
TERRASAR-X DATA FOR IMPROVING GEOMETRIC ACCURACY OF OPTICAL 
HIGH AND VERY HIGH RESOLUTION SATELLITE DATA 

 
 

P. Reinartz*, R. Müller, S. Suri, P. Schwind, M. Schneider 
 

German Aerospace Center (DLR), Remote Sensing Technology Institute, 82234 Wessling, Germany - 
(peter.reinartz, rupert.mueller, sahil.suri, peter.schwind, mathias.schneider)@dlr.de 

 
Commission I, WG I/2 

 
 
KEY WORDS:  Orthorectification, Automatic Ground Control, Orientation Improvement, TerraSAR-X, Optical/SAR Integration, 
 
 
ABSTRACT: 
 
Most high resolution optical images from space need ground control information (GCP) before an orthorectification can be 
performed. The very high geometric accuracy of geocoded data of the TerraSAR-X satellite has been shown in several 
investigations. This precision has been reached fully automatically without any GCP and is due to good sensor calibration, high 
accuracy of satellite position and the low dependency on the satellites attitude solution. Therefore TerraSAR-X data can be used as 
“ground control” to improve the exterior orientation and thereby the geometric accuracy of orthorectified optical satellite data. The 
technique used is the measurement of identical points in the images, either by manual measurements or through local image 
matching using adapted mutual information (MI) and to estimate improvements for the exterior orientation or Rational Polynomial 
Coefficients (RPCs). To be able to use this intensity based method, the radar data have to be filtered before starting the matching 
procedure. Through adjustment calculations falsely matched points are eliminated and an optimal improvement for the attitude 
angles is found. The optical data are orthorectified using these improvements and the available DEM. The results are very promising 
and compared using conventional ground control information from maps or GPS measurements. 
 

1. INTRODUCTION 

Orthorectification of high (HR) and very high resolution (VHR) 
optical satellite data using direct sensor orientation still needs 
ground control information to reach absolute geometric 
accuracy in pixel or sub-pixel range (Reinartz et al. 2006). This 
is mainly due to the insufficient knowledge of the satellite 
attitude and thermally influenced mounting angles, which lead 
to location errors between 5 m and several hundred meters 
depending on the sensor/satellite. Ground control information 
can be obtained by several means: such as measuring GPS 
points in situ, measuring points in topographic maps or using 
reference images already orthorectified together with height 
information from a suitable Digital Elevation Model (DEM) 
(Jacobsen, 2006). In the case of reference images matching 
procedures can be applied to extract tie points automatically 
and to improve the exterior orientation parameters (Müller et al. 
2007). The drawback is that up to now optical reference images 
are in most cases not easily available. Especially for very high 
resolution data with pixel sizes of 2.5 m and lower, only few 
areas around the world are covered by orthoimages which reach 
this high geometric precision to serve as a reference. 
 
The German Aerospace Center (DLR) operates the TerraSAR-
X satellite since June 2007. A detailed analysis by several 
independent institutions such as the National Geospatial-
Intelligence Agency (NGA), has shown that the geometric 
accuracy of the orbit errors are as small as 20 centimeters and 
the range errors are well under 1 meter (Ager et al. 2009; 
Schubert et al. 2008). Atmospheric properties which influence 
the runtime of the signal have to be taken into account to reach 
this very high performance. The EEC product shows absolute 
geolocation accuracies in the meter range for rural areas. These 
high accuracies can only be reached if the digital elevation 
model, which is needed for the processing exhibits also 
accuracies in this range.    

