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ABSTRACT: 
 
The recently proposed use of the structural similarity measure, in the particle filter-based video tracker has been shown to improve 
the tracking performance, compared to similar methods using the colour or edge histograms and Bhattacharyya distance. However, 
the combined use of the structural similarity and a particle filter results in a computationally complex tracker that may not be 
suitable for some real time applications. In this paper, a novel fast approach to the use of the structural similarity in video tracking 
is proposed. The tracking algorithm presented in this work determines the state of the target (location, size) based on the gradient 
ascent procedure applied to the structural similarity surface of the video frame, thus avoiding computationally expensive sampling 
of the state space. The new method, while being computationally less expensive, performs better, than the standard mean shift and 
the structural similarity particle filter trackers, as shown in exemplary surveillance video sequences. 
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1. INTRODUCTION 

The development and increased availability of video 
technology has in recent years inspired a large amount of work 
on the problem of object tracking in video sequences (A. 
Hampapur et al, 2005; G. Alper Yilmaz et al, 2006). One of 
the important tracking applications are the surveillance 
systems, utilised in a wide range of environments such as: 
transport systems, public spaces (shopping malls, car parks, 
etc.), industrial environments, government or military 
establishments. Employed in such diverse scenarios, a video 
tracking system faces numerous challenges. In this 
correspondence we focus on two broad video tracking issues: 
robust object representation and computational complexity. 
The objects found in surveillance videos are often being 
tracked in ’difficult’ environments characterised by the 
variable visibility (e.g. shadows, occlusions) and the presence 
of spurious (e.g. similarly-coloured) objects and backgrounds. 
The ability to track the object in challenging conditions is 
affected by, among others, the object representation and the 
image features utilised. Examples of the commonly used 
region-based object representations are the colour (D. 
Comaniciu, P. Meer, 2002; K. Nummiaro et al, 2002) and edge 
histograms (Paul Brasnett et al, 2007) combined with the 
Bhattacharyya distance. This type of an object representation 
has been demonstrated to be relatively robust to rotation, shape 
changes and partial occlusion. On the other hand, it discards 
completely the spatial information of the image. A. Loza et 
al(A. Loza et al, 2009) proposed that the Structural SIMilarity 
Image Quality Index (SSIM) (Zhou Wang et al, 2004) is used 
to measure the similarity between the target and the candidate 
regions, based on local luminance, contrast and structure 
comparison. The tracker, referred to as the SSIM-PF, has 

proved to be robust to varying light conditions and the presence 
of the spurious objects/background. 
Moreover, due to temporal limitations of the real-time tracking 
systems, the complexity of the tracking algorithms is of a 
special importance. In real world applications the speed of the 
tracking process is affected by, among others, the complexity of 
the tracking algorithm and the number of objects present in the 
scene. In this paper we concentrate on a single object tracking 
and thus the reduction of the computational complexity of the 
tracking algorithm is our priority. Tracking, i.e. target size and 
localisation in successive frames, is performed by solving a 
state-space optimization problem, and both probabilistic and 
deterministic approaches have been proposed in the past. Some 
of the most popular probabilistic methods are based on Particle 
Filter (PF) (K. Nummiaro et al, 2002; M. Isard, A. Blake, 1998) 
valued for its ability to deal with nonlinear and non-Gaussian 
estimation problems. PF is a Monte Carlo approach 
approximating the state space distributions based on their 
random samples (particles). However, the computational 
complexity of PF is approximately proportional to the number 
of particles, and in many cases, the resulting computational 
load prohibits real-time application. On the other hand, 
deterministic optimisation methods, although less flexible, are 
usually less complex than the probabilistic approaches. Among 
the deterministic techniques, the Mean Shift (MS) algorithm 
(D. Comaniciu, P. Meer, 2002) is a widely used and a 
relatively fast adaptive tracking procedure that finds the 
maximum of the Bhattacharyya coefficient. Other ways of 
finding the mode of similarity measure in order to localise an 
object in a video frame, include Differential Earth Movers 
Distance proposed by Qi Zhao et al(Qi Zhao et al, 2007). 
Therein, a fast differential formula is proposed to analyse the 
similarity between the colour distributions of the object 
template and that of the candidate object. 



