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ABSTRACT: 

 

Airborne LiDAR has become the main technology to provide data for Digital Surface Models (DSM) and Digital Elevation Models 

(DEM) for various purposes, including orthorectification. At the same time, digital line scanners such as the ADS provide multiple 

stereo coverage, which can be used for image-based DSM/DEM derivation. Besides saving the LiDAR acquisition cost, such data 

provide several advantages over LiDAR results, especially since orthoimage generation can be based on the same data set. In that 

regard, North West Geomatics and Leica Geosystems have developed a DSM generation tool for ADS data. The underlying approach 

is Semi-Global Matching (SGM), which is suited for high-performance and high-resolution DSM computation. This paper presents 

the SGM approach for ADS and compares the results against LiDAR – in terms of data processing as well as DSM/DEM resolution 

and accuracy. The SGM and LiDAR properties are compared and exemplarily illustrated based on a sub-urban area in Romanshorn, 

Switzerland. It is shown that SGM can be used as an alternative to LiDAR. For certain applications such as high resolution DSM 

generation or orthoimage production in general – where it saves the additional flight costs – SGM is even considered the preferred 

choice. 

 

 

1. MOTIVATION 

In the last decade airborne LiDAR (Light Detection and Ran-

ging) has established itself as a key technology to capture high 

resolution Digital Surface Models (DSM) and/or Digital Eleva-

tion Models (DEM). Over the same time the demand for higher 

accuracy and higher resolution DSMs/DEMs, delivered more 

frequently, has increased. LiDAR is a natural choice to fulfil 

this demand for various applications, including orthoimage 

production. However, the additional acquisition costs often 

prohibit its use solely for rectification. Considering the fact that 

imaging sensors like Leica Geosystems’ ADS provide multiple 

stereo coverage, the image data itself can and should be used for 

photogrammetric DSM derivation. Therefore, in addition to 

LiDAR data acquisition and processing, North West Geomatics 

has developed a DSM generation tool from ADS line scanner 

imagery in cooperation with Leica Geosystems. 

Generating a very high DSM/DEM resolution, in the order of 

the image ground sampling distance (GSD), presumes matching 

at the actual image resolution; or in other words: utilizing a per-

pixel matching cost. Depending on image texture, a per-pixel 

measure is generally ambiguous; additional constraints, such as 

the assumption of a smooth surface, need to be introduced. 

Algorithms that globally minimize both cost and constraints are 

called global image matching; they are among the top-ranked 

matching approaches in terms of quality and resolution. Their 

drawback is performance, which is addressed by the Semi-

Global Matching (SGM) approach of Hirschmüller (2005, 

2008). 

SGM approximates the two-dimensional, global aggregation of 

matching cost by a number of one-dimensional cost paths. It 

still achieves similar accuracy as truly global matching but it is 

significantly faster – refer, e.g., to the systematic comparisons 

of SGM with local and global matching algorithms using 

different cost functions by Hirschmüller and Scharstein (2007, 

2009). As a result, SGM has been further investigated and also 

enhanced by various researchers for different applications and 

data sets, including aerial images (Hirschmüller et al., 2005, 

Hirschmüller, 2008), terrestrial and extraterrestrial satellite data 

(Hirschmüller et al., 2006, Krauß et al., 2008, Alobeid et al., 

2009) or video sequences (Heinrichs et al., 2007, Gerke 2008, 

Hermann et al., 2009). Furthermore, SGM is being recognized 

and deployed in the industry. 

The SGM approach fulfils our need of high DSM resolution and 

high performance. Based on the quickly gaining mindshare and 

promising SGM results, we adapted the algorithm to the unique 

properties of ADS line scanner imagery using our existing soft-

ware framework, in particular the highly optimized ADS sensor 

model. 

The remainder of this paper describes the DSM derivation from 

ADS data based on SGM. The properties of SGM DSMs and 

derived DEMs are compared to LiDAR products, both in gene-

ral and for an example data set that has been captured over the 

municipality of Romanshorn, Switzerland. 