 
Since mainly distances are measured, the geometry of radar 
data from space borne sensors is not much dependent on the 
attitude of the satellite due to the spherical waves which are 
emitted from the microwave antenna. Since the accuracy of 
TerraSAR-X is better than 1 m in the Single Look Slant Range 
Complex (SSC) mode, the same spatial accuracy can be reached 
in the Enhanced Ellipsoid Corrected (EEC) mode if the data are 
rectified using a high precision DEM. In order to combine the 
high geometric potential of TerraSAR-X with the necessary 
improvements of the exterior orientation parameters of HR and 
VHR optical sensors several investigations are shown in this 
paper. Since radar and optical data show a very different 
behavior, a simple correlation technique is not applicable. Tie 
points can therefore be found either by manual point 
measurements or by automatic multimodal image registration 
techniques like Mutual Information (Suri et al. 2008). We show 
the usage of both methods and their combination for the 
purpose of using TerraSAR-X data as geocoding reference for 
the orthorectification of optical data from e.g. IKONOS data. 
The resulting orthorectified images are compared with check 
points from other sources for their geometric properties. Due to 
the different nature of the images, the tie points are mainly 
taken from relatively flat rural areas including streets. Urban 
areas and forested areas are generally not well suited for the 
process due to the different object geometries in radar and 
optical data respectively but also the behavior of the matching 
process for these land cover classes are investigated. Some 
filtering processes for the radar data for these areas improve the 
possibility to match optical and radar data by mutual 
information algorithms significantly. The results shown are 
very promising especially for the automatic technique but some 
difficulties arise depending on radar backscatter properties. 
 



 

2. TIE POINTS FROM RADAR DATA 

In order to use the TerraSAR-X data as ground control source 
(GCPs) for the improvement of the measured attitude data of 
the optical data, homologous points (tie points) in the two 
images have to be found. This can be done either by 
manual/visual measurements, or by automatic techniques using 
multimodal image matching. Since the image information of 
both data sets is very different due to geometric and radiometric 
acquisition properties, this is not a straightforward procedure. 
 
2.1 Visual Interpretation 

When looking at a TerraSAR-X scene, the human interpret can 
visually classify some objects/features almost as well as in 
optical images. Thus, one of our first thoughts was to try a 
manual/visual measurement of tie points and use them as GCPs. 
However, the different characteristics of optical and radar 
imagery have to be considered. Especially the typical radar 
effects like foreshortening, shadowing etc should be accounted 
for when selecting GCPs manually. Selected GCPs should be 
situated in flat terrain and they should not be surrounded by 
trees or high buildings. During the tests, street crossings in 
agricultural areas as well as the center of roundabouts turned 
out to be good GCPs. However, the visual measurement is still 
very challenging and needs an experienced operator. 
 
2.2 Mutual Information 

To find conjugate features within SAR and optical images 
automatically, intensity based registration metrics like Mutual 
Information (MI) have been considered in the past for image of 
resolution in 5-10m. MI has evolved from the field of 
information theory (Viola, 2009), (Collignon et al. 1995) and it 
describes a statistical dependence between two random 
variables (e.g. A and B) expressed in terms of variable 
entropies. In case Shannon entropy (additive in nature) is 
selected to represent the individual variable information, mutual 
information between two variable A and B is defined as: 
 

( , ) ( ) ( ) ( , )MI A B H A H B H A B    (1) 
 
where H(A) and H(B) are the Shannon entropies of A and B 
respectively, H(A,B) is the joint variable entropy. Considering 
A and B as two remote sensing images their registration is 
based on maximization of MI (A,B)  (equation 1). The entropies 
(marginal and joint) are from [9], 
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Where pA(a) and pB(b) are the marginal probability mass 
functions and pA,B(a,b) is the joint probability mass function. 
These probability mass functions can be obtained from, 
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where h is a joint histogram (JH

a 2D matrix with the intensit
) of the two images involved. It 

y values of one image along one is 
axis and the intensity values of the other image along the other 
axis. Thus, it can be seen from equations (1) to (7) that the joint 
histogram is the only requirement for MI computation between 
any two images. Here, we have employed the normalized MI 
implementation proposed in (Studholme et al. 1999). This 
reduces the sensitivity of MI towards changes in image overlap. 
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A mutual information based registration incl

