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ABSTRACT: 
 
MMSs have been applied widely for acquiring spatial information in applications such as GIS and 3D city models. Nowadays the 
most common technologies used for MMS positioning and orientation include using GPS as a major positioning sensor and INS as 
the major orientation sensor. In the classical approach, the limitation of KF and the price of overall multi-sensor systems have 
limited the popularization of most land-based MMS applications. Although intelligent sensor positioning and orientation schemes 
have been proposed consisting of MFNN, one of the most famous ANNs, and KF/RTS, in order to enhance the performance of a low 
cost MEMS INS/GPS integrated system, the automation of the MFNN applied is not as easy as initially expected. Therefore, this 
study not only addresses the problems of insufficient automation in the conventional methodology that has been applied in MFNN-
KF/RTS algorithms for INS/GPS integrated system proposed in previous studies, but also exploits and analyzes the idea of 
developing alternative intelligent sensor positioning and orientation schemes that integrate various sensors in a more automatic way. 
The proposed schemes are implemented using SGN to overcome the limitations of conventional techniques based on the KF/RTS 
algorithms as well as previously developed MFNN-KF/RTS schemes. The SGN(CCN)also has the advantage of a more flexible 
topology compared to the MFNN for INS/GPS integration. The results presented in this article illustrate the effectiveness of the 
proposed schemes over both KF/RTS algorithms as well as the MFNN-KF/RTS schemes. 
 
 

1. INTRODUCTION 
 
DMMS have been applied widely for acquiring spatial 
information in the applications such as Geographic Information 
Systems (GIS) and 3D city model. The basic idea is executed 
by producing more than one image that includes the same 
object from different positions, and then the 3D positions of the 
same object with respect to the camera frame can be measured. 
Direct geo-referencing is the determination of time-variable 
position and orientation parameters for a mobile digital imager 
[El-Sheimy, 1996]. Instead of using ground control points as 
references for orientating the images in space, the trajectory and 
attitude of the imager platform could now be determined 
directly [Park and Gao, 2008]. Caused by the need of faster 
update rate and the increasing demand, the DMMS has been 
applied to overcome the prohibitions of conventional survey 
techniques. This system is less expensive and has higher 
applicability than the conventional one. In order to attain 
reasonable accuracy of position and attitude solutions, tactical 
grade or higher quality IMU along with GPS has been applied 
as the Position and Orientation System (POS) for current 
commercial systems. However, the cost of overall system still 
be maintained at such a high level that limits the popularization, 
especially the price of the IMU.  
 
The Kalman filter (KF) approach has been widely recognized as 
the standard optimal estimation tool for current INS/GPS 
integration schemes. The basic idea of using KF in GPS/INS 
integration is to fuse those independent and redundant sources 
of navigation information with a reference navigation solution 
to obtain an optimal estimate of navigation states such as 
position, velocity and attitude. However, it has limitations, 

which have been reported by several researchers [Gelb, 1974; 
Brown and Hwang, 1992; Vanicek and Omerbasic, 1999]. The 
major inadequacy related to the utilization of the KF for 
INS/GPS integration is the necessity to have a predefined 
accurate stochastic model for each of the sensor errors [Brown 
and Hwang, 1992]. On the other hand, the smoothing has been 
applied for the purpose of accurate positioning and orientation 
determination through post-processing for most of the 
kinematic positioning applications. In contrast to the KF, the 
smoothing is implemented after all KF estimates have been 
solved by the use of past, present and future. 
 
ANN techniques have been applied to develop alternative 
INS/GPS integration schemes to overcome the limitations of KF 
and to improve the positional accuracy of vehicular navigation 
systems during GPS signal blockages [Chiang, 2004]. Such an 
integrated approach would have the capability of estimating all 
navigation states, using the advantages of ANN techniques for 
practical solutions. The MFNN is the most common use of 
ANN in the previous studies [Bishop, 1995; Chiang, 2004; Lin, 
2008]. However, this approach still has a lot of issues that have 
not been resolved completely. These include the determination 
of the number of hidden-layer neurons, convergent time for 
adjusting weight and the speed of convergence in training. The 
topology of MFNN such as neurons and layer numbers can be 
appropriate decided only after numerous trying. Therefore, this 
thesis aims at using constructive neural network that can grow 
itself during the learning process. It will effectively reduce the 
trying process and still maintain the performance generated by 
MFNN. 