 

 

2. SEMI-GLOBAL MATCHING FOR ADS 

SGM is a new image matching approach, which originates from 

the computer vision community. It has been developed by 

Hirschmüller (2005, 2008). The core algorithm aggregates per-

pixel matching costs – for virtually all applications utilizing the 

http://en.wikipedia.org/wiki/Municipalities_of_Switzerland


 

radiometrically robust Mutual Information – under considera-

tion of smoothness constraints. The minimum aggregated cost 

leads to the disparity map (or, respectively, parallax map) for an 

image stereo pair, providing the corresponding location for each 

base image pixel on the respective epipolar line in the pair im-

age. The SGM approach is suited for DSM collection in very 

high resolution, i.e. the image GSD. 

 

2.1 Matching Cost: Mutual Information  

SGM has been investigated with different cost functions, with 

the Mutual Information (MI) being favoured (Hirschmüller 

2005, 2008, Hirschmüller et al. 2005, Hirschmüller et al. 2006). 

MI performed best for most cases in the comparisons by Hirsch-

müller and Scharstein (2007, 2009). Utilizing MI for image 

matching has been proposed by Viola and Wells (1997), mainly 

to handle complex images in terms of content but also illumina-

tion and viewing geometry, which is necessary for ADS data as 

well. 

MI depends on entropy, which is a measure of the quantity of 

information needed to describe a signal. For individual images, 

radiometrically uniform areas have lower entropy than highly 

textured ones; joint entropy is a measure of similarity: Aligned 

images will have lower entropies than misaligned images – see 

Egnal (2000) for more detail. However, since two low-contrast 

areas will feature low entropy as well (even if misaligned), joint 

entropy itself is not sufficient as a cost function for matching. 

This leads to using MI, which combines individual entropies H1 

and H2 and the joint entropy H1,2 of base image I1 and pair 

image I2, the latter of which warped by a disparity map D (Viola 

and Wells, 1997, Kim et al., 2003): 

 

   1,2 1 2 1,2MI H H D H D    (1) 

 

For single images, entropy is computed from the probability 

distribution of individual DNs, i.e. from a histogram. Similarly, 

the joint entropy is derived from a joint 2D histogram, which 

indicates how the DNs of image I1 map to the DNs of image I2. 

(An ideal match with identical radiometry results in a straight, 

diagonal line of all histogram bins in the 2D space.) DN pro-

babilities P – at base image pixel p and pair image location on 

the epipolar line provided by the disparity d – are derived from 

histogram counts and then converted into pixel-based entropy 

measures h according to Kim et al. (2003) and Hirschmüller 

(2005); for the joint entropy term: 

 

   1,2 1,2h p,d log P p,d g g       (2) 

 

The Gaussian convolution g effectively performs Parzen estima-

tion (Kim et al., 2003). According to equation 1, this leads to a 

pixel-based MI term (mi) and eventually to the matching cost c 

for any pixel combination given by (p,d) in a stereo pair (I1, I2), 

based on the fact that a good match between the images – which 

has to be assigned a low cost – results in high MI: 

 

         1,2 1 2 1,2c p,d mi p,d h p h p,d h p,d       (3) 

 

Thus, a cost matrix for all DN combinations can be computed 

and used as a look-up table for the SGM cost aggregation. 

Since an initial disparity map is required to warp the pair image 

towards the base image, the computation needs to be carried out 

iteratively (see below). We use a coarse seed DEM, gTopo, to 

provide an average disparity for MI initialization. 

 

2.2 Cost Aggregation and Disparity Computation 

The energy function E(D) that has to be globally minimized 

consists of the actual matching costs c and smoothness cons-

traints. Hirschmüller (2005, 2008) proposes to use the penalties 

P1 for slight changes of one disparity and P2 for any larger 

changes, i.e. discontinuities, in-between neighbouring pixels: 
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The T(…) function controls the application of penalties; it is 1 

in case that its argument is true and 0 if false. 

