
PRINCIPLES OF NEURAL SPATIAL INTERACTION MODELLING

Manfred M. Fischer
Vienna University of Economics and Business

manfred.fischer@wu.ac.at

Keywords: Spatial interaction, neural networks, non-linear function approximation, model performance, network learning
JEL Classification: C31, C45, R19

ABSTRACT:

The focus of this paper is on the neural network approach to modelling origin-destination flows across geographic space. The
novelty about neural spatial interaction models lies in their ability to model non-linear processes between spatial flows and their
determinants, with few – if any – a priori assumptions of the data generating process. The paper draws attention to models based on
the theory of feedforward networks with a single hidden layer, and discusses some important issues that are central for successful
application development. The scope is limited to feedforward neural spatial interaction models that have gained increasing attention
in recent years. It is argued that failures in applications can usually be attributed to inadequate learning and/or inadequate complexity
of the network model. Parameter estimation and a suitably chosen number of hidden units are, thus, of crucial importance for the
success of real world applications. The paper views network learning as an optimization problem, describes various learning
procedures, provides insights into current best practice to optimize complexity and suggests the use of the bootstrap pairs approach
to evaluate the model’s generalization performance.

1. INTRODUCTION

The development of spatial interaction models is one of the
major intellectual achievements and, at the same time, perhaps
the most useful contribution of spatial analysis to social science
literature. Since the pioneering work of Wilson (1970) on
entropy maximization, there have been surprisingly few
innovations in the design of spatial interaction models.
Fotheringham’s (1983) competing destinations version,
Griffith’s eigenvector spatial filter versions1 (see Griffith 2003;
Fischer and Griffith 2008), the spatial econometric interaction
models2 (see LeSage and Pace 2009; LeSage and Fischer
2010), and neural network based (briefly neural) spatial
interaction models (see Fischer and Gopal 1994; Fischer 2002)
are the principal exceptions.

The focus in this paper is on neural networks as efficient non-
linear tools for modelling interactions across geographic space.
The term “neural network” has its origins in attempts to find
mathematical representations of information processing in the
study of natural neural systems (McCulloch and Pitts 1943;
Rosenblatt 1962). Indeed, the term has been used very broadly

1 Eigenvector spatial filtering (see Griffith 2003) enables
spatial autocorrelation effects to be captured, and shifts
attention to spatial autocorrelation arising from missing
origin and destination factors reflected in flows between
pairs of locations.

2 Note that spatial econometric interaction models are – in

general – formally equivalent to regression models with
spatially autocorrelated errors, but differ in terms of the data
analysed and the manner in which the spatial weights matrix
is defined.

to include a wide range of different model structures, many of
which have been the subject of exaggerated claims to mimic
neurobiological reality3. As rich as neural networks are, they
still ignore a host of biologically relevant features. From the
perspective of applications in spatial interaction modelling,
however, neurobiological realism is not necessary. In contrast,
it would impose entirely unnecessary constraints.

From the statistician’s point of view neural network models are
analogous to non-parametric, non-linear regression models. The
novelty about neural spatial interaction models lies in their
ability to model non-linear processes with few – if any – a
priori assumptions about the nature of the data generating
process. We limit ourselves to models known as feedforward
neural models4. Spatial interaction models of this kind can be
viewed as a general framework for non-linear function
approximation where the form of the mapping is governed by a
number of adjustable parameters. The network inputs are
origin, destination and separation variables, and the network
weights the model parameters.

3 Neural networks can model cortical local learning and signal

processing, but they are not the brain, neither are many
special purpose systems to which they contribute (Weng and
Hwang 2006).

4 Feedforward neural networks are sometimes also called

multilayer perceptrons even though the term perceptron is
usually used to refer to a network with linear threshold gates
rather than with continuous non-linearities. Radial basis
function networks, recurrent networks rooted in statistical
physics, self-organizing systems and ART [Adaptive
Resonance Theory] models are other important classes of
neural networks. For a fuzzy ARTMAP multispectral
classifier see, for example, Gopal and Fischer (1997).

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. 38, Part II

4

mailto:manfred.fischer@wu.ac.at

The paper is organized as follows. The next section continues to
provide the context in which neural spatial interaction
modelling is considered. Neural spatial interaction models that
have a single hidden layer architecture with K input nodes
(typically, K=3) and a single output node are described in some
detail in Section 3. They represent a rich and flexible class of
universal approximators. Section 4 proceeds to view the
problem of determining the network parameters within a
framework that involves the solution of a non-linear
optimization problem with an objective function that recognizes
the integer nature of the origin-destination flows. The section
that follows reviews some of the most important training
(learning) procedures and modes that utilize gradient
information for solving the problem. This requires the
evaluation of derivatives of the objective function – known as
error or loss function in the machine-learning literature5 – with
respect to the network parameters.

Section 6 addresses the issue of network complexity and briefly
discusses some techniques to determine the number of hidden
units. This problem is shown to essentially consist of
optimizing the complexity of the neural spatial interaction
model (complexity in terms of free parameters) in order to
achieve the best generalization performance. Section 7 then
moves attention to the issue of how to appropriately test the
generalization performance of the estimated neural spatial
interaction model. Some conclusions and an outlook for the
future are given in the final section.

2. CONTEXT

Spatial interaction models of the gravity type represent a class
of models used to explain origin-destination flows across
geographic space. Examples include migration, journey-to-
work and shopping flows, trade and commodity flows,
information and knowledge flows. Origin and destination
locations of interaction represent points or areas (regions) in
geographic space. Such models typically recognize three types
of factors to explain mean interaction frequencies between
origin and destination locations: (i) origin-destination variables
that characterize the way spatial separation of origins from
destinations constrains or impedes the interaction, (ii) origin-
specific variables that characterize the ability of the origins to
produce or generate flows, and (iii) destination-specific
variables that represent the attractiveness of destinations.

Suppose we have a spatial system consisting of n regions,
where i denotes the origin region (1 and j the
destination region . Let

, ...,)i =
(,)m i j (,i j

n
(1, ...,)j n= 1, ...,)n=

denote observations on random variables, say (,)M i j , each of
which corresponds to flows of people, commodities, capital,
information or knowledge from region i to region j. The

(,)M i j are assumed to be independent random variables.
They are sampled from a specified probability distribution that

5 We will use the terms error function, loss function and cost

function interchangeably in this paper.

is dependent upon some mean, say (,)i jμ . Let us assume that
no a priori information is given about the row and column totals
of the observed flow matrix . Then the mean
interaction frequencies between origin i and destination j may
be modelled by

[(,)]m i j

 (1) (,) () () (, 1, ...,i j C A i B j F i j i j nα βμ = =) ,

where (,) [(,)]i j E M i jμ = is the expected flow, C denotes a
constant term, the quantities ()A i and are called origin
and destination variables, respectively.