lection of a joint histogram technique and an o

med our analysis with high 

1) in both the images for 

udes a careful 
ptimizer to find se

the registration parameters. For optimizing the registration 
function, input image might be transformed several times over 
the reference image grid. For many cases, the transformed input 
image might not coincide with the target reference image grid. 
Therefore, an exact joint histogram may not be obtained and 
some approximation becomes inevitable. For joint histogram 
estimation, one step and two step histogram techniques have 
been utilized in past (Chen et al. 2003). In general, the 
interpolation step of intensity values has been held responsible 
for introducing interpolation induced artefacts (Tsao, 2003), 
(Inglada et al. 2007) in MI function which makes the function 
optimization a tedious task. For the presented work, one step 
joint histogram technique namely generalized partial volume 
estimation (GPVE) (Chen et al. 2003) is utilized. A detailed 
evaluation of GPVE using different order B-spline kernels to 
estimate the joint histogram for high resolution SAR optical 
image chip matching can be found in (Suri et al. 2008). For 
selecting an optimizer, (Pluim et al. 2003) presents a survey of 
optimization techniques utilized in MI based registration. In this 
work, we have utilized the first order Simultaneous Perturbation 
Stochastic Approximation (SPSA) optimization scheme [Spall, 
1999]. 
 
2.3 Different Sensor Geometries 

To demonstrate the influence of different sensor geometries on 
intensity based registration we perfor
resolution imagery acquired over suburban area west of 
Munich, Germany. The images can be visualized in Figure 1 (a, 
b), the imaged scene has urban settlement situated very next to 
vast agricultural fields providing an opportunity to analyze the 
similarity metric performance for the two land covers, both 
combined and independent. For experimentation the following 
two scenarios have been considered: 
 
For case 1, we select pixels only from the plain fields (roughly 
demarcated with rectangle in Figure 
computing the registration parameters (Size: 953 × 1096 
pixels). For the plain field pixels the side-looking SAR sensor 
and the downward looking optical sensor are not expected to 
have much of their geometric influence, so favorable 
registration results as in the previous case are expected. 
For case 2, we select the entire image scene for registration 
parameter computation and hence analyze the influence of the 

b
 (6) 

sub urban establishments on similarity metric performance 
(Size: 1001 × 2001 pixels). The urban establishments cause 
great changes in SAR image radiometry due to its sideways 
looking geometry. 



 

 
 (a) (b) 

 
 (c) (d) 

igure 1. (a) The IKONOS and (b) TerraSAR-X imagery for dataset 2. (c) Plain field pixels lead to a registration peak of (11, -7) 
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ests conducted with a bin size 64 only taking pixels from the 

his shift in the registration peaks of both the metrics can 

tration between two images is achieved by maximizing the 

r practical applications land cover classes are 
ardly as segregated as available in the analyzed dataset. 

ed, ideally unsupervised 
would be preferred to avoid any kind of manual 
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for MI. (d) Introduction of urban area pixels shifted the registration peaks for MI to (17, 4). 

 
W
(TerraSAR-X) in the range (Suri et al. 2010) pixels in both x 
and y direction, both the similarity metric functions have been 
recorded at integral pixel movements. For this experiment, joint 
histogram of bin size 64 has been estimated using the GPVE 
technique (Cubic B-spline kernel). The search spaces generated 
by both the metrics for the two cases are provided in Figure 1. 
The Figure 1c represents the generated search spaces for MI 
while utilizing pixels belonging only to the land cover class 
fields. Figure 1d represents the generated search spaces while 
utilizing the complete image region including the suburban 
areas. 
 
T
plain fields, returned the registration peak at (11, -7) for MI 
(Figure 1c). On the other hand, the surfaces generated by 
utilizing all the pixels in both the images obtain a peak at (17, 
4) (Figure 1d). A visual analysis using an overlay tool clearly 
indicates the present misalignment within the imagery after 
using the obtained registration parameters from case 2.  
Although the land cover fields constitute more than 53% of the 
total image area, still the introduction of the urban area pixels 
have derailed the registration process which is evident in the 
form of false registration peaks observed. This shift in the peaks 
can be attributed to high entropy content normally present with 
in urban areas which is also evident from the sharper false 
registration peaks obtained by both the similarity metrics in 
case 2. 
 