The theoretically desired two-dimensional cost minimization is 

approximated in SGM by multiple one-dimensional paths r, 

with r = 8, i.e. paths at every 45°, usually being sufficient (Her-

mann et al., 2009). These linear costs are aggregated over all 

pixels from each starting point p0 to the opposite image border. 

The computation is carried out recursively, providing a linearly 

smoothed matching cost lr(p,d) at each base image pixel loca-

tion p and each potential disparity d, following from equation 4: 
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   r 0 0l p ,d c p ,d  (6) 

 

Within the minimum of the costs lr(p-r,…) at the previous pixel 

(p-r), the first term implies no disparity change compared to the 

current pixel p (without penalty), the second term allows for a 

small disparity change (with penalty P1), and the last term re-

gards all possible disparities (with penalty P2) to model discon-

tinuities. It has to be ensured that P1 > P2. 

The overall cost e(p,d) for each pixel p and disparity d results 

from the summation over all cost paths lr: 

 

   r

r

e p,d l p,d  (7) 

 

The disparity image D is obtained from the minimum summed 

cost for each base image pixel. Sub-pixel accuracy is achieved 

by fitting a quadratic polynomial, including the costs of neigh-

bouring disparities, and computing the function’s minimum. 

Because pixels at or close to the edges of the AOI are not fully 

constrained in all cost aggregation directions, for SGM com-

putation we internally add 32 pixels at the borders, which are 

then clipped in the final result. 

Following Hirschmüller (2005, 2008), disparity images are 

generated corresponding to the base image and also to the pair 

image by switching the role of base and pair image. This allows 

for a consistency check of the disparity map: Larger disparity 

differences (d > 0.5) indicate mismatches, which are predomi-

nantly caused by occlusions; respective results are voided. Out 

of the final processing steps as proposed by Hirschmüller 

(2008), we apply a 3x3 median filter to the disparity image and 

eliminate outliers based on segmentation, with the assumption 

that small segments of similar disparity (less than 50 pixels in 

size) most likely represent errors. 



 

Note that the described cost aggregation does not require a seed 

DSM; it is designed to deliver results based on a given range of 

potential disparities. We decided to derive this range from the 

gTopo DEM, with applying a large buffer to account for inaccu-

racies and unmodeled objects such as buildings. SGM proces-

sing is carried out in image pyramids, mainly to allow a few 

iterations for MI initialization and disparity range reduction in 

the starting minification level of 8:1, where the processing is 

fastest. Afterwards, a single iteration per level is sufficient to re-

fine the MI cost and derive SGM results in higher resolution. 

 

2.3 ADS Line-Scanner Data: Considerations and Benefits 

The ADS captures multiple panchromatic stereo image bands, 

which provide redundancy to fill gaps from occlusions as well 

as the ability for consistency checks between stereo pairs. Full 

colour (RGB) as well as NIR bands provide further stereo co-

verage along with additional radiometric properties, which can 

be beneficial for matching and also support post-processing 

(classification) of the results. The unique sensor geometry has 

to be regarded. 

 

2.3.1 Epipolar Geometry: The projection of line scanners is 

central within each line and parallel in flight direction, with 

every scan-line featuring its individual exterior orientation. 

Even though a ‘perfect’, linear flight would result in straight, 

parallel epipolar lines, aircraft movements distort the imagery 

and accordingly the epipolar geometry. Most of these distor-

tions are eliminated by pre-rectifying the original image data 

(L0) onto a plane (L1). While SGM is expected to generally 

benefit from using such L1 data, the major advantage over L0 is 

the possible approximation of the resulting epipolar curves as 

piecewise linear features. Similarly, these epipolar curves can 

be computed in a sparse pattern (4-16 pixels) with linear inter-

polation for pixels in-between, which makes both the epipolar 

grid initialization – based on the highly optimized ADS sensor 

model – and the time-critical epipolar point computation from 

disparity very fast. 