(B j)
α d an β indicate their

relative importance, and (,)F i j represents a distance
deterrence function that constitutes the very core of spatial
interaction models. Hence, a number of alternative
specifications of ()F ⋅ have been proposed in the literature
(see, for example, Sen and Smith 1995, pp. 92-99). But the
negative exponential function is the most popular choice (with
theoretical relevance from a behavioural viewpoint):

(,) exp[(,)] , 1, ...,F i j d i j ni jθ= − = (2)

where θ denotes the so-called distance sensitivity parameter
that has to be estimated.

Inserting Eq. (2) into Eq. (1) yields the well known class of
exponential spatial interaction models that can be expressed
equivalently as a log-additive model of the form

(,) () () (,)Y i j a i b j i j(,)d i jκ α β θ ε= + + ++ (3)

where (,) log[(,)]Y i j i jμ≡ , , logC≡κ () log[()]a i A i≡
and () log[()]b j B j≡ . Of note is that the back transformation
of this log-linear specification results in an error structure of the
exponential spatial interaction model being multiplicative. The
parameters κ , α , β and θ have to be estimated if future
flows are to be predicted.

There are equations of the form (3). Using matrix notation
we may write these equations more compactly as

2n

Y X θ ε= + (4)

where Y denotes the vector of observations on the
interaction variable, with

-by-1N
N 2n= (see Table 1 for the data

organization convention). X is the N-by-4 matrix of
observations on the explanatory variables including the origin,
destination, separation variables, and the intercept. θ is the
associated 4-by-1 parameter vector, and the N-by-1 vector

 denotes the vectorized form of [(1,1), ..., [,n nε ε ε=
[(,)]i j

)]T

ε .

If the spatial interaction model given by Eq. (4) is correctly
specified, then provided that the regressor variables are not
perfectly collinear, θ is estimable under the assumption that
the error terms are iid with zero mean and constant variance,
and the OLS estimator is the best linear unbiased estimator. A
violation of these assumptions may lead to spatial
autocorrelation.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. 38, Part II

5

It is noteworthy that the above spatial interaction model can not
guarantee that the predicted flows when summed by rows or
columns of the spatial interaction data matrix will necessarily
have the property to match observed totals leaving the origins i

 or terminating at the destinations j (1, ...,)i = n n(1, ...,)j =
in the given spatial interaction system. If the outflow totals for
each origin zone and/or the inflow totals into each destination
zone are a priori known, then the log-linear model given by Eq.
(4) would need to be modified to incorporate the explicitly
required constraints to match exact totals. Imposing origin
and/or destination constraints leads to so-called production-
constrained, attraction-constrained and production-attraction-
constrained spatial interaction models that may be convincingly
justified using entropy maximizing methods (see Wilson 1967).

Dyad
Label

IDorigin IDdestination Flow Origin
Variable

Destination
Variable

Separation
(Origin,

Destination)

1 1 1 Y(1, 1) a(1) b(1) d(1, 1)
2 2 1 Y(2, 1) a(2) b(1) d(2, 1)

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

n n 1 Y(n, 1) a(n) b(1) d(n, 1)
n+1 1 2 Y(1, 2) a(1) b(2) d(1, 2)
n+2 2 2 Y(2, 2) a(2) b(2) d(2, 2)
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

2n n 2 Y(n, 2) a(n) b(2) d(n, 2)

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

(n-1)n 1 n Y(1, n) a(1) b(n) d(1, n)
(n-1)n+1 2 n Y(2, n) a(2) b(n) d(2, n)

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

n2 n n Y(n, n) a(n) b(n) d(n, n)

Table 1. Data organization convention

Moreover, note that this widely used log-normal specification
of the spatial interaction model has several shortcomings6.
Most importantly, it suffers from least-squares and normality
assumptions that ignore the true integer nature of the flows and
approximate a discrete-valued process by an almost certainly
misrepresentative continuous distribution.

3. FEEDFORWARD NEURAL SPATIAL
INTERACTION MODELS

Neural spatial interaction models represent the most recent
innovation in the design of spatial interaction models. For
concreteness and simplicity, we consider neural spatial
interaction models based on the theory of single hidden layer
feedforward networks. Single hidden layer feedforward neural
networks consist of nodes (also known as processing units or
simply units) that are organized in layers. Figure 1 shows a

6 Flowerdew and Aitkin (1982), for example, question the

appropriateness of this model specification, and suggest
instead that the observed flows follow a Poisson distribution,
leading to models termed Poisson spatial interaction models.

schematic diagram of a typical feedforward neural spatial
interaction model containing a single intermediate layer of
processing units separating input from output units.
Intermediate layers of this sort are called hidden layers to
distinguish them from the input and output layers. In this
network there are three input nodes representing the origin,
destination and separation variables (denoted by 1 2 3, ,x x x); H
hidden units (say 1, ..., Hz z) representing hidden summation
units (denoted by the symbol); and one (summation)
output node representing origin-destination flows. Weight
parameters are represented by links between the nodes. Observe
the feedforward structure where the inputs are connected only
to units in the hidden layer, and the outputs of this layer are
connected only to the output layer that consists of only one
unit.

ΣΣ

Any network diagram can be converted into its corresponding
mapping function, provided that the diagram is feedforward as
in Fig. 1 so that it does not contain closed directed cycles7. This
guarantees that the network output can be described by a series
of functional transformations as follows. First, we form a linear
combination8 of the K input variables 1, ..., Kx x (typically
K=3) to get the input, say , that hidden unit h receives hnet

(1) (1)

1

K

h hk k
k

net w x w
=

= +∑ ho

H

 (5)

for 1,..., .h = The superscript (1) indicates that the
corresponding parameters are in the first parameter layer of the
network. The parameters represent connection weights
going from input k

(1)
hkw

(1k ,...,)K= to hidden unit h
(1,...,),h H= and is a bias(1)

how 9.

These quantities, , are known as activations in the field of
neural networks. Each of them is then transformed using a non-
linear transfer or activation function

hnet

10 ϕ to give the output

7 Networks with closed directed cycles are called recurrent

networks. There are three types of such networks: first,
networks in which the input layer is fed back into the input
layer itself; second, networks in which the hidden layer is
fed back into the input layer, and third, networks in which
the output layer is fed back into the input layer. These
feedback networks are useful when input variables represent
time series.