In this paper, motivated by the use of the structural information 
for surveillance video tracking as proposed by A. Loza et al(A. 
Loza et al, 2009) and the differential treatment of the distance 
measures (Qi Zhao et al, 2007), a new SSIM-based tracking 
algorithm is proposed. Unlike A. Loza’ method(A. Loza et al, 
2009), our method avoids the computationally expensive 
process of computing the similarity measure at numerous 
locations in state space, by deriving a gradient ascent method 
to localize the mode of the SSIM. The algorithm, referred to as 
the Differential SSIM (DSSIM), while benefiting from the 
robustness of the original measure to some image distortions, 
analyses the target–frame similarity based on the gradient of 
the image by using a differential form of SSIM. This simple 
form of local optimization of the similarity, while resulting in 
very good tracking performance in the test video sequences, is 
shown to be applicable to real time scenarios, due to its 
reduced computational complexity. 
The remainder of this paper is organized as follows. Section 2 
presents a description of our approach, including a brief SSIM 
review, the derivation of the DSSIM, and the corresponding 
tracking algorithm. The performance and efficiency of the 
proposed approach is demonstrated in Section 3. Section 4 
presents the conclusions and discusses the open issues for 
future research. 
 
 

2. DIFFERENTIAL SSIM TRACKER 

2.1 Structural similarity measure 

A region-based tracking algorithm typically compares the 
current frame region, I, with the object template, J, by means 
of a distance or similarity measure. A recently proposed image 
quality index, SSIM, used in our method, is defined as follows 
(Zhou Wang et al, 2004) 

where C1,2,3 are small positive constants used for the numerical 
stability purposes. For C3 = C2/2, (1) can be simplified to 
obtain 

 

where μ, σ and σIJ denote the sample mean, standard deviation 
and covariance, respectively: 

 
Ii and Ji, denote the pixel intensity of the current and template 
image regions, respectively. S is symmetric and maps the 
similarity between two images to the interval (−1, 1] : S = 1 iff 
I = J. 

This similarity measure has been selected based on its good 
ability to capture perceptual similarity of images. The SSIM 
measure simulates the perceptual process of the human visual 
system by measuring the luminance, contrast and structural 
similarity of the two images, calculated by the first, second and 
third term in (1), respectively. Another important feature of the 

SSIM index is that the three normalised measurements in (1), 
are sensitive to the relative rather than absolute image 
distortions (Zhou Wang et al, 2004), thus making this measure 
suitable to video tracking in varying conditions. The SSIM 
measure was first successfully applied to particle-filter video 
object tracking (A. Loza et al, 2009). Therein it was also 
demonstrated that the structure comparison is more reliable in 
scenarios when spurious (e.g. camouflaged) objects appear in 
the scene or when there is not enough discriminative colour 
information available. 
 

2.2 Differential SSIM Tracking Algorithm 

In the PF framework, as proposed by A. Loza et al(A. Loza et 
al, 2009), the SSIM is computed for each particle. This makes 
the SSIM-PF method computational expensive for large 
number of particles. In order 

to achieve a computationally efficient tracking performance, 
whilst retaining the benefits of the original measure, a 
differential SSIM formula is proposed as follows. The object is 
tracked in the spatial domain of the subsequent video frames 
by maximising the measure (2), based on its gradient. In order 
to simplify the subsequent derivation, we choose to analyse the 
logarithm of (2) by defining a function ρ(x): 

  
where S(x) denotes the similarity between the object template J 
and a current frame image region I centred around the pixel 
location x = (x, y) and s = sign (S(x)). The null values of S are 
handled by increasing value of C2. After a simple expansion of 
(4) we obtain the expression for the gradient of the function 
ρ(x) 

 
where 

 

The gradients ∇μI and ∇2
I can be calculated as follows 



 

A simplified expression for the covariance gradient, ∇IJ, can be 
obtained, based on the observation that ∑N

i=1(Ji − μJ ) = 0: 

 
Finally, by defining the gradient of the pixel intensity as 
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 , the complete formula for ρ(x) is obtained 

 
The proposed algorithm, employing the gradient DSSIM 
function (11) is summarised in Table 1. In general terms, the 
estimated target location, x0

k is moved along the direction the 
structural similarity gradient by one pixel in each iteration 
until no further improvement is achieved. The number of SSIM 
and gradient evaluations depends on the number of iterations 
needed to find the maximum of the measure S(x) and on 
average does not exceed 5 in our experiments. This makes our 
approach significantly faster than the original SSIMPF. It 
should be noted that although the differential framework of the 
algorithm is based on a reformulation of the scheme proposed 
by Qi Zhao et al (Qi Zhao et al, 2007), it utilises a distinct 
similarity measure. 
 