 

2.3.2 Object Point Computation: A side-effect of the des-

cribed epipolar grid setup is the intermediate step of 3D point 

computation for each line segment. Based on those points, final 

object points for all base image pixels can be derived by linear 

interpolation depending on disparity. This is significantly faster 

than performing forward intersections. 

 

2.3.3 Multiple Stereo: Most configurations of the ADS pro-

vide three panchromatic stereo angles, in case of the ADS80: 

14° backward, 2° forward and 27° forward. This results in three 

possible stereo pairs, although we do not use the largest viewing 

angle combination. That leaves two stereo pairs, with the nadir-

most viewing angle providing the common base image. Then, 

either object points or disparity images can be joined, the latter 

of which requiring an intermediate object point computation. 

Although this seems extra work, the ‘detour’ of joining dis-

parity images is preferred since it eases subsequent steps such as 

outlier elimination. 

In this context it should be mentioned that the radiometrically 

flexible MI cost theoretically permits the use of the ADS colour 

bands, which would increase stereo coverage and potential mat-

ching quality (based on different radiometry). This possibility is 

subject to further research. 

 

2.3.4 Handling of Large Image Takes: ADS L1 images are 

more than 12,000 pixels wide and can be up to 1,000,000 pixels 

long. This means that SGM processing needs to be carried out 

on sub-tiles of, e.g., 1,024 x 1,024 pixels. Considering the ADS 

viewing angles and resulting stereo pairs, this size is just small 

enough to model a mountainous area or a downtown core in a 

fairly high GSD of 0.10 m – which might require in the order of 

600-800 disparities – on a 64-bit system with 8 GByte memory; 

see Hirschmüller (2005) for details of SGM memory usage. 

Based on the fact that results from a large number of takes have 

shown no evidence of tiling effects, the sub-tiles are processed 

independently without any overlap (apart from the area that is 

clipped already during processing – see above). 

 

 

3. COMPARISON BETWEEN LIDAR AND SGM 

LiDAR-acquired DSMs have become the standard for high-

resolution surface generation. As an active sensor, LiDAR data 

can be captured regardless of light conditions (even at night) 

and the laser pulses can penetrate into forest canopy to measure 

the ground directly – a distinct advantage over competing tech-

niques such as the image-based SGM. In addition to the ele-

vation, LiDAR points often contain intensity information from 

the laser pulse, which can be plotted as an orthoimage. Due to a 

combination of sensing methods and geometry, LiDAR has a 

greater accuracy in height than in horizontal position; for high 

precision work typically 5 cm in Z and 10-15 cm in XY (Morin 

and El-Sheimy, 2001a). LiDAR point accuracy can also be 

affected by unmodeled atmospheric conditions (such as mist or 

volcanic ash) or by the reflectance properties of the target 

(Morin and El-Sheimy, 2001b). 

As an emerging technology, SGM-derived DSMs are intended 

to be used as an alternative source of elevation and as a premier 

choice for ultra-dense surface extraction. DSMs are computed 

from imagery, which is typically acquired under strict mission 

constraints (sun angle, cloud cover, etc.); but as a derived pro-

duct it does not add any cost to an imaging flight. Similar to 

LiDAR intensities, SGM points can be assigned the base image 

intensities and even the NRGB colour values based on the ADS 

source imagery. They can be plotted as an orthoimage. SGM 

accuracies are driven by the triangulation accuracies of the 

imagery – typically 0.5 GSD horizontally and 1.5 GSD verti-

cally. In the case of ADS line scanner imagery, extreme turbu-

lence can reduce the quality of the images and hence the derived 

SGM DSM. Table 1 gives a comparison between SGM and 

LiDAR in terms of data accuracy and properties as well as pro-

cessing speed. 

 

 LiDAR SGM 

Horizontal Accuracy 10-30 cm 

(altitude-dep.) 