8 Note, we could alternatively use product rather than

summation hidden units to supplement the inputs to a neural
network with higher-order combinations of the inputs to
increase the capacity of the network in an information
capacity sense. These networks are called product unit rather
than summation unit networks (see Fischer and Reismann
2002b).

9 This term should not be confused with the term bias in a

statistical sense.

10 The inverse of this function is called link function in the

statistical literature. Note that radial basis function networks
may be viewed as single hidden layer networks that use
radial basis function nodes in the hidden layer. This class of

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. 38, Part II

6

()h hz netϕ= (6)

for These quantities are again linearly combined
to generate the input, called , that the output unit receives

1,..., .h = H
net

(2) (2)

1

H

h h o
h

net w z w
=

= +∑ . (7)

The superscript indicates that the corresponding parameters
are in the second parameter layer of the network. The
parameters represent the connection weights from hidden
units h to the output unit, and is a bias
parameter. Finally, is transformed to produce the output

(2)

)

...,

(2
hw
1,h =()H

net
)

(2)
ow

(netψ , where ψ denotes an activation function of the output
unit.

Information processing in such networks is, thus,
straightforward. The input units just provide a ‘fan-out’ and
distribute the input to the hidden units. These units sum their
inputs, add a constant (the bias) and take a fixed transfer
function hϕ of the result. The output unit is of the same form,
but with output activation function ψ . Network output can
then be expressed in terms of an output function

 (8) (2) (1) (1) (2)
0 0

1 1
(,)

H K

H h h hk k k
h k

x w w w x w wφ ψ ϕ
= =

⎡ ⎤⎛ ⎞= +⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

∑ ∑ +

where the expression (,)H x wφ is a convenient short-hand
notation for the model output since this depends only on inputs
and weights. Vector 1(, ...,)Kx x= x is the input vector and w
represents the vector of all the weights and bias terms. ()ϕ ⋅ is
a non-linear [generally sigmoid] hidden layer activation
function and ()ψ ⋅ an output unit [often quasi-linear] activation
function, both continuously differentiable of order two on � .
The function φ is explicitly indexed by the number of hidden
units, H, in order to indicate the dependence, but will be
dropped for convenience.

Note that the bias terms and in Eq. (8) can be
absorbed

(1)
0kw (2)

0w
11 into the set of weight parameters by defining

additional input and hidden unit variables, 0 and ,0x z
0d 1.z =

 whose
values are clamped at one so that Then the
network function given by Eq. (8) becomes

0 1 anx =

(2) (1)

0 0

H K

H h h hk
h k

w w xφ ψ ϕ
= =

⎡ ⎤⎛ ⎞= ⎢ ⎜
⎝ ⎠⎣ ⎦

∑ ∑ k ⎥⎟

. (9)

model as defined by E

neural networks asks for a two stage approach for training.
In the first stage the parameters of the basis functions are
determined, while in the second stage the basis functions are
kept fixed and the second layer weights are found (see
Bishop 1995, 170 pp.).

11 This is the same idea as incorporating the constant term in

the design matrix of a regression by inserting a column of
ones.

The main power of neural spatial interaction models accrues
from their capability for universal function approximation.
Cybenko (1989); Funahashi (1989); Hornik, Stinchcombe and
White (1989) and many others have shown that single hidden
layer neural networks such as those given by Eq. (9) can
approximate arbitrarily well any continuous function.

Σ Σ

Σ

x1 x3x2

. . .

O
rig

in
va

ria
bl

e

D
es

tin
at

io
n

va
ria

bl
e

Se
pa

ra
tio

n
va

ria
bl

e

Origin-destination flows

The output layer
(one unit)

The hidden layer
(H units)

The input array
(three units)

Σ Σ

Σ

x1 x3x2

. . .

O
rig

in
va

ria
bl

e

D
es

tin
at

io
n

va
ria

bl
e

Se
pa

ra
tio

n
va

ria
bl

e

Origin-destination flows

The output layer
(one unit)

The hidden layer
(H units)

The input array
(three units)

Figure 1. Network diagram of the neural spatial interaction
q. (8), for K=3 (bias units deleted)

Neural spatial interaction modelling involves three major stages
(Fischer and Gopal 1994):

• The first stage consists of the identification of a model

candidate from the general class of neural spatial interac-
tion models of type (9). This involves both the specifica-
tion of appropriate transfer functions ψ and ϕ, and the
number, H, of hidden units.

• The second stage involves solving the network training

[network learning, parameter estimation] problem, and
hence determines the optimal set of model parameters
where optimality is defined in terms of an error [loss, per-
formance] function.

• The third stage is concerned with testing and evaluating

the out-of-sample [generalization] performance of the
chosen model.

Both the theoretical and practical side of the model selection
problem have been intensively studied (see Fischer 2001, 2000
among others). The standard approach for finding a good neural
spatial interaction model is to split the available set of samples
into three subsets: training, validation and test sets. The training
set is used for parameter estimation. In order to avoid
overfitting, a common procedure is to use a network model with
sufficiently large H for the task at hand, to monitor – during
training – the out-of-sample performance on a separate
validation set, and finally to choose the model that corresponds
to the minimum on the validation set, and employ it for future
purposes such as the evaluation on the test set.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. 38, Part II

7

4. A RATIONALE FOR THE ESTIMATION

APPROACH

If we view a neural spatial interaction model as generating a
family of approximations (as w ranges over W, say) to an
unknown spatial interaction function, then we need a way to
pick a best approximation from this family. This is the function
of network learning or network training which might be viewed
as an optimization problem12.

We develop a rationale for an appropriate objective (loss or
cost) function for this task. Following Rumelhart et al. (1995)
we propose that the goal is to find that model which is the most
likely explanation of the observed data set, say D. We can
express this as attempting to maximize the term

() () ()
()

| () ()
() |

P D w P w
P w D

P D
φ φ

φ = (10)

where φ represents the neural spatial interaction model (with

 denoting the vector of weights) in question. w ()| ()P D wφ
is the probability that the model would have produced the
observed data D. Since sums are easier to work with than
products, we will maximize the log of this probability, and
since the log is a strictly monotonic transformation, maximizing
the log is equivalent to maximizing the probability itself. In this
case we have

()()
()() ()() ()

log |

log | log log .

P w D

P D w P w P D

φ

φ φ

=

+ −
 (11)

The probability of the data, , is not dependent on the
model. Thus, it is sufficient to maximize

()P D

()()()()log | logP D w Pφ + wφ . The first of these terms
represents the probability of the data given the model, and
hence measures how well the neural network model accounts
for the data. The second term is a representation of the model
itself; that is, it is a priori probability, that can be utilized to get
information and constraints into the learning procedure.