 

3. EXPERIMENTAL RESULTS 

The performance of our method is demonstrated in this section 
by tracking objects in real-world surveillance video sequences. 
The DSSIM algorithm has been implemented in C++ 
programming language and compared with the MS tracker (D. 
Comaniciu, P. Meer, 2002) and the SSIM-PF method (A. Loza 
et al, 2009)  (see also Section 1 and 2 for a brief description of 
the methods). The MS tracker, similarly to DSSIM, is a non-
parametric technique relying on finding the modes of the 
underlying target–current frame pdf in the feature space, 
however, it is based on a different principle and uses the colour 
histogram. For both MS and DSSIM, the popular scheme for 
scale adaptation, i.e., varying the object size by 5% and 
choosing the size giving the highest similarity, has been 
utilised. 

Our simulations consist in tracking a pre-selected object 
(person) in the following three video sequences. The sequence 
cross (5 sec), taken from the database, contains three people 
walking rapidly in front of a stationary camera. The tracked 
region (a person) has similar colour to that of the background 
and the passers-by. One of the passers-by occludes temporarily 
the object. The second sequence, man (40 sec), is a long 
recording showing a person walking along a car park. Apart 
from object’s colour similarity to the nearby cars and the 
shadowed areas, the video contains numerous instabilities, 
resulting from a shaking camera, fast zoom-ins and zoom-outs, 
and a wide range of a view angle. The last sequence, otcbvs, is 
a part of a multimedia benchmark dataset collection (J. Davis 
and V. Sharma). The sequence used in this paper is a colour 
video of a busy patio, recorded from approximately 3 stories 
above ground. The small-sized tracked object (see Table 2 for 
the target sizes) undergoes significant intensity changes as it 
enters the shadowed areas of the walkway and the entrance of a 
building. 

In order to numerically evaluate the performance of the 
developed technique, Root Mean Square Error (RMSE) has 
been used: 

 
where                     stand for the upper-left corner coordinates 
of the tracking box determined by both the object’s central 
position and the scale estimated by the tracker in the frame k. 
The corresponding ground truth positions of the 
object, ),( kk yx , have been generated by manually tracking the 
object. The mean of RMSE and its standard deviation (std) are 
presented in Table 2, while the frame-to-frame error plots are 
shown in Figure 1. 

Based on the performance measures in Table 2, it has been 
concluded that DSSIM outperforms the MS and SSIM-PF, both 
in terms of the processing speed and the accuracy. It also 
appears to be more stable than the other two methods (lowest 
std). Although the error plots in Figure 1 show that in a 
number of frames the methods perform comparably, it can be 
seen that in the remaining frames our method achieves the best 
performance most of the time. Although the difference between 
the accuracy and the stability of SSIM-PF and DSSIM is not 
large in some cases, in terms of the computational complexity, 
our method compares much more favourably with SSIM-PF, as 
well as with MS. The average tracking speed estimates were 
computed on PC in the following setup: CPU clock 2.66 GHZ, 
1G RAM, MS and DSSIM requiring on average 8 and 5 
iterations, respectively, and PF using 100 particles. In terms of 
the relative computational efficiency, the proposed method has 
been found to be approximately 3–6 times faster than SSIM-PF 
and up to 2 times faster than MS (our implementation).  



The exemplary frames in Figure 1, where the ’difficult’ frames 
have been selected, offer more insight into the performance 
and robustness of the trackers. In the cross sequence, both 
SSIM-PF and DSSIM are not distracted by the temporary 
occlusion of the tracked person by other passer-by, whereas the 
MS tracker locks onto a similar object moving in the opposite 
direction. In man sequence, although all the three trackers 
manage to follow the target, the proposed method identifies the 
scale and the position of the object with the best accuracy. 
Unlike the colour-based MS, both SSIM-based methods track 
the object throughout the otcbvs sequence demonstrating the 
robustness to the illumination changes. 
 
 

4. CONCLUSIONS 

This work introduces a novel and robust tracking algorithm, 
DSSIM, in which the distance between the target and 
candidate is measured by the structural similarity index. The 
main theoretical contribution in this work is the development 
of a fast differential algorithm for locally optimal search of the 
structural similarity surface. The proposed method performs 

reliably in the exemplary videos under difficult conditions, 
often occurring in surveillance scenarios: temporal occlusions, 
nonstationarity of the camera, presence of the spurious objects 
and illumination changes. The DSSIM has been shown to 
outperform other deterministic tracking method, mean-shift, 
and the structural similarity-based PF tracker in terms of the 
accuracy. Another advantage of the proposed algorithm is its 
low computation complexity owing to the fast differential 
algorithm derived in this work, which makes DSSIM 
applicable to real-time video tracking. Our future investigation 
will be focused on reliability improvement of the methods, by 
addressing the local maxima issue of the gradient ascent and 
by development a template update scheme.   
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