T
directly be related to the introduction of region greatly 
influenced by different sensor geometries. Theoretically, regis-

similarity metric between two images. But due to the influence 
of different sensor geometries especially in urban, semi urban 
areas the peak obtained simply by the maximization process 
might not yield desirable results. The double bounce, triple 
bounce effect prominently observed in the SAR imagery at 1m 
resolution make the radiometric information produced by two 
sensors incompatible in urban areas and might lead to failure of 
intensity based techniques to detect correct registration 
parameters.   
 
Normally, fo
h
However, the presented scene is still a good selection to show 
the possible influence of different sensor geometries on an 
intensity based registration performance. This problem of 
mixed classes asks for a segmentation step before using 
intensity based techniques for registration parameter estimation. 
The segmentation should be targeted to incorporate only those 
pixels in the registration process which are not influenced by 
different sensor geometries (like the plain field pixels in the 
dataset). However, the idea of introducing a segmentation step 
before performing an intensity based registration has the 
following concerns to be addressed: 
 

1. Supervised or unsupervis

intervention in the registration process 
The accuracy and the speed of the segmentation, it 
needs to be established that how much accuracy
segmentation is actually needed for robust 
performances.



 

 
 

igure 2. Pixels with value 1 were left out (in SAR image) of the registration process after introducing high thresholds of 5% (a) 

 

3. Segmentation required only in one image or both the 

onsidering the scenario, we propose here a method to 

To perform the necessary segmentation step we again revert to 
age compression, the advantages of performing the 

 Computational speedup: It is clear that the time 
complexity of the segmentation step is directly 

2. 
 the image 

 here can be visualized in 
igure 2. First the SAR image (Figure 1b) is down-sampled to 

me has been represented as 
inary masks (value of 1 means the pixel is not included in the 

F
10% (b) 20% (c) and 30% (d) at image compressed to one-forth of its original resolution 

 

images involved in the registration process 
 
C
successfully adapt intensity-based techniques for heterogeneous 
land cover scenes. The proposed method is unsupervised, very 
fast and easy to implement and requires segmentation in only 
one of the images being registered.  The idea of the proposed 
solution lies in the histogram of a SAR image acquired over 
urban/semi-urban areas. Normally, the pixels produced by the 
double/triple bounce phenomenon result into a very strong 
backscatter to the radar sensor and thus these pixels always 
would be situated near the higher end of a SAR image 
histogram. Here it has to be kept in mind that certain other 
pixels, not generated by the SAR geometry - due to constructive 
interference of the radar waves - can also produce high intensity 
value (strong backscatter). However, it still might be possible to 
bin out most of the pixels explicitly generated due to the SAR 
sensor geometry using histogram thresholds. As already 
mentioned certain pixels (even in plain fields) as a result of 
constructive interference might also be binned out of the 
registration process. But as long as the numbers of such false 
pixels being binned out represent minority of the total pixel 
population, the registration peaks obtained by the similarity 
metrics are not expected to change. The number of such pixels 
can definitely be reduced by some kind of speckle filtering but 
intensity based registration of SAR and optical imagery does 
not require any necessary smoothing step so we refrain to 
perform the same in the presented approach. 
 

im
segmentation task in a coarser resolution SAR image are two 
folds: 
 

1.

dependent upon the size of the image so image 
compression can be used to a good effect. 
Image Smoothing: The utilized averaging block filter 
also introduces some kind of smoothing in
so this in turn might help only binning out those 
pixels which are a result of sideways looking SAR 
sensor geometry 

 
The proposed segmentation performed
F
one-forth of its original resolution. The histogram of the 
obtained down-sampled image is now used to generate 
thresholds for binning out possible pixels generated by the SAR 
sensor geometry in the original resolution image. To realize the 
goal of the segmentation process thresholds are made from the 
higher end of the image histogram. 
 