We focus solely on the first term, the performance, and begin
by noting that the data can be broken down into a set of
observations, , each u we
will assume to be chosen independently of the others. Hence we
can write the probability of the data given the model as

(){ }, : 1,...,u u uD q x y u U= = = q

12 This directs attention to the literature on numerical

optimization theory, with particular reference to
optimization techniques that use higher-order information
such as conjugate gradient procedures and Newton’s
method. The methods use the gradient vector (first-order
partial derivatives) and/or the Hessian matrix (second-order
partial derivatives) of the loss function to perform
optimization, but in different ways. A survey of first-order
and second-order optimization techniques applied to
network training can be found in Cichocki and Unbehauen
(1993).

()()
()() ()(

log |

log | log | .u u
uu

P D w

P q w P q w

φ

φ

=

= ∑∏)φ
 (12)

Note that this assumption permits to express the probability of
the data given the model as the sum of terms, each term
representing the probability of a single observation given the
model. We can still take another step and break the data into
two parts: the observed input data ux and the observed target
data . Therefore we can write uy

()()
()() ()

log

log and log .u u uu
u u

P D w

P y x w P x

φ

 φ

=

+∑ ∑
 (13)

Since we assume that ux does not depend on the model, the
second term of the right hand side of the equation will not
affect the determination of the optimal model. Thus, we need
only to maximize the term ()()log | andu u uu

P y x wφ∑ .

Up to now we have – in effect – made only the assumption of
the independence of the observed data. In order to proceed, we
need to make some more specific assumptions, especially about
the relationship between the observed input data ux and the
observed target dat uy , a probabilistic assumption. We
assume that the relationship etween u

a
b x and uy is not

deterministic, but that for any given ux there is a distribution
of possible values of uy . But the model is deterministic, so
rather than attempting to predict the actual outcome we only
attempt to predict the expecte value o uy given ud f x .
Therefore, the model output is to be interpreted as the mean
bilateral interaction frequencies (that is, those from the location
of origin to the location of destination). This is, of course, the
standard assumption.

To proceed further, we have to specify the form of the
distribution of which the model output is the mean. Of
particular interest to us is the assumption that the observed data
is the realization of a sequence of independent Poisson random
variables. Under this assumption we can write the probability of
the data given the model as

()() () ()()exp
and

!

uy

u
u u u

u u

w w
P y x w

y
φ φ

φ
−

= ∏ u (14)

and, hence, define a maximum likelihood estimator as a
parameter vector which maximizes the log-likelihood L ŵ

()

[]

max , ,

max log () () log(!) .
w W

u u u uuw W

L x y w

y w w yφ φ
∈

∈

=

− −∑
 (15)

Instead of maximizing the log-likelihood it is more convenient
to view learning as solving the minimization problem

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. 38, Part II

8

() (min , , min , ,
w W w W

)x y w L x y wλ
∈ ∈

= −⎡⎣ ⎤⎦ (16)

where the loss (cost) function λ is the negative log-likelihood
L. λ is continuously differentiable on the Q-dimensional real
parameter space () which is a finite
dimensional closed bounded domain and, thus, compact.

1Q H H +K= +

5. LEARNING MODES AND PROCEDURES

It can be shown that assumes its weight minimum under
certain conditions, but characteristically there exist many
minima in real world applications all of which satisfy

()wλ

() 0wλ∇ = (17)

where ∇λ denotes the gradient of λ. The minimum for which
the value of λ is smallest is termed the global minimum and
other minima are called local minima.

There are many ways to solve the minimization problem (16).
Closed-form optimization via the calculus of scalar fields rarely
admits a direct solution. A relatively new set of interesting
techniques that use optimality conditions from calculus are
based on evolutionary computation (Goldberg 1989; Fogel
1995). But gradient procedures which use the first partial
derivatives (),wλ∇ so-called first order strategies, are most
widely used. Gradient search for solutions gleans its
information about derivatives from a sequence of function
values. The recursion scheme is based on the formula13

(1) () () ()w w dτ τ η τ τ+ = + (18)

where τ denotes the iteration step. Different procedures differ
from each other with regard to the choice of step length ()η τ
and search direction ()d τ , the former being a scalar called
learning rate and the latter a vector of unit length.

The simplest approach to using gradient information is to
assume ()η τ being constant and to choose the parameter
update in Eq. (18) to comprise a small step in the direction of
the negative gradient so that

() (())d wτ λ τ= −∇ . (19)

After each such update, the gradient is re-evaluated for the new
parameter vector .(1)w τ +

.

 Note that the loss function is
defined with respect to a training set of size U1, say 1 to be
processed to evaluate

,UD
λ∇ One complete presentation of the

entire training set during the training process is called an epoch.
The training process is maintained on an epoch-by-epoch basis
until the connection weights and bias terms of the network

w

13 When using an iterative optimization algorithm, some choice
has to be made of when to stop the training process. There
are various criteria that might be used. For example, learning
may be stopped when the loss function or the relative
change in the loss function falls below a prespecified value.

stabilize and the average error over the entire training set
converges to some minimum.

Gradient descent optimization may proceed in one of two ways:
pattern mode and batch mode. In the pattern mode weight
updating is performed after the presentation of each training
example. Note that the loss functions based on maximum
likelihood for a set of independent observations comprise a sum
of terms, one for each data point. Thus

1
1 1

() ()u
u U

wλ λ
∈

= ∑ (20)

where 1uλ is called the local error (loss) while λ the global
error (loss), and pattern based gradient descent makes an
update to the parameter vector based on one training example at
a time so that

1(1) () (())uw w w .τ τ η λ τ+ = − ∇ (21)

Rumelhart et al. (1986) have shown that pattern based gradient
descent minimizes Eq. (16), if the learning parameter η is
sufficiently small. The smaller η , the smaller will be the
changes to the weights in the network from one iteration to the
next and the smoother will be the trajectory in the parameter
space. This improvement, however, is attained at the cost of a
slower rate of training. If we make the learning rate parameter
η too large so as to speed up the rate of training, the resulting
large changes in the parameter weights assume such a form that
the network may become unstable.

In the batch mode of learning, parameter updating is performed
after the presentation of all the training examples that constitute
an epoch. From an online operational point of view, the pattern
mode of training is preferred over the batch mode, because it
requires less local storage for each weight connection.
Moreover, given that the training patterns are presented to the
network in a random manner, the use of pattern-by pattern
updating of parameters makes the search in parameter space
stochastic in nature which in turn makes it less likely to be
trapped in a local minimum. On the other hand, the use of batch
mode of training provides a more accurate estimation of the
gradient vector .λ∇ Finally, the relative effectiveness of the
two training modes depends on the problem to be solved
(Haykin 1994, 152 pp.)