0.5 GSD 

Vertical Accuracy 5 cm 1.5 GSD 

Typical High Resolution 30 cm 5 cm 

Surface Measured top and ground top 

Processing Time 1,000,000 

points/s 

10,000-20,000 

point/s 

 

Table 1.  Comparison between LiDAR and SGM.  

 

For providing a DSM in a certain resolution, the acquisition 

time and cost for LiDAR is generally higher than for imagery, 

which forms the basis for SGM. Processing performance can 

vary widely for LiDAR and SGM, but in general SGM has a 

larger computation cost than LiDAR. This can be mitigated 

through the use of multi-threading, large scale cluster deploy-

ment and graphic processing units (GPUs) to accelerate the 

calculations. With the current CPU implementation, the SGM 



 

processing achieves 10,000-20,000 points/s (Intel Core i7 @ 

2.8 GHz), depending on disparity range. LiDAR processing 

speed is in the order of 1,000,000 points/s (2 x AMD Opteron 

2220 @ 2.80 GHz; Leica Geosystems, 2009) – cf. Table 1. 

Both LiDAR and SGM methods result in high density digital 

surfaces, which typically require additional processing or edi-

ting before they can be used in an application. Data can be 

classified automatically to determine ground (DEM), buildings 

or vegetation content with minor changes to classification rules 

to accommodate the different point densities. The potentially 

higher density of the SGM DSMs can ease identification of 

structures in the data, making manual editing less error prone. 

On the other hand, LiDAR’s ability to penetrate canopy and 

supply multiple returns enhances its ability to determine the 

ground. 

For the purpose of orthoimage generation, in addition to the ob-

vious advantage of saving data acquisition costs there are 

distinct benefits of using image-based DSM generation: The 

geometry (datum) of the DSM is identical to the geometry of the 

images. Any adjustments made to the imagery – such as the 

triangulation – will be reflected in the DSM. Also, as the 

imagery and the DSM reflect the same time of recording, which 

means that the representation of the earth's surface is consistent; 

any inaccuracies and noise due to temporal changes can be 

avoided. Lastly, as the SGM-generated DSM is created pixel-

wise, the required resolution for orthoimage rectification is in-

herently provided. 

 

 

4. EVALUATION RESULTS 

SGM evaluation was undertaken using data from the Romans-

horn municipality at Lake Constance in northern Switzerland. 

The imagery has been captured in the spring of 2007 using a 

Leica Geosystems ADS40, acquiring images at 5 cm GSD. The 

LiDAR DSM has been captured in the autumn of 2007 using a 

Leica Geosystems ALS50-II at a nominal point spacing of 

30 cm. Imagery was adjusted with photogrammetric control and 

constrained with inertial navigation data (Sun et al., 2006). The 

estimated pixel accuracy is 2.5 cm in XY and 7.5 cm in Z. 

LiDAR data was adjusted to remove systematic errors (Morin 

and El-Sheimy, 2002) and co-registered with the imagery. The 

estimated LiDAR point accuracy is 15 cm in XY and 5 cm in Z. 

A subset of the area was chosen for SGM testing. It consists of a 

region with mixed urban areas, fields and water, 375 m x 475 m 

in size (Figure 1). There were ~1.5 million LiDAR points in this 

area. SGM resulted in ~63 million points based on ~74 million 

image pixels, which translates to 85% yield. To compare sur-

faces, the SGM and LiDAR DSMs were analysed in a commer-

cial DSM package. Elevation differences were generated from 

unedited and ground-classified models and plotted to observe 

any systematic effects. Profiles were taken to highlight diffe-

rences in urban areas (buildings, roads, etc.) and difference sta-

tistics calculated to judge performance. 

