
VALIDATION OF PLANAR PARTITIONS USING CONSTRAINED TRIANGULATIONS

Hugo Ledoux and Martijn Meijers

Delft University of Technology
OTB—section GIS Technology

Delft, the Netherlands
{h.ledoux—b.m.meijers}@tudelft.nl

KEY WORDS: validation, planar partitions, triangulation, topology, Simple Features

ABSTRACT:

Planar partitions—full tessellations of the plane into non-overlapping polygons—are frequently used in GIS to model concepts such
as land cover, cadastral parcels or administrative boundaries. Since in practice planar partitions are often stored as a set of individual
objects (polygons) to which attributes are attached (e.g. stored with a shapefile), and since different errors/mistakes can be introduced
during their construction, manipulation or exchange, several inconsistencies will often arise in practice. The inconsistencies are for
instance overlapping polygons, gaps and unconnected polygons. We present in this paper a novel algorithm to validate such planar
partitions. It uses a constrained triangulation as a support for the validation, and permits us to avoid different problems that arise with
existing solutions based on the construction of a planar graph. We describe in the paper the details of our algorithm, our implementation,
how inconsistencies can be detected, and the experiments we have made with real-world data (the CORINE2000 dataset).

Figure 1: Part of the CORINE2000 dataset for a part of the
Netherlands.

1 INTRODUCTION

Planar partitions are frequently used in GIS to model concepts
such as land cover, the cadastral parcels or the administrative
boundaries of a given area. As shown in Figure 1, a planar parti-
tion is a full tessellation of the plane into non-overlapping poly-
gons. The spatial extent is partitioned into polygons, and every
location must be covered by one and only one polygon (gaps are
thus not allowed). In GIS-related disciplines planar partitions,
like other geographical phenomena, are often represented and
stored in a computer as a set of individual polygons to which
one or more attributes are attached, and the topological relation-
ships between polygons are not stored. The preferred method
is with the Simple Features paradigm, which is an international
standard (OGC, 2006); the de facto standard ESRI’s shapefile and
most databases (e.g. PostGIS) are based on this standard. We dis-
cuss in Section 2 details of the Simple Features paradigm that
complicate the representation of planar partitions.

If a planar partition is stored as a set of individual polygons, then
in practice errors, mistakes and inconsistencies will often be in-
troduced when the planar partition is constructed, updated or ex-
changed. The inconsistencies most likely to occur are: (i) over-
lapping polygons (e.g. slivers); (ii) gaps between polygons; (iii)
polygons not connected to the others.

In this paper we present a novel algorithm to validate such a pla-

nar partition, i.e. given a set of polygons stored with the Simple
Features paradigm, our algorithm verifies if this set forms a pla-
nar partition, or not. As explained in Section 2 different solutions
currently exist, these are based on the construction of the planar
graph of the polygons and on the use of geometrical and topo-
logical validation rules. The solution we propose—using a con-
strained triangulation as a supporting structure for validation—is
described in Section 3 and has in our opinion several advantages
over existing methods. We report in Section 4 on our implemen-
tation of the algorithm (it uses the stable and fast triangulator of
CGAL1) and on the experiments we have made with the CORINE
Land Cover 2000 dataset. Finally, we discuss the advantages of
our method in Section 5.

2 RELATED WORK

Validation of planarity of area partitions has its roots in the def-
inition of what is a valid surface representation for real world
features (i.e. a polygon). In this section we will first review the
Simple Features specification (SFS) that describes what is a valid
polygon and secondly how a set of polygons can be validated, so
that it forms a planar partition.

2.1 Simple Features

The Simple Features specification is a recognised and used in-
ternational standard for the storage and access of geographical
objects in vector format such as points, lines and polygons. SFS
defines a polygon by stating that: “A Polygon is a planar Surface
defined by 1 exterior boundary and 0 or more interior boundaries.
Each interior boundary defines a hole in the Polygon.” (OGC,
2006). In the specification 6 assertions are given that together
define a valid polygon. Essential for a valid polygon is that the
boundaries of the polygon must define one connected area (each
point inside the polygon can be reached through the interior of the
polygon from any other point inside the polygon). Additionally,
a polygon can contain holes. We say that the exterior bound-
ary of the polygon is the outer ring, and a hole is an inner ring.
As shown in Figure 2, these holes can be filled by one or more

1The Computational Geometry Algorithms Library: http://www.

cgal.org
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(a) (b)

POLYGON((0 0, 9 2, 10 3, 10 10, 4 7, 0 10, 0
0), (6 4, 4 3, 5 6, 5 5, 6 6, 6 4))

POLYGON((0 0, 9 2, 10 3, 10 10, 4 7, 0 10, 0
0), (3 2, 4 4, 6 4, 3 2), (1 1, 1 3, 3 2, 3 1, 1 1),
(10 5, 7 7, 7 4, 10 5))

Figure 2: Two examples of polygons and their WKT. (a) One
polygon with one hole. (b) Another polygon with three holes,
and each of them is filled with an island. Observe that two
holes/islands touch each other at one point, and that one hole
touch the outer boundary of the polygon at one location.

polygons, which we call islands. Island polygons can recursively
contain holes which are filled by islands. Observe also that holes
are allowed to interact with each others and the outer boundary
under certain circumstances, e.g. they are allowed to touch at one
point (as in Figure 2b), as long as the interior of the polygon stays
one connected area.