For batch optimization there are more efficient procedures, such
as conjugate gradient and quasi-Newton methods, that are much
more robust and much faster than gradient descent (Nocedal
and Wright 1999). Unlike steepest gradient, these algorithms
have the characteristic that the error function always decreases
at each iteration unless the parameter vector has arrived at a
local or global minimum. Conjugate gradient methods achieve
this by incorporating an intricate relationship between the
direction and gradient vectors. The initial direction vector

 is set equal to the negative gradient vector at the initial
step

(0)d
0.τ = Each successive direction vector is then computed

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. 38, Part II

9

as a linear combination of the current gradient vector and the
previous direction vector. Thus,

(1) ((1)) () ()d w dτ λ τ γ τ τ+ = −∇ + + (22)

where ()γ τ is a time varying parameter. There are various
rules for determining ()γ τ in terms of the gradient vectors at
time τ and 1τ + , leading to the Fletcher-Reeves and Polak-
Ribière variants of conjugate gradient algorithms (see Press et
al. 1992). The computation of the learning rate parameter ()η τ
in the update formula given by Eq. (18) involves a line search,
the purpose of which is to find a particular value of η for
which the loss function (() ())w dλ τ η τ+ is minimized, given
fixed values of (w)τ and ().d τ

The application of Newton’s method to the training of neural
networks is hindered by the requirement of having to calculate
the Hessian matrix and its inverse, which can be
computationally expensive for larger network models14. The
problem is further complicated by the fact that the Hessian
matrix has to be non-singular for its inverse to be computed.
Quasi-Newton methods avoid this problem by building up an
approximation to the inverse Hessian over a number of iteration
steps. The most commonly variants are the Davidson-Fletcher-
Powell and the Broyden-Fletcher-Goldfarb-Shanno procedures
(see Press et al. 1992).

Quasi-Newton procedures are today the most efficient and
sophisticated (batch) optimization algorithms. But they require
the evaluation and storage in memory of a dense matrix at each
iteration step .τ For larger problems (more than 1,000 weights)
the storage of the approximate Hessian can be too demanding.
In contrast, the conjugate gradient procedures require much less
storage, but an exact determination of the learning rate ()η τ
and the parameter ()γ τ in each iteration ,τ and, thus,
approximately twice as many gradient evaluations as the quasi-
Newton methods.

When the surface modelled by the loss function in its parameter
space is extremely rugged and has many local minima, then a
local search from a random starting point tends to converge to a
local minimum close to the initial point. In order to seek out
good local minima, a good training procedure must thus include
both a gradient based optimization algorithm and a technique
like random start that enables sampling of the space of minima.
Alternatively, stochastic global search procedures might be
used. Examples of such procedures include Alopex (see
Fischer, Reismann and Hlavácková-Schindler 2003), genetic
algorithms (see Fischer and Leung 1998), and simulated
annealing. These procedures guarantee convergence to a global
solution with a higher probability, but at the expense of slower
convergence.

Finally, it is worth noting that the technique of error
backpropagation provides a computationally efficient technique
to calculate the gradient vector of a loss function for a

14 Note that computational time rises with the square of Q, the
dimension of the parameter space.

feedforward neural network with respect to the parameters. This
technique – sometimes simply termed backprop – uses a local
message passing scheme in which information is sent
alternately forwards and backwards through the network. Its
modern form stems from Rumelhart, Hinton and Williams
(1986), illustrated for gradient descent optimization applied to
the sum-of-squares error function. It is important to recognize,
however, that error backpropagation can also be applied to our
loss function and to a wide variety of optimization schemes for
weight adjustment other than gradient descent, both in pattern
or batch mode.

6. NETWORK COMPLEXITY

So far we have considered neural spatial interaction models of
type (9) with a priori given numbers of input, hidden and
output units. While the number of input and output units is
basically problem dependent, the number H of hidden units is a
free parameter that can be adjusted to provide the best testing
performance on independent data, called testing set. But the
testing error is not a simple function of H due to the presence of
local minima in the loss function. The issue of finding a
parsimonious model for a real world problem is critical for all
models but particularly important for neural networks because
the problem of overfitting is more likely to occur.

A neural spatial interaction model that is too simple (i.e. small
H), or too inflexible, will have a large bias and smooth out
some of the underlying structure in the data (corresponding to
high bias), while one that has too much flexibility in relation to
the particular data set will overfit the data and have a large
variance. In either case, the performance of the network model
on new data (i.e. generalization performance) will be poor. This
highlights the need to optimize the complexity in the model
selection process in order to achieve the best generalization
(Bishop 1995, p. 332; Fischer 2000). There are some ways to
control the complexity of a neural network model, complexity
in terms of the number of hidden units or, more precisely, in
terms of the independently adjusted parameters. Practice in
neural spatial interaction modelling generally adopts a trial and
error approach that trains a sequence of neural networks with an
increasing number of hidden units and then selects that one
which gives the best predictive performance on a testing set15.

There are, however, other more principled ways to control the
complexity of a neural network model in order to avoid
overfitting16. One approach is that of regularization, which
involves adding a regularization term to the loss ()R w

15 Note that limited data sets make the determination of H

more difficult if there is not enough data available to hold
out a sufficiently large independent test sample.

16 A neural network is said to be overfitted to the data if it

obtains an excellent fit to the training data, but gives a poor
representation of the unknown function which the neural
network is approximating.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. 38, Part II

10

function in order to control overfitting, so that the total error
function to be minimized takes the form

() () ()w w Rλ λ μ= +%
p pp w (23)

where μ is a positive real number, the so-called regularization
parameter, that controls the relative importance of the data
dependent error ()wλpp , and the regularization term,
sometimes also called complexity term. This term embodies the
a priori knowledge about the solution, and therefore depends
on the nature of the particular problem to be solved. Note that

 is called the regularized error or loss function.

()R w

(wλ%p)

One of the simplest forms of a regularizer is defined as the
squared Euclidean norm of the parameter vector w in the
network, as given by

2() .R w w= (24)

This regularizer17 is known as weight decay function that
penalizes larger weights. Hinton (1987) has found empirically
that a regularizer of this form can lead to significant
improvements in network generalization.

Sometimes, a more general regularizer is used, for which the
regularized error or loss takes the form

() mw wλ μ+ (25)

where m=2 corresponds to the quadratic regularizer given by
Eq. (24). The case m=1 is known as the ‘lasso’ in the statistics
literature (Tibshirani 1996). The regularizer given by Eq. (25)
has the property that – if μ is sufficiently large – some of the
parameter weights are driven to zero in sequential learning
algorithms, leading to a sparse model. As μ is increased, so an
increasing number of parameters are driven to zero.

