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ABSTRACT:  

Nowadays by developing hyperspectral sensor technology, it is possible to simultaneously capture image with hundreds of 
contiguous narrow spectral bands. Increasing spectral bands provide more information and seem to improve classification accuracy. 
Nevertheless limited training samples lead to poor parameter estimation of statistical classifiers which is called Hughes phenomena. 
Recently Support Vector Machines (SVMs) are applied successfully for classification of hyperspectral imagery because they 
characterize classes by a geometrical criterion, not by statistical criteria. However, accuracy and performance sensitivity of SVMs in 
classification of hyperspectral imagery are affected by three different factors. The first one is the type of input data space which can 
be spectral space or feature space. In this paper three feature extraction methods, include: Principle Component Analysis (PCA), 
Independent Component Analysis (ICA) and Linear Discriminate Analysis (LDA) are used. Another effective factor is spectral 
similarity measures. Most of studies use Euclidean distance as a metric for measuring similarity between samples. By using 
Euclidean distance, geometric behaviour of data is evaluated and spectral meaning is not considered. This paper evaluates the effect 
of different metrics such as Spectral Angle Mapper (SAM) and Spectral Information Divergence (SID) on accuracy of classification. 
The last factor is training sample size that effect of this factor on SVMs classification accuracy is evaluated and results were 
compared with K-Nearest Neighbour (KNN) classifier. For evaluating sensitivity analysis of SVMs respect to these factors, 
polynomial and Gaussian kernels and two usual multiclass classification strategies include one against one and one against all are 
applied. Also experiments are carried out on the AVIRIS dataset.    
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1. INTRODUCTION 

Hyperspectral imaging sensors are able to acquire several 
hundreds of spectral information from the visible to the infrared 
region (Chi and Bruzzone, 2007). These sensors provide very 
high spectral resolution image data and make it possible to 
discriminate among land cover classes that are spectrally very 
similar (Chi and Bruzzone, 2007). Nevertheless classification of 
hyperspectral data with conventional parametric classifiers such 
as maximum likelihood suffers from Hughes phenomena or 
curse of dimensionality (Hughes, 1968; Landgrebe, 2002). 
Referring to assumption of parametric classifier about class 
distribution, it is required to estimate distribution parameters. 
For this purpose, by increasing spectral dimension, more 
training data is needed. In the most application, training 
samples are limited, so it is not possible to estimate parameters 
accurately and classification accuracy decrease after increasing 
dimension more than a threshold (Fauvel et all, 2004) 

Recently, SVMs as a non-parametric classifiers are applied 
successfully for classification of hyperspectral imagery 
(Melgani and Bruzzone, 2004; Camps and Bruzzone, 2005; 
Guo et all, 2008). Because they don't need to assume about 
class distribution and characterization of classes are based on 
geometrical criteria not by statistical criteria (Melgani and 
Bruzzone, 2004). SVMs work based on finding an optimum 
hyperplane that maximized the margin between two classes (Du 
et all, 2008). If training data are not separated linearity, a kernel 
method is used to project data to higher dimension space where 

data are separated linearly (Mercier and Lennon, 2003). For 
finding optimal hyperplane, it uses only support vectors which 
are the nearest data to hyperplane. As SVMs use small training 
samples (only support vectors), they are less sensitive to space 
dimensionality and hence it overcomes the Hughes' 
Phenomenon and is an effective tool in classification of 
hyperspectral data (Wang et all, 2008). It should be considered 
that SVMs are binary classifiers and can separate two classes. 
Classification of data with more than two classes, called 
multiclass classification, is frequent in remote sensing 
applications. In these cases, there are two usual strategies to 
classify data: one against all and one against one (Varshney and 
Arora, 2004). In both strategies, computational complexity 
depends on number of classes. However, SVMs are efficient in 
compare of other classifiers in high dimensional space but 
classification accuracy by SVMs strongly depends on kernel 
type and parameters setting (Pal and Mather, 2004). 