 

 

2. METHOD 
 
2.1 Problem Statements 
 
In general GPS/INS integration applications, the accuracy of 
the KF solutions sometime cannot fulfill applications such as a 
MMS. In detail, an integrated system has to predict state 
parameters such as position, velocity and attitude using KF 
when GPS signal blockages exist. In GPS denied environments, 
the errors of navigation solutions increase rapidly until GPS 
signal can be recovered to update the measurement. This 
problem will become more serious when a MEMS (Micro 
Electro Mechanical Systems) IMU is used. In order to achieve 
high accuracy requirements for position and attitude 
determination in DMMS, it is processed in post-mission mode 
with an optimal smoothing algorithm. Most of the commercial 
mobile mapping systems use an optimal smoothing algorithm to 
provide accurate position and orientation for direct geo-
referencing [Shin, 2005]. However, INS/GPS integrated POSs 
use tactical grade IMU or above to provide accurate POS 
solutions for general MMS applications. Therefore, upgrading 
the hardware (e.g., IMU) can be considered as an effective 
solution to improve the accuracy of POS solutions when a low 
cost MEMS IMU is used. However, such improvement is rather 
limited as the availability of high grade (navigation) IMUs is 
regulated by the governmental regulations of certain countries 
where the IMUs are produced.  
 
Another effective way to improve the accuracy of low cost 
MEMS INS/GPS integrated POS solutions is through the 
improvement of POS algorithm. Comparing to the hardware 
perspective mentioned above, the software perspective can be 
considered as a cost effective solution to develop a low cost 
INS/GPS integrated POS for general MMS applications. One of 
famous algorithm is the combination of ANN and KF or 
smoothing. The purpose of ANN used in GPS/INS integration is 
to reduce the drawbacks of KF and reduce remaining errors in 
KF and smoothing solutions. However, it is difficult to train 
MFNN well and it is time-consuming for most users learn about 
how to design the best architecture for MFNN [Alpaydin, 1991]. 
Compared to fixed topology based neural networks like 
MFNNs; the ANNs with constructive algorithms are considered 
computationally economic. Consequently, the proposed scheme 
is implemented using CCNs to overcome the limitations of the 
previous one. The two key ideas of CCNs are the cascade 
architecture and learning algorithm which creates and installs 
the new hidden unit with maximum correlation.  
 
Therefore, the objectives of this article is to: (1) develop CCN-
KF and CCN-RTS smoother schemes for precise position and 
attitude determination; (2) verify the performance of proposed 
system using a MEMS IMU/GPS integrated system; (3) 
compare the performance with the previous developed MFNN-
RTS hybrid schemes in terms of complexity of the topology, 
the learning time and estimated accuracy during GPS signal 
outages of the proposed schemes and (4) analyze the correlation 
between several inputs with the specific target of proposed 
algorithms. 
 
2.2 The Artificial Neural Networks 
 
In this study, the constructive ANN is implemented to learn and 
compensate for the residual errors of the KF and RTS smoother, 
respectively, to improve the accuracy of the attitude angles 
estimated by the KF and RTS smoother, respectively. The 

proposed scheme is capable of learning how the state vector 
(i.e., position or attitude errors) behave based on the dynamics 
of the platform and the error characteristics of the inertial 
sensors being used. The residual error compensation scheme of 
the KF involves a series of complicated non-linear function 
approximations to adapt to the variations of vehicle dynamics 
or sensor errors [Chiang, 2004]. The self-growing neural 
network is the obvious choice to learn nonlinear functional 
relationships, and in particular self-growing neural network is 
more automatically than fixed neural network such as 
multilayer feed-forward neural networks (MFNN). 
 
ANNs have been motivated right from its inception by the 
recognition that the human brain functions in an entirely 
different way from the conventional digital computer. Therefore, 
the simplest form of ANN can be depicted like human nervous 
system. The receptors are used to convert input signals into 
appropriate vector that could be processed by central network. 
And the effectors are used to transfer the output vector into 
readable response. In general, the basic model of the neuron 
contains three major components: (a) weight 

links , ,,i j j kw W ; (b) an adder for summing the input 

signals iφ  that are weighted by respective synapses of the 

neuron and external bias ( kb ); and (c) an activation function 

)(•ϕ  for limiting the amplitude of the neuron output and the 

final output ky .  
 