One of the limitations of this regularizer is inconsistency with
certain scaling characteristics of network mappings. If one
trains a network using original data and one network using data
for which the input and/or target variables are linearly
transformed, then consistency requires that the regularizer
should be invariant to re-scaling of the weights and to shifts of
the biases (Bishop 2006, p. 258). A regularized loss function
that satisfies this property is given by

1 1 2 2()
m

qw w wλ μ μ+ +
m

q (26)

where 1 2,μ μ

(1)
1., ,...,hw w

(2),..., ,.w w

 and m are regularization parameters. 1
denotes the set of the weights in the first parameter layer, that is

 and those in the second layer, that
is

qw

(1) (1)
11 ,.. ,Hw

(2) (2)
1 ..,h H

K
.w

2qw

17 In conventional curve fitting, the use of this regularizer is

termed ridge regression.

The more sophisticated control of complexity that
regularization offers over adjusting the number of hidden units
by trial and error is evident. Regularization allows complex
neural network models to be trained on data sets of limited size
without severe overfitting, by limiting the effective network
complexity. The problem of determining the appropriate
number of hidden units is, thus, shifted to one of determining a
suitable value for the regularization parameter(s) during the
training process.

The principal alternative to regularization as a way to optimize
the model complexity for a given training data set is the
procedure of early stopping. As we have seen in the previous
sections, training of a non-linear network model corresponds to
an iterative reduction of the loss (error) function defined with
respect to a given training data set. For many of the
optimization procedures used for network training (such as
conjugate gradient optimization) the error is a non-decreasing
function of the iteration steps .τ But the error measured with
respect to independent data, called validation data set, say

, often shows a decrease first, followed by an increase as
the network starts to overfit, as illustrated in Fischer and Gopal
(1994). Thus, training can be stopped at the point of smallest
error with respect to the validation data, in order to get a
network that shows good generalization performance. But, if
the validation set is mall, it will give a relatively noisy estimate
of generalization performance, and it may be necessary to keep
aside another data set, the test set , on which the
performance of the network model is finally evaluated.

2UD

3UD

This approach of stopping training before a minimum of the
training error has been reached is another way of eliminating
the network complexity. It contrasts with regularization because
the determination of the number of hidden units does not
require convergence of the training process. The training
process is used here to perform a directed search in the weight
space for a neural network model that does not overfit the data
and, thus, shows superior generalization performance. Various
theoretical and empirical results have provided strong evidence
for the efficiency of early stopping (see, for example, Weigend,
Rumelhart and Huberman 1991; Baldi and Chauvin 1991;
Finnoff 1991; Fischer and Gopal 1994). Although many
questions remain, a picture is starting to emerge as to the
mechanisms responsible for the effectiveness of this approach.
In particular, it has been shown that stopped training has the
same sort of regularization effect [i.e. reducing model variance
at the cost of bias] that penalty terms provide.

7. GENERALIZATION PERFORMANCE

Model performance may be measured in terms of Kullback and
Leibler’s (1951) information criterion, KLIC, which is a natural
performance criterion for the goodness-of-fit of ML estimated
models

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. 38, Part II

11

()

() ()

3

1

3 3'
3' 33

3
3 3

3' 3 3'
3' 3 3' 3

ln
ˆ ˆ, ,

U

u u
u Uu

U
u U

u u u
u U u U

KLIC D

y y
y

y x w x wφ φ

−

∈
−

∈

∈ ∈

=

⎡ ⎡ ⎤
⎢ ⎢ ⎥

⎣ ⎦⎢
⎢ ⎡ ⎤⎢ ⎢ ⎥⎢ ⎣ ⎦⎣

∑
∑

∑ ∑
1

⎤
⎥
⎥
⎥
⎥
⎥⎦

)

 (27)

where (3 3,u ux y denotes the u3-th pattern of the data set

3U , and D φ is the estimated neural spatial interaction model
under consideration.

The standard approach to evaluate the out-of-sample
(generalization or prediction) performance of a neural spatial
interaction model (see Fischer and Gopal 1994) is to split the
data set D of size U into three subsets: the training [in-sample]
set of size , the internal validation
set 2 2 2 2 of size and the testing [out-
of-sample, generalization, prediction] set

3 3 3 3 of size , with U1+U2+U3=U.
The training set serves for parameter estimation. The validation
set is used to determine the stopping point before overfitting
occurs, and the test set to evaluate the generalization
performance of the model, using some measure of error
between a prediction and an observed value, such as

.

1 1 1 1{ (,)U u u uD q x y= =
{ (,U u u uD q x y= =

{ (,)}U u u uD q x y= =

()3UKLIC D

}
}

1U
2U

3U

)

Randomness enters into this standard approach to neural
network modelling in two ways: in the splitting of the data
samples, and in choices about the parameter initialization. This
leaves one question wide open. What is the variation of test
performance as one varies training, validation and test sets?
This is an important question, since there is not just one ‘best’
split of the data or obvious choice for the initial weights. Thus,
it is useful to vary both the data partitions and parameter
initializations to find out more about the distribution of
generalization errors. One way is to use the bootstrap pairs
approach (Efron 1982) with replacement to evaluate the
performance, reliability, and robustness of the neural spatial
interaction model.

The bootstrap pairs approach18 is an intuitive way to apply the
bootstrap notion to combine the purity of splitting the data set
into three data sets with the power of a resampling procedure.
The basic idea of this approach is to generate B pseudo-
replicates of the training sets 1

b
UD∗ , B internal validation sets

2 and B testing sets 3 , then to re-estimate the model
parameters on each training bootstrap sample 1

b
UD∗ b

UD∗

ˆ bw∗ b
uq∗ , to stop

training on the basis of the associated validation bootstrap
sample 2u and to test generalization performance, measured in
terms of KLIC, on the test bootstrap sample

bq∗

3
b

uq∗ . In this

(,)q x y=

18 This approach contrasts to residuals bootstrapping that
treats the model residuals rather than u u u as the
sampling units and creates a bootstrap sample by adding
residuals to the model fit. In this latter case bootstrapping
distribution is conditional on the actual observations.

bootstrap world, the empirical bootstrap distribution of the
performance measure can be estimated, pseudo-errors can be
computed, and used to approximate the distribution of the real
errors. The approach is appealing, but characterized by very
demanding computational intensity in real world contexts (see
Fischer and Reismann 2002b for an application). Implementing
the approach involves the following steps:

Step 1: Conduct totally independent re-sampling operations,

where

(i) B independent training bootstrap samples are
generated, by randomly sampling U1 times
(U1<U), with replacement, from D for b=1, …, B

