Meyer, T., 2009. A Real-Time Low-
Power Stereo Vision Engine Using Semi-Global Matching.
International Conference on Computer Vision Systems, Lecture
Notes in Computer Science 5815, pp. 134-143.

Gibson, J., Marques, O., 2008: Stereo Depth with a Unified
Architecture GPU. In: Workshop on “Computer Vision con
GPUs”, co-located with IEEE Computer Society Conference on
Computer Vision and Pattern Recognition, USA

Hirschmüller, H., 2008. Stereo processing by semi-global
matching and mutual information. IEEE Transactions on
Pattern Analysis and Machine Intelligence 30(2), pp. 328-341.

Hirschmüller, H., Scharstein, D., 2007. Evaluation of cost
functions for stereo matching. In: IEEE Conference on
Computer Vision and Pattern Recognition, Minneapolis, USA

Hirschmüller, H., Scharstein, D., 2009. Evaluation of Stereo
Matching Costs on Image with Radiometric Differences. IEEE
Transactions on Pattern Analysis and Machine Intelligence
31(9), pp. 1582-1599.

Nukada, A., Ogata, Y., Endo, T., Matsuoka, S., 2008.
Bandwidth Intensive 3-D FFT kernel for GPUs using CUDA. In:
Conference on High Performance Networking and Computing,
USA.

NVIDIA, 2007. NVIDIA CUDA Programming Guide, Version
1.0.

NVIDIA, 2009a. CUDA Architecture, Introduction & Overview,
Version 1.1.

NVIDIA, 2009b. OpenCL Best Practices Guide, Version 1.0.

NVIDIA, 2010. NVIDIA CUDA Programming Guide, Version
3.0.

Scharstein, D., Szeliski, R., 2002. A taxonomy and evaluation
of dense two-frame stereo correspondence algorithms.
International Journal of Computer Vision 47(1/2/3), pp. 7-42.

Scharstein, D., Szelisk, R., 2010: Middlebury stereo website.
www.middlebury.edu/stereo (accessed 15. April 2010).