The SGM-LiDAR comparison shows an average difference of 

0.8 cm ± 5.4 cm. The small standard deviation suggests that the 

imagery and/or LiDAR data are more accurate than expected 

and that SGM potentially maximized its vertical accuracy. The 

difference plot in Figure 2 shows a number of areas (coloured 

white) larger than 3 GSD. In most cases these represent tem-

poral effects such as grass pasture seasonal changes (large areas 

to lower left), construction (large rectangles) or changes in trees 

(random roundish shapes). Black areas contain no SGM data, 

mainly caused by occlusions; they naturally occur next to buil-

dings and trees and, due to the sensor geometry, increase to-

wards the edges of the flight line, which are top and bottom in 

the difference plot. 

 

 
 

Figure 1. Romanshorn test area overview from ADS RGB data.  

 

 
 

 
 

Figure 2. Difference plot between SGM and LiDAR DSMs. 

 

The strong agreement between LiDAR and SGM results is sup-

ported by the profile (Figure 3), which shows a very good 

agreement between LiDAR and SGM points along man-made 

structures, and demonstrates some of the differences in trees 

while canopy heights are generally similar. 



 

 
 

Figure 3. Profiles trough SGM results (light blue) and LiDAR points (dark blue), containing a sidewalk, lawn, a house and trees. 

 

 
 

Figure 4. Detail of the SGM DSM in a perspective view. 

 

 
 

Figure 5. Detail of the LiDAR DSM in a perspective view. 

 

A strength of pixel-based matching approaches like SGM is the 

behaviour at discontinuities, which is especially important in 

urban areas. In the comparison of perspective views – Figure 4: 

SGM, Figure 5: LiDAR – it can be seen that SGM has main-

tained sharp edges and also resolved a lot of detail on structures 

such as the railway tracks or the post next to them, which is not 

contained in the LiDAR data. (The object next to the railway in 

the LiDAR view – consisting of a single point – but not con-

tained in the SGM result is a bush. It indicates the LiDAR ad-

vantages at vegetation, whereas SGM might have not properly 

matched it and/or classified it as an error.) 

Although not illustrated here, it should be mentioned that both 

LiDAR and SGM have non-desirable effects around water 

boundaries – LiDAR sometimes giving erroneous results due to 

penetration of the water surface and reflection of shallow bot-

toms. Based on smoothness constraints, SGM can bridge water 

areas through minimizing its disparity measure; however, this 

bridging can sometimes result in error. 

 

 

5. CONCLUSION AND OUTLOOK 

We presented a DSM derivation approach based on Semi-

Global Matching (SGM) for ADS line scanner images and 

compared DSM and DEM results with LiDAR. It was found 

that the SGM-derived surface strongly agrees with the LiDAR 

points. Based on high resolution ADS imagery, the increased 

point density reveals fine detail that may be difficult for LiDAR 

to capture. There are, however, significant differences inherent 

to the respective method – generally around trees and vege-

tation, where LiDAR in contrast to image-based SGM has the 

ability to penetrate to the ground, or measure the top more con-

sistently. 

In conclusion, we have shown that SGM-derived DEMs/DSMs 

are revealed to be an effective alternative to LiDAR, especially 

when high resolution is a requirement. While both data sets can 

generally be used for the purpose of orthoimage rectification, 

SGM is the preferred choice as it is based on the same data set – 

representing the same point in time, identical geometry and 

resolution – and saves the additional acquisition cost of LiDAR. 

After extensive testing, SGM has just started to be used in 

North West Geomatics’ production. Based on this practical ex-

perience and upcoming needs, the presented SGM approach 

will continue to be refined. The final goal is to seamlessly inte-

grate the DSM generation into the ADS production work-flow. 

 

 

6. REFERENCES 

Alobeid, A., Jacobsen, K., Heipke, C., 2009. Building Height 

Estimation in Urban Areas from Very High Resolution Satellite 

Stereo Images. ISPRS Workshop: High-Resolution Earth Im-

aging for Geospatial Information, Hanover, Germany. 

Egnal, G., 2000. Mutual Information as a Stereo Correspon-

dence Measure. Technical Report No. MS-CIS-00-20. Univer-



 

sity of Pennsylvania, Department of Computer & Information 

Science. 