This paper evaluates the sensitivity of SVMs in classification of 
hyperspectral imagery regarding to three different criteria. The 
type of input space is the first factor which can be original 
space or feature space (Cao et all, 2003; Kuo and Cheng, 2005). 
In original space, bands spectral values are used as an input. 
The advantage of using original space is using directly spectral 
information and also it doesn't need to feature extraction step. 
Feature space is obtained by feature extraction methods which 
transform data from original space to feature space.  The 
advantage of using feature space is possibility of improving 



 
classification performance in some classification techniques 
(Zhang and Huang, 2010). The second effective factor in 
classification is spectral similarity measures which consider 
spectral meaning, such as: SAM and SID. (Mercier and Lennon, 
2003; Fauvel et all, 2006; Kohram and Sap, 2008). And the last 
factor is training sample size (Pal and Mather, 2004).   

2. SUPPORT VECTOR MACHINES 

SVMs are classification systems derived from statistical 
learning theory and they are kernel based methods. SVMs are 
binary classifiers. For two-class classification problem can be 
stated the following way (Varshney and Arora, 2004): N 
training sample are available and can be represented by the set 

pairs }21),,{( ,...,N,iixiy with iy is a class label of value 
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feature vector with k components. The 

classifier is represented by the function yxf );( with is 
the parameters of classifier. The SVMs method consist in 
finding the optimum separating hyperplane so that: 1) Samples 
with labels 1y are located on each side of the hyperplane; 
2) the distance of the closest samples to the hyperplane in each 
side become maximum. These samples are called support 
vectors and the distance is optimal margin (Figure 1).  

The hyperplane is defined by 0. bxw where bw, are the 

parameters of the hyperplane. The vectors that are not on this 
hyperplane lead to: 0. bxw and the classifier is defined 

as: bxwxf .sgn);( . The support vectors lie on two 

hyperplanes, which are parallel to the optimal hyperplane, have 
equations: 1. bxw .   

  

Figure 1. Classification of a non-linearly separable case by SVMs.  

Sometimes, due to the noise or mixture of classes introduced 

during the selection of training data, variables 0i , called 

slack variables, are used to consider effects of misclassification. 
Then the hyperplanes for two classes become  
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. Optimal hyperplane is located where the 

margin between two classes of interest is maximized and the 
error is minimized. This can be achieved by solving the 
following constrained optimization problem: 
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The constant C0 , called the penalty value or C value, 
is a regularization parameter. It defines the trade-off between 
the number of misclassification in the training data and the 
maximization of margin. In practice, the penalty value is 
selected by trail and error. The constrained optimization in 
Eq(1) is solved by the method of Lagrange multipliers. The 
equivalent optimization problem becomes,   
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In Eq(2), 0i are the Lagrange multipliers. The solution of 

the optimization problem given in Eq(2) is obtained in terms of 

the Lagrange multipliers i . Only for support vectors, these 

multipliers are non-zero. The result from the optimizer, called 

an optimal solution, is the set
oo
k,...,1 . The value of w and 

b are calculated from 
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are the 

support vectors of class labels +1 and 1 respectively. The 
decision rule is then applied to classify the dataset into two 
classes.  
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Where )( sign is the signum function. It returns +1 if the 
element is greater than or equal to zero and -1 if it is less than 
zero. There are instances where a linear hyperplane cannot 
separate classes without misclassification; however, those 
classes can be separated by a nonlinear separating hyperplane. 
In this case, data may be mapped to a higher dimensional space 
with a nonlinear transformation function. In the higher 
dimensional space, data are spread out, and a linear separating 
hyperplane may be found.  
Nonlinear transformation function maps the data into a 

higher dimensional space. There exists a function k , called a 

kernel function, such that, )()()j x, ( jxixixk

 

a kernel 

function is substituted for the dot product of the transformed 
vectors, and the explicit form of the transformation function 