 (){ }1 1 1 1,b b b b
U u u uD q x y∗ ∗ ∗ ∗= = , (28)

(ii) B independent validation bootstrap samples are

generated [in the case of early stopping only], by
randomly sampling U2 times (U2<U), with
replacement, from D so that for b=1, …, B

 (){ }2 2 2 2,b b b b
U u u uD q x y∗ ∗ ∗ ∗= = , (29)

(iii) B independent test bootstrap samples are

generated, by randomly sampling U3 times
(U3<U), with replacement, from D so that for
b=1, …, B

 (){ }3 3 3 3,b b b b
U u u uD q x y∗ ∗ ∗ ∗= = . (30)

Step 2: Use each training bootstrap sample to compute
the bootstrap parameter estimates by solving Eq.
(16) with

1
b

uq∗

b∗ŵ
1
b

uq∗ replacing : uq

 (){ }1ˆ arg min , :b b b b
uw q w w Wλ∗ ∗ ∗ ∗= ∈ Q⊆ � (31)

 where Q is the number of parameters, and

 . (32) () []
1

1 1 1
1 1

, ln ()
U

b b
u u u

u

q w y w wλ φ∗ ∗

=

= −∑ 1()uφ

)

 Note: During the training process the generalization

performance of the model (in terms of the KLIC
criterion) is monitored on the corresponding bootstrap
validation set, in the case of early stopping. The
training process is stopped if the validation error
starts to increase.

Step 3: Calculate the KLIC-statistic for each

test bootstrap sample.
3(b

UKLIC D∗

Step 4: Replicate Steps 3-4 many times, say B=100 or

B=1,000.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. 38, Part II

12

Step 5: The statistical accuracy of the generalization
performance statistic can then be evaluated by
looking at the variability of the statistic between the
different bootstrap test sets. Estimate the standard
deviation σ̂ of the statistic as approximated by
bootstrap

� () � ()

1
22

3
1

ˆ

1
1

B

B b b
U

b
KLIC D KLIC

B

σ

∗ ∗∗

=

=

⎧ ⎡ − ⋅⎨ ⎢⎣−⎩
∑ ⎫⎤ ⎬⎥⎦ ⎭

)

 (33)

 with

 . (34) � () � (3
1

B b b
U

b

KLIC KLIC D
∗ ∗ ∗

=

⋅ = ∑

The true standard error of �KLIC is a function of the unknown
density function, say F, of KLIC, that is ()Fσ . With the
bootstrapping approach described above one obtains 3ÛF ∗ ,
which is supposed to describe closely the empirical distribution

3
ˆ ,UF in other words 3 3U Asymptotically, this

means that the sample size tends to infinity, i.e. , the
estimate

ˆ()Fˆ B
Uσ σ≈ .

3U → ∞
ˆ Bσ tends to ().Fσ For finite sample sizes, however,

there will be deviations in general.

8. CLOSING REMARKS

In this paper a modest attempt has been made to provide a
unified framework for neural spatial interaction modelling,
based upon maximum likelihood estimation under distributional
assumptions of Poisson processes. In this way we avoid the
weaknesses of least squares and normality assumptions that
ignore the true integer nature of the origin-destination flows and
approximate a discrete-valued process by an almost certainly
misrepresentative continuous representation.

Randomness enters in two ways in neural spatial interaction
modelling: in the splitting of the data set into training,
validation and test sets on the one side, and in choices about
parameter initialization on the other. The paper suggests the
bootstrapping pairs approach to evaluate the performance,
reliability and robustness of neural spatial interaction models.
The approach is attractive, but computationally intensive.

Despite significant improvements in our understanding of the
fundamentals and principles of neural spatial interaction
modelling, there are many open problems and directions for
future research. The design of a neural network approach suited
to deal with the doubly constrained case of spatial interaction,
for example, is still missing. Finding good global optimization
procedures for solving the non-convex learning problems is still
an important issue for further research even though some
relevant work can be found in Fischer, Hlavácková-Schindler
and Reismann (1999). Also the model identification problem
deserves further attention to come up with techniques that go
beyond the current rules of thumb.

From a spatial analytic perspective an important avenue for
further investigation is the explicit incorporation of spatial
dependency in the network representation that received less
attention in the past than it deserves. Another is the application
of Bayesian inference techniques to neural networks. A
Bayesian approach would provide an alternative framework for
dealing with issues of network complexity and would avoid
many of the problems discussed in this paper. In particular,
confidence intervals could easily be assigned to the predictors
generated by neural spatial interaction models, without the need
of bootstrapping.

REFERENCES

Baldi, P., Chauvin, Y., 1991. Temporal evolution of
generalization during learning in linear networks. Neural
Computation, 3(4), pp. 589-603

Bishop, C. M., 2006. Pattern recognition and machine
learning. Springer, New York

Bishop. C. M., 1995. Neural networks for pattern recognition.
Clarendon Press, Oxford

Cichocki, A., Unbehauen, R., 1993. Neural networks for
optimization and signal processing. John Wiley, Chichester

Cybenko, G., 1989. Approximation by superpositions of a
sigmoidal function. Mathematics of Control Signals and
Systems, 2, pp. 303-314

Efron, B., 1982. The jackknife, the bootstrap and other
resampling plans. Society for Industrial and Applied
Mathematics, Philadelphia [PA]

Finnoff, W., 1991. Complexity measures for classes of neural
networks with variable weight bounds. In: Proceedings of the
International Geoscience and Remote Sensing Symposium
[IGARSS’94, Volume 4]. IEEE Press, Piscataway [NJ], pp.
1880-1882

Fischer, M. M., 2002. Learning in neural spatial interaction
models: A statistical perspective. Journal of Geographical
Systems, 4 (3), pp. 287-299

Fischer, M. M., 2001. Neural spatial interaction models. In
Fischer M M, Leung Y (eds) GeoComputational modelling.
Techniques and applications. Springer, Berlin, Heidelberg
and New York, pp. 195-219

Fischer, M. M., 2000. Methodological challenges in neural spa-
tial interaction modelling: The issue of model selection. In
Reggiani A (ed.) Spatial economic science: New frontiers in
theory and methodology. Springer, Berlin, Heidelberg and
New York, pp. 89-101

Fischer, M. M., Gopal, S., 1994. Artificial neural networks. A
new approach to modelling interregional telecommunication
flows. Journal of Regional Science, 34(4), pp. 503-527

Fischer, M. M., Griffith, D. A., 2008. Modeling spatial autocor-
relation in spatial interaction data: An application to patent ci-
tation data in the European Union. Journal of Regional Sci-
ence, 48(5), pp. 969-989