To determine the weight values one must have a set of 
examples of how the outputs, iŷ , should relate to the input, lφ , 
the process of obtaining the weights from these examples is 
called supervised learning and it is basically a conventional 
estimation process. That is, the weights are estimated from 
existing examples in such a way that the network, according to 
some metric, models the true relationship as accurate as 
possible. This supervised learning process can be implemented 
through the use of backpropagation learning algorithm. 
 
There are several constructive models. The overall reviews of 
current constructive algorithms can be found in [Alpaydin, 
1991]. In reference, the CCN is the most famous one because of 
its ability to speed up the training process and design topology 
automatically. CCN was developed in 1990 by Scott E. 
Fahlman and Christian Lebiere [Fahlman and Lebiere, 1990]. 
The two key ideas of this implementation are: (1) a cascade 
architecture and (2) a unique learning algorithm for training and 
installing new hidden neuron. CCN begins with a minimal 
network that only consists of input layer and output layer, as 
shown in Figure (6). Then automatically trains and adds new 
layer with hidden neuron one by one. The optimal values of 
input-output synaptic weights are computed during the training 
process. Any conventional training algorithm for single layer 
network can be applied. According to [Fahlman and Lebiere, 
1990], the better choice of training algorithm is a second-order 
method, based loosely on Newton’s method, Quickprop. 
 
CCN consists of three parts: (a) starts from the simplest 
topology and pass the input vector to generate corresponding 
output vector then adjust output side weights using Quickprop 
algorithm. (b) When the goal performance can’t be achieved, 
pools of candidate neurons that have different set of random 
initial weights are applied to execute the second step while the 



 

 

output side weights are frozen. All the candidate neurons 
receive the input signals from the input layer and from all 
preexisting hidden layer. Also the same residual error for each 
training pattern feedback from the output neurons will be 
received by all candidate neurons. Then the weights between 
candidate layer, input layer, and preexisting hidden layer are 
adjusted to maximize the correlation (C) between the output of 
each candidate neurons (V) and the residual error (E) at the 
output neuron.; 
 

( )( ),C V V E Ep p o oo p
= − −∑ ∑                (1) 

 
where o is the network output at which the error ,p oE  is 

measured and p is the training pattern. The V  and oE  are the 

mean values of V and oE . The Quickprop algorithm is applied 
to adjust the incoming weights for each candidate neurons to 
maximize its own correlation(C). The derivative of correlation 
is computed by: 
 

'( ),E Ep o p o o po
δ σ ϕ= −∑                     (2) 
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C
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∂
                     (3) 

 

where oσ is the sign of the correlation between the candidate’s 

value and output o, '
pϕ  is the derivative for pattern p of the 

candidate unit’s activation function with respect to the sum of 
its inputs, and ,i pI is the input that candidate unit receives from 

unit i for pattern p. Equations (1) are used to adjust incoming 
weights until no more improvement in each candidate neuron’s 
correlation. 
The neuron with highest correlation will be inserted into 
network as a new hidden layer shown in Figure (1); (c) frozen 
the input side weights and retraining all weights connect to the 
output layers. It is worth to mention that the hidden layer are all 
connect to output layer like new input neuron. If the output 
performance still cannot meet the requirement, it goes back to 
(b) and grows another new hidden neuron. On the other hand, 
the network will stop automatically if the goal performance is 
achieved.  

 
2.3 System Architecture 
 
In conventional algorithm, the KF and RTS smoother are used 
to provide optimal navigation solutions (position, velocity, and 
attitude). The EKF applied in this study has 21 states: 

1 3 1 3 1 3 ,1 3 ,1 3 ,1 3 ,1 3[ ]Ta g a gp v A b b s sδ δ δ× × × × × × × .  

 
As shown in Figure (3), KF and RTS smoother are utilized to 
optimally estimate those 21 states and to compensate for their 
effect in real-time and post-mission modes, respectively. In fact, 
either approach can provide optimally estimated navigation 
parameters. In addition, sensor biases ( ,1 3ab ×  and ,1 3gb × ) and 

scale factors ( ,1 3aS ×  and ,1 3gS × ) can be estimated and 

feedback to the INS mechanization to correct the  raw 
measurements provided by and IMU. However, since the scope 
of the study is limited to POS parameters, including positions 
and attitude angles. That means the sensors errors are not 
included in the input signal to ANN. 
 