The result of this segmentation sche
b
registration process) depicted in Figure 2 (a, b, c, d) represent 
the results of introducing thresholds of 5, 10, 20 and 30% on the 
down-sampled image (one-fourth of the original resolution). 
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igure 3. Registration surfaces generated by MI between segmented SAR (using masks from Figure 2) and the original optical 
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ation strategy introduced in this section has yielded 
ncouraging registration performances from both the similarity 
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It
more and more pixels from the plain fields start coming into the 
undesired pixel category and this might have an adverse 
influence on similarity metric performance.  
 
T
repeat the same experiment as done earlier. The idea here is to 
register the segmented SAR image with the corresponding 
optical image. In this scenario all the pixels from optical 
imagery would contribute to the similarity metric statistics but 
from the SAR imagery only those pixels which are within the 
threshold limits (assigned the value 0 in the masks of Figure 2) 
would participate in the registration process. To analyze the 
threshold value influence on the final registration results and 
similarity metric performances we repeat the same experiment 
with different threshold levels (Figure 2). The similarity metric 
surfaces generated in the search space of (Suri et al. 2010) 
pixels for the segmented SAR images and the original optical 
image have been provided in Figure 3 for visualization and 
analysis. 
 
T to 

become state-of-the art) as well as stable interior orientation of 
camera systems the improvement of satellite attitude / sensor 
alignment using GCPs is one of the major tasks. Especially 
thermal effects caused by the sun exposure time during satellite 
orbit revolution influences the relative alignment between the 
body and the sensor coordinate frames and leads to pointing 
errors. A thermal stable connection between the camera system 
and the attitude measurement system like star trackers as well 
as a compact assembly with close distances between the devices 
is often hard to establish, which results in a thermal sensitive 
behaviour. Therefore by iterative least squares adjustment 
improved alignment angles can be estimated and introduced in 
the extended physical sensor model (Müller et al. 2005). The 
improved sensor model is finally applied to orthorectify the 
optical data by object point reconstruction using interpolated 

intensity based registration is evident on the registration search 
spaces generated in Figure 2. Segmentation of the SAR image 
using the mask depicted in Figure 3a (5% threshold) influenced 
the registration peaks observed in Figure 1d significantly. The 
registration peaks obtained by MI (17, 4) in Figure 1d was 
shifted to (15, 1). Further segmentation of the SAR image that 
is using threshold in the order of 10, 20 and 30% percent 
yielded almost the same registration peaks as were reported by 
the similarity metrics using only the pixels from plain fields 
(Figure 1c). The MI peaks obtained for the segmented SAR and 
the optical imagery deviate only about 1 m from the peaks ob-

case are assumed to be the true on ground registration 
parameters. 
 
The segment
e
metrics. It can be observed that very loose threshold of 5% 
could remove only some of the pixels influenced by the SAR 
sensor geometry and thus did not produce expected registration 
results. On further tightening the thresholds to higher levels, 
most of the pixels influenced by SAR sensor geometry (mostly 
in the urban settlement) were removed and expected registration 
parameters were successfully retrieved. 
 

3. SENSOR ORIENTA

Considering gh precision position determinati
ingly sub-meter range position accuracies



 

terrain height values from the DEM and by transformation of 
planar object points to a map projection including appropriate 
pixel value resampling within a regular grid. 
 
3.1 RPC correction 

Exterior and interior orientation can be implicitly encoded in 
form of rational polynomial functions (RPF) using third order 
polynomials for nominator and denominator (80 coefficients). 
This Universal Sensor Model (USM) provides the 
transformation of object space coordinates to image space 
coordinates, which is available in standard format for a lot of 
remote sensing satellite systems. Each of the RPF for row and 
column is given via a ratio of 2 polynomials of third order in 
normalized λ, φ, and h with 20 coefficients. 
 