Fischer, M. M., Leung, Y., 1998. A genetic-algorithm based
evolutionary computational neural network for modelling
spatial interaction data. The Annals of Regional Science,
32(3), pp. 437-458

Fischer, M. M., Reismann, M., 2002a. Evaluating neural spatial
interaction modelling by bootstrapping. Networks and Spatial
Economics, 2(3), pp. 255-268

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. 38, Part II

13

Fischer, M. M., Reismann, M., 2002b. A methodology for
neural spatial interaction modeling. Geographical Analysis,
34(2), pp. 207-228

Fischer, M. M., Hlavácková-Schindler, K., Reismann, M.,
1999. A global search procedure for parameter estimation in
neural spatial interaction modelling. Papers in Regional
Science, 78(2), pp. 119-134

Fischer, M. M., Reismann, M., Hlavácková-Schindler, K.,
2003. Neural network modelling of constrained spatial
interaction flows: Design, estimation and performance
issues. Journal of Regional Science, 43(1), pp. 35-61

Flowerdew, R., Aitken, M., 1982. A method of fitting the
gravity model based on the Poisson distribution. Journal of
Regional Science, 22(2), pp. 191-202

Fogel, D. B., 1995. Evolutionary computation: Toward a new
philosophy of machine intelligence. IEEE Press, Piscataway
[NJ]

Fotheringham, A. S., 1983. A new set of spatial interaction
models: The theory of competing destinations. Environment
and Planning A, 15(1), pp. 15-36

Funahashi, K., 1989. On the approximate realization of
continuous mappings by neural networks. Neural Networks,
2(3), pp. 183-192

Griffith, D. A., 2003. Spatial autocorrelation and spatial
filtering. Springer, Berlin, Heidelberg and New York

Goldberg, D. E., 1989. Genetic algorithms. Addison-Wesley,
Reading [MA]

Gopal, S., Fischer, M. M., 1997. Fuzzy ARTMAP – a neural
classifier for multispectral image classification. In: Fischer,
M. M., Getis, A. (eds) Recent developments in spatial
analysis. Springer, Berlin, Heidelberg and New York, pp.
306-335

Hassoun, M. H., 1995. Fundamentals of artificial neural
networks. MIT Press, Cambridge [MA] and London, England

Haykin, S., 1994. Neural networks. A comprehensive
foundation. Macmillan College Publishing Company, New
York

Hinton, G. E., 1987. Learning translation invariant recognition
in massively parallel networks. In: Bakker, J. W. de, Nijman,
A. J., Treleaven, P. C. (eds) Proceedings PARLE Conference
on Parallel Architectures and Languages Europe. Springer,
Berlin, Heidelberg and New York, pp. 1-13

Hornik, K., Stinchcombe, M., White, H., 1989. Multilayer
feedforward networks are universal approximators. Neural
Networks, 2(5), pp. 359-368

LeSage, J. P., Fischer, M. M., 2010. Spatial econometric
modelling of origin-destination flows. In Fischer, M. M.,
Getis, A. (eds) Handbook of Applied Spatial Analysis.
Springer, Berlin, Heidelberg and New York, pp. 409-433

LeSage, J. P., Pace, R. K., 2009. Introduction to spatial econo-
metrics. CRC Press (Taylor and Francis Group), Boca Raton
[FL], London and New York

Kullback, S., Leibler, R. A., 1951. On information and
sufficiency. Annals of Mathematical Statistics, 22, pp. 78-86

McCulloch, W. S., Pitts, W., 1943. A logical calculus of the
ideas immanent in nervous activity. Bulletin of Mathematical
Biophysics, 5, pp. 115-133

Moody, J. E., 1992. The effective number of parameters: An
analysis of generalization and regularization in nonlinear
learning systems. In: Moody, J. E., Hanson, S. J., Lippman,

R. P. (eds) Advances in neural information processing
systems 4. Morgan Kaufmann, San Mateo [CA], pp. 683-690

Nocedal, J., Wright, S. J., 1999. Numerical optimization.
Springer, Berlin, Heidelberg and New York

Press, W. H., Teukolky, S. A., Vetterling, W. T., Flannery, B.
P., 1992. Numerical recipes in C. The art of scientific
computing, 2nd edn. Cambridge University Press,
Cambridge

Rosenblatt, F., 1962. Principles of neurodynamics. Spartan
Books, Washington DC

Rumelhart, D. E., Durbin, R., Golden, R., Chauvin, Y., 1995.
Backpropagation: The basic theory. In: Chauvin, Y.,
Rumelhart, D. E. (eds) Backpropagation: Theory,
architectures and applications. Lawrence Erlbaum
Associates, Hillsdale [NJ], pp. 1-34

Rumelhart, D. E., Hinton, G. E., Williams, R. J., 1986.
Learning internal representations by error propagation. In:
Rumelhart, D. E., McClelland, J. L., PDP Research Group
(eds) Parallel distributed processing: Explorations in the
microstructure of cognition. MIT Press Cambridge [MA],
pp. 318-362

Sen, A., Smith, T. E., 1995. Gravity models of spatial
interaction behaviour. Springer, Berlin, Heidelberg and New
York

Tibshirani, R., 1996. Regression shrinkage and selection via
the lasso. Journal of the Royal Statistical Society B, 58, pp.
267-288

Weigend, A. S., Rumelhart, D. E., Huberman, B. A., 1991.
Generalization by weight elimination with application to
forecasting. In: Lippman, R., Moody, J., Touretzky, D. (eds)
Advances in neural information processing systems 3.
Morgan Kaufmann, San Mateo [CA], pp. 875-882

Weng, J., Hwang, W.-S., 2006. From neural networks to the
brain: Autonomous mental development. IEEE
Computational Intelligence Magazine, 1(3), pp. 15-31

Wilson, A. G., 1970. Entropy in urban and regional planning.
Pion, London

Wilson, A. G., 1967. A statistical theory of spatial distribution
models. Transportation Research, 1, pp. 253-269

Zapranis, A., Refenes, A.-P., 1999. Principles of neural model
identification, selection and adequacy. With applications to
financial econometrics. Springer, London

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. 38, Part II

14

	Archives_FirstPage
	TABLE OF CONTENTS

	Session0
	003_Paper
	1. INTRODUCTION
	2. CONTEXT
	3. FEEDFORWARD NEURAL SPATIAL INTERACTION MODELS
	4. A RATIONALE FOR THE ESTIMATION APPROACH
	5. LEARNING MODES AND PROCEDURES
	6. NETWORK COMPLEXITY
	7. GENERALIZATION PERFORMANCE
	8. CLOSING REMARKS
	REFERENCES