The errors of POS parameters estimated by KF and RTS 
smoother are used as the desired output or target values during 
the learning process of the proposed ANN architectures that 
both MFNN and CCN all are applied. The POS parameters 
estimated by KF and RTS smoother along with the time 
information in each scenario are used as the inputs of the 
proposed architectures. The goal of proposed schemes is to 
compensate for the errors of the POS states estimated by KF 
and RTS smoother during GPS outages. A superior IMU is 
applied as the reference system to generate the reference 
solutions computed by the post-mission process (e.g. RTS 
smoother) with the full availability of GPS, respectively. Then 
the target values are the errors of the KF and RTS smoother 
with intentionally added GPS outages with respect to reference 
solutions. 
 
An ANN with an optimal topology is expected to provide the 
best approximation accuracy to the unknown model using the 
most appropriate number of hidden neurons and hidden layers. 
The CCN has flexible topology as mentioned before that there 
is no need to design these two parameters. But in MFNN, there 
are many ways to decide on the most appropriate number of 
hidden neurons; see [Haykin, 1991] for details. The common 
principle indicates that the most appropriate number of hidden 
neurons is application dependent and can only be decided 
empirically during the early stages of the topology design. It is 
very common in the design phase of neural networks to train 
many different candidate networks that have different numbers 
of hidden neurons and then to select the best, in terms of its 
performance based on an independent validation set [Bishop, 
1995].  
 
The MFNN used in this study uses the topology proposed by 
Lin [2008]. The way Lin [Lin, 2008] used to decide the optimal 
number of hidden neurons required for the proposed scheme is 
the empirical approach.  

 
After being well trained, the proposed ANN compensation 
scheme was added to a loosely coupled INS/GPS integration 
architecture (closed loop) as shown in Figure (1). The 
intelligent architectures first receives raw data from an IMU and 
then use the INS mechanization along 21 states of KF and RTS 
smoother to estimate POS parameters, respectively. Meanwhile, 
the estimated POS parameters are sent to the proposed ANN 
architecture along with time information to generate predicted 
errors to compensate for the estimated POS parameters 
provided by KF and RTS smoother simultaneously. Errors of 
POS parameters are predicted with the proposed ANN scheme. 
The correction can be completed after the predicted errors have 
been removed from the outputs of KF and RTS smoother, 
respectively. It is worth mentioning that if the ANN has been 
well trained, there is almost no need to wait for the output from 
neural network. Therefore, the proposed ANN-KF hybrid 
scheme has the ability to be used in real-time. 
 



 

 

 
Figure 1: The implementation of ANN embedded KF and RTS 

smoother. 
 

3. RESULTS AND DISCUSSIONS 
 
To evaluate the performance of the proposed schemes, three 
field tests are used. The field tests are used to verify the 
performance of the proposed schemes. Those tests were 
conducted in land vehicle environments using different 
integrated systems consisting of one tactical grade IMU, Litton 
LN200 (1 deg/hr), a low cost MEMS IMU, BEI MotionPak II 
and two NovATel OEM-4 receivers. In this study, those IMUs 
were applied to collect inertial measurements in the field and 
then those measurements along with carrier phase DGPS 
solutions were fed into software that has inertial navigation 
algorithm and EKF to estimate inertial states optimally. The 
integrated system with LN200 IMU was used as the reference 
system. The measurements and navigation solutions provided 
by the integrated system with MotionPak II were used to verify 
the performance of proposed schemes.  
 

The GPS measurements were processed using 
TMGrafNav  

software (Waypoint Consulting Inc.) in carrier phase DGPS to 
achieve ten centimeter level accuracy. The reference trajectories 
were generated by the integrated system with LN 200 IMU. 
They were determined using 21 states EKF and RTS backward 
smoothing. The parameters of EKF and the smoother applied in 
this article were well tuned so that they can represent the best 
achievable navigation accuracy for tactical grade IMUs. 
 