),,( hrpfr r

),,( hrpfc c 



  



(9) 

examined. Therefore, a test area near Marseille, France, was 
chosen. An ALOS PRISM nadir scene recorded on March 12, 
2007 with 2.5 m GSD and a TerraSAR-X Stripmap scene 
recorded on April 20, 2009 with a GSD of 1.25 m were used for 
the test. Additionally, 25 GCPs measured with GPS were 
available. 
 

 
where r/c are row and column coordinates of the image an

, and h are longitude, latitude and ellipsoidal height in 

of the original RPC, 
ese have to be corrected via ground control information. An 

 (10) 
 
where rpfr and rpfc are the ori

olynomial functions [Lehner et al. 2005]. 

r detection are included in the process 
chain to determine a set of GCPs of high geometric quality. A 

 EXAMPLES 

The method explained in the last section has been applied to 

.1 Manual GCP measurements 

In this section, the potential of manual GCP measurement is 

or the test, 10 tie points were measured in both the TerraSAR-

he gray color indicates a very high consistency of both 

d λ, 
φ
geographic coordinates of WGS84 datum.  
 
In order to improve the geometric accuracy 
th
affine transformation is estimated by least squares adjustment 
via the GCP derived from image matching between satellite 
scene and the reference scene. The corrected image coordinates 
are calculated based on this affine transformation and the RPF 
given by 
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cr

cr
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3.2 Blunder detection 

Different levels of blunde

method for blunder detection is integrated in the least squares 
adjustment, which eliminates iteratively step by step GCPs with 
a residual greater than a threshold starting with the bottom 
quality GCP. In this context a residual is defined as deviation of 
GCP coordinates from the re-calculated object point coordinates 
using the refined sensor model, which has been derived from 
the adjustment using all currently valid GCPs. In a first step the 
whole GCP set serves as input for the iterative parameter 
estimation. Successively the GCP with bottom quality and 
residuals greater than a threshold is removed from the GCP set. 
This iterative procedure is repeated until a GCP set remains, 
which is consistent to the sensor model. The procedure has to 
be iterative, because each GCP influences the result of the 
parameter estimation. As threshold for the GCP blunder 
detection two pixel sizes have to be found as sufficient for 
ALOS / PRISM and IKONOS images (other values like 1 pixel 
size threshold show no significant improvement of blunder 
detection). The drawback of this method is that systematic 
errors for the majority of the GCPs can lead to erroneous or 
shifted values of the estimated parameters. Another possibility 
is the fact that we might obtain a poor distribution of the GCPs 
concentrated in only one part of the scene and a model 

estimated from such a distribution might not be ideal and 
consistent for the entire coverage. 

4. APPLICATION

several data sets (see also (Reinartz et al. 2009), (Suri et al. 
2010). In the following one example and results where the 
TerraSAR-X data have been used in the described ways, are 
shown for an ALOS-PRISM data set. These data sets have been 
chosen since the largest overlapping of the scenes and the best 
fitting independent ground control has been available. 
 
4

F
X and the PRISM scene. These points were used as GCPs to 
correct the orientation of the PRISM scene as described in 
section 3. The PRISM scene was then orthorectified using the 
corrected orientation. Another orthoimage was generated by 
correcting the orientation using 8 of the GPS points as GCPs. 
Figure 4 shows an overlay of these orthoimages. 
 
T
orthorectified images. This holds also true in mountainous 
areas. In order to assess the geometric accuracy of the 
orthorectified scene using GCP information extracted from the 
TerraSAR-X imagery, the GPS points were manually measured 
in the orthoimage. Table 1 shows the results. 
 

 
 

igure 4. Overlay of orthoimages. The blue and green 

 

 x y 

F
channels show the orthoimage created with the GPS 
points, the red channel the one created using the 
TerraSAR-X points as GCPs. There are only very 
small visually detectable colour edges found. 

 

Bias [m] 1.7 3.4 
Standard deviation [m] 2.6 3.0 
RMSE [m] 3.1 4.5 

 



 

Table 1.  Statistics at 25 check points (GPS measurements) 
 

.2 GCP extraction by image matching 

To evaluate the performance of the MI based approach 

his processing chain starts by generating an equidistant grid of 

or the MI statistic computation a window with a size 

hen compared to the 25 independent high precision 

4

presented in section 2.2, an automated processing chain was 
implemented and tested using the same dataset utilized for the 
manual GCP measurements in section 5.1. 
 