Gerke, M., 2008. Dense Image Matching in Airborne Video Se-

quences. The International Archives of the Photogrammetry, 

Remote Sensing and Spatial Information Sciences, Beijing, 

China, Vol. XXXVII, Part B3b, pp. 639-644. 

Heinrichs, M., Rohdehorst, V., Hellwich, O., 2007. Efficient 

Semi-Global Matching for Trinocular Stereo. The International 

Archives of the Photogrammetry, Remote Sensing and Spatial 

Information Sciences, Munich, Germany, Vol. XXXVI, Part 

3/W49A, pp. 185-190 (PIA07). 

Hermann, S., Klette, R., Destefanis, E., 2009. Inclusion of a 

Second-Order Prior into Semi-Global Matching. 3rd Pacific-

Rim Symposium on Image and Video Technology, Tokyo, 

Japan. 

Hirschmüller, H., 2005. Accurate and Efficient Stereo Proces-

sing by Semi-Global Matching and Mutual Information. Proc. 

IEEE Conference on CVPR, New York, New York. 

Hirschmüller, H., 2008. Stereo Processing by Semiglobal 

Matching and Mutual Information. IEEE Transactions on 

Pattern Analysis and Machine Intelligence, Vol. 30, No. 2. 

Hirschmüller, H., Mayer, H., Neukum, G., and the HRSC Co-

Investigator Team, 2006. Stereo Processing of HRSC Mars 

Express Images by Semi-Global Matching. The International 

Archives of the Photogrammetry, Remote Sensing and Spatial 

Information Sciences, Goa, India, Vol. XXXVI, Part 4. 

Hirschmüller, H., Scharstein, D., 2007. Evaluation of Cost 

Functions for Stereo Matching. Proc. IEEE Conference on 

CVPR, Minneapolis, Minnesota. 

Hirschmüller, H., Scholten, F., Hirzinger, G., 2005. Stereo 

Vision Based Reconstruction of Huge Urban Areas from an 

Airborne Pushbroom Camera (HRSC). Proc. 27th DAGM Sym-

posium, Vienna, Austria, Vol. LNCS 3663, pp. 58-66. 

Kim, J., Kolmogorov, V., Zahib, R., 2003. Visual Correspon-

dence Using Energy Minimization and Mutual Information. 

Proc. IEEE Conference on Computer Vision, Vol. 2, pp. 1033-

1040. 

Krauß, T., Lehner, M., Reinartz, P., 2008. Generation of Coarse 

Models of Urban Areas from High Resolution Satellite Images. 

The International Archives of the Photogrammetry, Remote 

Sensing and Spatial Information Sciences, Beijing, China, Vol. 

XXXVII, Part B1, pp. 1091-1098. 

Leica Geosystems, 2009. Tech Note – Post Processing Times 

for ALS Data. 

Morin, K., El-Sheimy, N., 2001a. A comparison of airborne 

laser scanning data adjustment methods. Proc. ISPRS WGII/2 

Three-Dimensional Mapping from InSAR and LIDAR 

Workshop, Banff, Alberta, Canada. 

Morin, K., El-Sheimy, N., 2001b. The Effects of Residual 

Errors in Airborne Laser Scanning Terrain Data on Ortho-

Rectified Imagery. Proc. of Optical 3D Measurement 

Techniques V, Vienna, Austria. 

Morin, K., El-Sheimy, N., 2002. Post-mission Adjustment 

Methods of Airborne Laser Scanning Data. Proc. FIG/ASPRS 

Annual Conference, Washington, D.C. 

Sun, H., Morin K., et al., 2006. IPAS – Leica Geosystems’ High 

Accuracy GPS/IMU Integrated System for Airborne Digital 

Sensors. Proc. ASPRS Annual Conference, Reno, NV. 

Viola, P., Wells, W.M. III, 1997. Alignment by Maximization 

of Mutual Information. Int. Journal of Computer Vision, Vol. 

24, Part 2, pp. 137-154. 

 