The outputs of KF and RTS smoother provided by those 
systems were applied as the inputs for the proposed 
architectures. Several inputs dimension are considered by 
choosing some of the outputs from KF and RTS smoother. In 
addition, the outputs of KF and RTS smoother with simulated 
GPS outages were then compared with the reference trajectory. 
The errors, which can be interpreted as the error behavior of KF 
and RTS smoother, were then applied as the desired output for 
training. The dynamic variations experienced by the vehicle 
during the simulated outages include straight line segments, 
sharp turns, accelerations and decelerations. It is worth 
mentioning that five simulated outages, marked by triangles, 
were used as the independent dataset for cross validation during 
training process to ensure generalization capability as well as to 
avoid possible over-training problems. 
 

On the other hand, sixteen GPS outages in total, each of them 
has 30 seconds in length, were simulated using the 
measurements collected in the first and second field test using 
the INS/GPS integrated with the MotionPak II (MEMS), 
respectively.  
 
3.1 The Training of Proposed Schemes 
 
To show the meaning of the significant improvements, the 
proposed scheme’s ability to catch the error behavior, including 
the impacts of dynamic variations and INS sensor errors of KF 
and RTS smoother, during training should be confirmed. The 
performance of proposed schemes still needs to be verified 
using other independent data sets, which will be presented in 
the next section. As indicated in Table 1, the proposed schemes 
both learn the error behavior at the similar level in position and 
attitude. 
As shown in Table 1, the columns labeled “original” represent 
the “raw” attitude errors of the KF and RTS smoother 
comparing to the reference solutions, respectively. Similarly, 
the columns labeled “compensated” represent the “corrected” 
POS parameters of the KF and RTS smoother after applying 
proposed ANN-KF and ANN-RTS smoother schemes 
comparing to the reference solutions, respectively. As indicated 
in Table 1, the proposed ANN-KF and ANN-RTS smoother 
schemes learn the error behaviors of the KF and RTS smoother 
well during simulated GPS outages, especially in the heading 
angles and height. 
 

Table 1: Training results summary 

 
 
3.2 Performance Verification of Proposed Schemes 
 
The networks trained form trajectory three can be used to 
predict error compensation in other trajectory [Chang and Li, 
2008]. The reason for using networks generated by trajectory 
three to test other trajectories is the dynamic variations 
experienced by the vehicle during the simulated outages include 
straight line segment, sharp turn, accelerations and 
decelerations. In Figures 2, the attitude test results in 
trajectories one is successful in roll and pitch but fails in 
heading.  
 
Usually, the heading state of a vehicle is more complex than 
roll and pitch states. The failure could be caused by the 



 

 

variation of heading, the heading information in trajectory one 
and two are simpler than the heading in trajectory three. The 
above results are using four input vectors (time, roll, pitch, and 
heading) because the velocities in three directions could not 
effectively reduce the output error. The heading error in those 
trajectories is too different; the ANN could not effectively 
reduce it. However, it seems that CCN has a higher stability in 
making the networks’ output smoother and the predict solutions 
under reasonable range. In the experiments, the different 
training epoch of MFNN causes different results in other 
samples. Although adding training epoch can make the training 
output approximate the target clearly, the prediction of other 
sample may be even worse than the seldom one. This 
characteristic makes the MFNN time consuming in tuning the 
most appropriate training results. However, both of them 
eliminate system bias in roll and pitch error state. This is caused 
by the different location between reference system and test 
system. 
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Figure 2: ANN-KF attitude test results (Tj-1). 

 

0 100 200 300 400 500 600 700 800 900 1000
-2

0

2

R
ol

l e
rr

or
(d

eg
)

MPK-d1nd2f-8outages30s-RTS-Attitude-Test-4I

0 100 200 300 400 500 600 700 800 900 1000
-2

0

2

P
itc

h 
er

ro
r(

de
g)

0 100 200 300 400 500 600 700 800 900 1000
-50

0

50

H
ea

di
ng

 e
rr

or
(d

eg
)

GPS time(sec)

RTS+MFNN

RTS+CCN
RTS

 
Figure 3: ANN-RTS attitude test results (Tj-1) 