T
points in the original PRISM image. To facilitate MI matching 
of these points with the reference TerraSAR-X scene, the 
PRISM image is orthorectified using the uncorrected attitude 
information (Mean shift compared to the reference GPS points: 
24.7 m in x; 84.44 m in y). Next, the found matches are used to 
estimate more accurate attitude angles as described in section 3. 
Moreover, during this step wrong and inaccurate matches are 
eliminated. Finally, the improved sensor model is used to 
orthorectify the PRISM scene. 
 
F of 

GPS 

400x400 pixels is employed, using a Sextic B-Spline Kernel for 
joint histogram estimation (Suri et al. 2008). 122 grid points 
were generated automatically, out of which 109 remained after 
MI matching (selected on the basis of individual match 
consistency). The corrections obtained by MI can be seen in 
Figure 5. During the sensor model improvement step another 38 
points were discarded based on a threshold of 2.0 pixels, finally 
leading to 71 remaining matches with a RMSE of these points 
0.73 pixel in x and 0.86 pixel in y relative to the computed 
model. 
 
W
points a mean deviation of -2.8 m and -8.0 m in x and y 
respectively was obtained (Table 2). While the mean deviation 
has not yet achieved results as good as those obtained manually, 
the comparably low standard deviation (x: 2,6m; y: 2,0m) 
indicates a good matching consistency. 
 

 
 

igure 5. Shifts of matches computed by MI compared to their 
initial position (arrow lengths are scaled by a factor 
100) 

 
 

 x y 

F

 

Bias [m] 2.8 8.0 
Standard deviation [m] 2.6 2.0 
RMSE [m] 3.8 8.2 

 
Table poin PS m ements) 

 
urther investigations have been performed and are published 

in g 
(Special issue on TerraSAR-X) (Suri et al. 2009). 

or combined utilization of data from diverse natured sensors 
automatic co-registra images 
may have georeferencing differences of magnitude that might 

 high resolution 
agery acquired by TerraSAR-X and ALOS/PRISM as well as 

for absolute orientation improvement for 
igh resolution optical satellite data. In the displayed example 

EM used for the production, since 
e measured range values depend on the accuracy of the 

2.  Statistics at 25 check ts (G easur

F
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5. CONCLUSIONS 

F
tion methods are a must as satellite 

influence any analysis or decision making process. Considering 
the meticulous task of extracting and matching conjugate 
features in SAR and optical imagery (especially metric 
resolution imagery) a general feature based image registration 
technique for various scenarios might be difficult to develop 
and implement. On the other hand, the intensity based metrics 
for medium resolution images (5-15 m GSD) have shown 
enough potential of suitably being modified and extended for 
different registration scenarios.  
 
In this paper we have investigated the performance of intensity 
based registration techniques for high and very
im
IKONOS satellites. As was expected the different radiometric 
information contained in the two images due to different sensor 
geometry and radiometry did hamper the intensity based 
techniques but suitable solutions have been proposed for 
handling the same.  
 
It has been shown that TerraSAR-X data can be used as an 
information source 
h
the manual measurement of conjugate points leads to an 
absolute geolocation accuracy of better than 5 m (equivalent to 
two pixels for ALOS-PRISM data), checked at totally 
independent GCP. While automatic matching techniques, using 
mutual information registration, show a high matching 
consistency (approx. 1 pixel), the absolute geolocation error is 
in the order of 8 m. The reason for this discrepancy has to be 
studied in more detail and checked with other data sets. The 
intended study will include a detailed evaluation of MI SAR 
optical image matching capability by analyzing various window 
sizes, joint histogramming and thresholding techniques for 
different land cover classes. 
 
The absolute geolocation accuracy of TerraSAR-X EEC data 
can be only as good as the D
th
underlying DEM. This could possibly lead to the above 
mentioned discrepancies. In further investigations, areas will be 
chosen where the absolute geometric accuracy of the 
TerraSAR-X EEC data is known to be very high and several 
techniques for automatic extraction of tie points using mutual 
information will be used. 
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