is not necessarily known. Further, the use of the kernel 
function is less computationally intensive. The optimization 
problem then becomes,   
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The decision function becomes,   
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A great number of kernels exist which can be divided into two 
categories: local and global kernels (Mercier and Lennon, 
2003). In local kernels only the data that are close or in the 
proximity of each others have an influence on the kernel values. 
Basically, all kernels that are based on a distance function are 
local kernels. In global kernels samples that are far away from 
each others still have an influence on the kernel value. All 
kernels based on the dot-product are global.  
For classification of hyperspectral images, two local and global 
kernels are widely used respectively are: the inhomogeneous 
polynomial function and the Gaussian radial basis function 
(Fauvel et all, 2006).   
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SVMs were originally developed to perform binary 
classification. However, classification of data into more than 
two classes, called multiclass classification, is more practical in 
remote sensing applications. Two usual methods are one against 
all and one against one. One against all is also known as 
winner-take-all classification. For an M class classification, M 
binary SVMs classifiers are created. Each classifier is trained to 
discriminate one class from the remaining M-1 classes. During 
the testing or application phase, data are classified by 
computing the margin from the linear separating hyperplane. 
Data are assigned to the class labels of the SVMs classifiers that 
produce the maximal output. One against one in this strategy, 
SVMs classifiers for all possible pairs of classes are created. 
For an M class classification, M (M 1)/2 binary classifiers are 
created. Each binary classifier is trained to classify two classes 
of interest. During the testing phase, the output from each 
binary classifier in the form of a class label is obtained. The 
class label that occurs the most is assigned to that data.  

3. SENSITIVITY ANALYSIS OF SVM 

For sensitivity analysis of SVMs three different criteria are 
evaluated. The first one is the type of input data space. It can be 
original space or feature space. In original space, bands spectral 
values are used as an input. The advantage of using original 
space is using directly spectral information and also it doesn't 
need to feature extraction step. Feature space is obtained by 
feature extraction methods which transform data from original 
space to feature space.  The advantage of using feature space is 
possibility of improving classification performance in some 
classification techniques. Three feature extraction methods that 
are used for sensitivity analysis are: PCA, ICA and LDA. 
Second  factor is spectral similarity measures. Most of studies 
use Euclidean distance as a metric for measuring similarity 
between samples. By using Euclidean distance, geometric 
behaviour of data is evaluated and spectral meaning is not 
considered. In order to effectively make use of information 
intrinsically available in remote sensing imagery, other 
metrics can be used. For this purpose two metrics are evaluated 
on SVMs performance: SAM and SID. And the last factor is 
training sample size. For this purpose four different subset of 
training set is used and sensitivity of SVMs according to these 
training subsets are evaluated and results compare with KNN 
classifier result. 

3.1 Feature Space 

In this paper, three different feature extraction methods of PCA, 
ICA and LDA are evaluated: 
a) Principal Component Analysis: PCA is a usual unsupervised 
feature extraction which is based on selection features with 
higher variance in original space. Given a set of centered input 

vectors l
1t )0 and ,...,1( txlttx , each one has m 

dimension. PCA linearity transforms each vector tx into a new 

one ts by 
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Where U is the mm orthogonal matrix whose ith   column iu 

is the ith eigenvector of the sample covariance matrix  
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In other words, PCA firstly solves the eigenvalue problem:  
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Where i is one of the eigenvalues of C and iu is the 

corresponding eigenvector. Based on the estimated  iu the 

components of ts are then calculated as the orthogonal 

transformation of :tx 
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The new components are called principal components. By using 
only the first several eigenvectors sorted in descending order of 

the eigenvalues, the number of principal components in ts can 

be reduced. So PCA has the dimensional reduction 
characteristic (Cao et all, 2003).  

b) Independent Component Analysis: the goal of ICA is to 
recover independent and unknown source signals from their 
linear mixtures without knowing the mixing coefficients. Let xt 

and st denote the linear mixtures and original source signals 
respectively; the aim of the ICA is to estimate st by  

txUts 

 