 
The networks trained from trajectory three are used to predict 
positional error in other trajectory. However, it may easily fail 
because numbers of outages are not enough. Here the training 
samples in trajectory three were added to twenty in order to 
increase the successful opportunity. The training improvements 
are about 85%, 90% and 93% in average in CCN-KF and 90%, 
91% and 90% in average in MFNN-KF. They all learned the 20 

GPS blockages well in training process. In Figures (2) to (3), 
each line is composed of eight line segments. Each line segment 
(about 29 points) represents one GPS outages. When there is no 
GPS blockages, the position error are close to zero due to GPS 
provide excellent position solutions. The method that cuts off 
GPS outages information to training sample is only being used 
to predict error in other trajectory. This way can make sure that 
the networks output will not affect the solutions under no GPS 
blockages. 
 

Table 2: Testing results summary 
 

 
 
Table 2 illustrates the improvements produced by the proposed 
ANN-RTS smoother scheme. The proposed ANN-RTS 
smoother scheme improve all the errors of roll angles, pitch 
angles and heading angles estimated by the KF by 80%, 
75% ,and 14% in average, respectively. In addition, all of the 
improvements in positional POS parameters reach 76% in 
average comparing to the KF.  On the other hand, the proposed 
ANN-RTS smoother scheme improve all the errors of roll 
angles and pitch angles estimated by the RTS smoother by 79% 
and 77% in average, respectively. In addition, all of the 
improvements in positional POS parameters reach 5% in 
average comparing to the RTS smoother. 
 
The proposed ANN-RTS smoother scheme improves all the 
errors of POS parameters estimated by the KF and RTS 
smoother significantly for the MEMS systems. Among those 
POS parameters compensated by proposed ANN-RTS smoother 
scheme, the improvement for the orientation parameters is more 
significant than positional parameters. Consequently, for the 
low cost MEMS system with proposed ANN-RTS smoother 
compensation, the POS parameters estimated by RTS smoother 
can be improved to the level of using a medium tactical grade 
system. 
 

4. CONCLUSIONS 



 

 

 
This study developed an ANN embedded POS algorithm to 
reach higher estimation accuracy of POS parameters using a 
novel procedure that combines a SGN architecture and RTS 
smoother for post-mission processing. The ANN architectures 
were first trained to learn the error behavior of the KF and RTS 
smoother using one of the field data sets collected with a 
tactical grade INS/GPS integrated system. Then, the well-
trained to schemes were verified using the rest of the test data 
sets. The preliminarily results that indicate the proposed ANN-
KF compensation scheme is able to improve the accuracies of 
positional components as well as orientation components. In 
addition, using SGN has the advantage of higher stability than 
using MFNN. MFNN usually generate large undesirable output 
because of different level from other data sets. Although the 
improvements in heading errors are not all positive, the SGN 
has less wrongful prediction than MFNN.  
 
In this study, the SGN performances reach the same goal of 
applying MFNN in compensating POS parameters. It starts 
from minimum topology and learning knowledge in the new 
neurons one by one. It has the advantage of less try and error, 
stability output, higher nonlinear characteristic and quicker 
learning process. The variation in input vectors can make 
MFNN generated different performance. In preliminary 
experiments, MFNN have worse performance when the input 
vectors are complex (more than four dimensions). But in CCN, 
more input vectors can be applied to teach the SGN to be 
smarter and make the right prediction about errors in position. It 
also learns quicker than MFNN-RTS and required less pre-
required knowledge in training process. The growing process of 
learning new knowledge is also carry out in this study. The 
preliminary results verity the SGN has less moving target 
problems than MFNN. 
 
This study improves the accuracy of POS parameters through 
evolving the POS algorithms instead of taking the direct route 
by using a tactical grade IMU or higher. Of course the 
replacement of a low cost MENS IMU with a tactical grade 
IMU or higher can enhance the performance of POS directly, 
however, the availability of tactical grade IMUs or higher is 
limited in terms of cost or government regulation. For low cost 
MEMS based integrated systems with the proposed CCN-RTS 
smoother scheme, the accuracies of the POS parameters 
estimated can be improved to the level of medium tactical grade 
system. Therefore, future inclination of low cost MENS based 
integrated systems for land based MMS applications can be 
anticipated with sufficient accuracies of POS parameters 
required for direct geo-referencing procedure and with reduced 
costs for the hardware used. 
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