Where U is unmixing matrix. For estimating st, ICA assumes  st 

components are independent statistically and all of them with 
possible exception of one component must be non-Gaussian. 
Hence it needs higher order information of the original inputs 
rather than the second-order information of the sample 
covariance as used in PCA.  
A large amount of algorithms have been developed for 
performing ICA (Bell and Sejnowski, 1995). One of the best 
methods is the fixed-point-FastICA algorithm. FastICA 
algorithm is based on minimization of mutual information 
which is used as the criterion to estimate st as it is a natural 
measure of the independence between random variables. 
Minimization of mutual information is corresponding to 
maximization of negentropy which is approximated by:  
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Where ui is an m-dimensional vector, comprising one of the 
rows of the matrix U. v is a standardized Gaussian variable and 
G is a non-quadratic function. Maximizing JG(ui) leads to 
estimating ui by: 
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Where 
*
iu is a new estimated of ui and g, g' are first and second 

derivative of G. After every iteration the vectors u*x are 
decorrelated using a symmetric decorrelation of the matrix U:  
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obtained by the eigenvalue decomposition of U. This step 
avoids a direction to be estimated several times and do not 
privilegiate a vector among others (Cao et all, 2003).  

c) Linear Discriminant Analysis: LDA is one of the most 
popular supervised feature extraction techniques. LDA seeks an 

optimal set of discriminant projection vectors dw ,...,1 , 

to map the original data space onto a feature space, by 
maximizing the Fisher criterion: 
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wwFJ )( . Here, bs and ws are between-

class and within-class scatter matrices of the training sample 
group respectively, and estimated as follows:  
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where C , ip , im , m and is represent the number of classes, a 

priori probability of class i , the mean vector of all samples 

and the covariance matrix of samples in class i , respectively. 

By transforming to feature space with maximum separation 
between classes, higher classification accuracy is obtained (Kuo 
and Landgrebe, 2004).  

3.2 Similarity measures 

Classical kernels have proven successful in several applications, 
but for hyperspectral data, they do not consider full advantage 
of the rich amount of a priori information which is available. 
This could be due to the fact that these kernels do not take into 
account the band to band spectral signature effects. Depending 
on their localism or globalism, classical kernels mostly use the 
either the Euclidean distance (local) or dot product (global) of 
two vectors as their similarity measure. In order to effectively 
make use of information intrinsically available in remote 
sensing imagery, other metrics except Euclidean distance can 

be used (Kohram and Sap, 2008). In this paper two similarity 
measures are introduced as a metric space that are designed for 
this purpose.   

a) Spectral Angle Mapper (SAM): it defines similarity between 
two vectors by measuring angle between them: 
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The angle between two vectors is not affected by length of 
vectors, so SAM is robust to energy difference and is able to 
exploit spectral characteristics.  

b) Spectral Information Divergence (SID): This metric 
considers the discrepancy between probability distributions 
produced by each pixel vector. It is defined as:  
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Where xp is a probability distribution vector for each pixel. 
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Where x is pixel vector and p is its probability distribution 
vector. Since both these vectors have the same spectral 
signature, it is expected to have a minimal distance using every 
metric. It is not a case of Euclidean distance, for this metric 
these two vectors might readily be cast very far from each other 
but SAM and SID are length insensitive, so they can reach 
desired result. It shows how SID takes into account spectral 
signature (Kohram and Sap, 2008).  

3.3 Training Sample Size 

In high dimension space, training sample size has strong 
influence on classification accuracy which due to Hughes 
phenomena, this actor for parametric classifiers is more 
important. As mentioned in section 2, SVMs use only support 
vectors for training; hence they are stable by changing training 
sample size. For investigating effect of training sample size on 
SVMs classification accuracy, different training sample sizes 
are used and obtained results are compared with KNN 
classifier.  

4. EXPERIMENTS  

4.1 Dataset 

The hyperspectral image used in the experiments acquired by 
AVIRIS sensor on June 12, 1992 over the northern part of 
Indiana which is known for the complexity of the conveyed 
classification problem. It covered an area of mixed agriculture 
and forestry landscape in the Indian Pine. Because of similarity 
between classes, discrimination of classes is difficult. So this 
data can be an appropriate choice for sensitivity analysis of 
SVMs to mentioned factors. A field-surveyed map consists of 
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sixteen classes and one unclassified class. Also the availability 
of reference data makes this hyperspectral image an excellent 
source for conducting experimental. The size of image is 145 × 
145 pixels with 220 bands. In our experiments, similar to the 
other studies water absorption bands and noisy bands were 
discarded (Watanachaturaporn et all, 2005). For sensitivity 
analysis of SVMs, five classes include: Corn, Grass, Hay, 
Soybean, and Wood are used. 

  

  

Figure 2. (a) Reference image (b) single band image (100th band)  

4.2 Results 

Sensitivity of SVMs according three mentioned situations: 
feature space, metrics and training size result investigated based 
on AVIRIS dataset. For this purpose, two usual multiclass 
strategies, one against one and one against all and two kernels, 
polynomial and Gaussian used. Kappa coefficient applied as an 
accuracy indicator. Two dimensional grid search was utilized 
for the parameter tuning phase which the range of parameters 

 

and p for Gaussian and Polynomial kernels is respectively 

[2-2, 210] and [1, 10]. Also range of penalty value (C) is 
considered [2-2, 210]. Table 1 presents the obtained accuracy in 
each situation of one against one and one against all by two 
kernels of polynomial and Gaussian RBF.  

Table 1.  Sensitivity analysis of SVMs respect to three factors by using 
Kappa coefficient  
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4.2.1 Effect of Feature Space   

PCA, ICA and LDA feature extraction methods used in order to 
transformation of spectral space into feature space. As shown in 
Figure 3, classification with LDA features and Gaussian kernel 
has the highest accuracy in both multiclass classification 
strategies. Moreover, PCA improved classification accuracy 
slightly. But ICA features degrade accuracy especially when the 
polynomial kernel was used (Figure3).  

 

(a)

  

(b)

  

Figure 3. Effect of input space on classification accuracy for (a) one 
against all strategy (b) one against one strategy  

4.2.2 Effect of Similarity Measures  

Three different similarity measures were presented which have 
acceptable potential; Euclidean, SAM and SID used as metrics 
of SVMs classifiers. As result is shown in Figure 4, SAM can 
improve classification accuracy slightly. In contrast SID 
couldn't present acceptable accuracy in both of two strategies of 
one against one and one against all.   

 

Figure 4. Effect of metrics on classification accuracy  

4.2.3 Effect of training sample size  

For evaluating the effect of training sample size on SVMs 
performance, four training sample size were used as the input 
dataset of classification. Regarding to high potential of 
Gaussian kernel with SAM metrics, they were used for 
evaluating the sensitivity of SVMs to training sample size. As it 
appears from Table 1 and Figure 5, the Kappa coefficient was 
always greater than KNN in both of one against one and one 
against all strategies. However there was not any meaningful 
behaviour of SVMs regarding to decreasing of training data size 
in comparison of KNN method.  

(a) (b) 



   

Figure 5. Effect of training sample size on classification accuracy   

5. CONCLUSION 

In this paper sensitivity analysis of SVMs in respect to different 
situations of feature space, metric and training sample size 
investigated. Obtained results about feature extraction methods 
proved that LDA presents higher classification accuracy rather 
than other feature spaces such as PCA and ICA. Evaluation 
about space metrics, shows that the SAM has better 
performance in comparison of other metrics such as SID and 
Euclidian. Assessing the training sample size in our 
investigation, shows that although in same situation, SVMs 
have better performance than KNN classifier, but the potential 
of them still depends on the size of training data set. 
Consequently, although there are good potentials in SVMs, the 
performance of these classifiers directly is dependent on the 
decision about different factors such as kernel type and its 
parameters. Manual determination of optimum value of these 
parameters, are generally time consuming and needs an expert 
operator. Further investigations, should be done in direction of 
automatic determination of these parameters.   
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