The polygons can be represented either in text (well-known text–
WKT) or binary (well-known binary–WKB) formats. Each poly-
gon is stored independently from other polygons; even those ad-
jacent (it is not possible to store topological relationships between
the polygons).

Integrity checking of an individual polygon entails checking whe-
ther the polygon fulfils the above definition. A naive way of va-
lidity checking could be based on checking each segment of each
linear ring with all other segments of the polygon for intersec-
tions, which is apparently quite costly with respect to computa-
tion.

In this work, we have adopted the Simple Feature definition for
what we consider is a valid polygon. In the paper by Oosterom
et al. it was shown in an experiment with different systems and
a set of 37 ‘killer polygons’ that in practice the use of this defini-
tion is not self-evident and that different products have different
interpretations of what is a valid polygon. The authors concluded
that “the consistent use of a polygon definition is not yet a real-
ity” (van Oosterom et al., 2002). The validation of one polygon
according to the SFS specification has since then found its way
into software implementations and is easily possible with differ-
ent libraries, e.g. GEOS 2 and JTS 3 being two of those (open
source) libraries.

2.2 Planar partitions

Planar partitions, such as the CORINE2000 dataset, are freely
available in shapefile format where each polygon has one value
attached (its code for the land cover). Polygons in such datasets
are usually fairly complex (see for instance Figure 3) and the
number of polygons is generally very large. The specifications
of the dataset states that all polygons form a planar partition, but
in practice this is not the case (see Section 4).

Having a definition for what is a valid polygon alone is not enough
for certain applications: for those applications it is necessary to

2Geometry Engine Open Source: trac.osgeo.org/geos
3Java Topology Suite: www.vividsolutions.com/jts/jtshome.

htm

(a)

(b)

Figure 3: (a) One polygon (in yellow) from the Canadian Land
Cover Map. Its outer boundary has around 35000 points and it
has around 3200 holes. (b) Zoom in on this polygon, observe
that holes are filled by islands, and that these touch other rings at
several points.

define what a valid set of polygons is. Therefore, the disjoint
spatial relation has to be introduced. Two polygons are said to be
disjoint, when their interior does not overlap (i.e. does not have
any spatial relation). A brute force approach to enforce planarity
of a partition with independent, loose-lying polygons is rather
cumbersome: it is necessary to check whether each polygon its
interior is disjoint with all other polygons, which means a lot
of computation (in the order of O(n2) where n is the number
of features to be checked). Furthermore detection of holes be-
tween polygons in the partition is only possible by obtaining the
union of all individual polygons, which again is computational
intensive. As final remark: this also assumes that each individual
polygon has already been checked.

In a series of papers on the topic of formal and correct spatial
object modelling (Plümer and Gröger, 1996, Gröger and Plümer,
1997, Plümer and Gröger, 1997), a set of mathematical axioms
is given for checking the ‘validity’ of a map, i.e. a collection of
polygons. The axioms that Gröger and Plümer form are a correct
and complete set of rules to enforce correctness for all polygons
in a map together with their adjacency relationships. Checking of
the axioms has static and dynamic aspects. Static integrity check-
ing “concerns the question whether a given database as a whole
is consistent” (Gröger and Plümer, 1997). An example of the
dynamic aspects—how to keep a (in this case cadastral) dataset
consistent under updates or transactions—is found in (Matijević
et al., 2008). Our approach only examines the state of a geo-
graphic dataset as a whole (thus enforcing the integrity rules for
a given set of polygons). For the remaining part of this paper, we
will focus on static integrity checking.

Furthermore, it is important to note that Plümer and Gröger (1997)
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base their axioms on concepts from graph theory, but they also
highlight the fact that a graph-based approach alone is not enough:
the graph has to be augmented with geometrical knowledge (each
vertex has geometry attached, i.e. the coordinates of points have
to be stored). Validation is thus underpinned by both geometri-
cal and topological concepts and systems thus have to deal with
those two concepts at the same time.

For validating all polygons in a dataset in a single operation, it is
necessary to perform a conversion to a graph-based description,
which is consecutively checked for consistency (following a set
of rules similar to the axioms described by Gröger and Plümer).
For this conversion different approaches are available (Shamos
and Hoey, 1976, van Roessel, 1991). Implementation of this con-
version to a graph-based representation is sometimes difficult, es-
pecially if the polygon contains holes. The graph of the boundary
is then unconnected and extra machinery is necessary to still rep-
resent the knowledge on holes in the graph structure. The fact
that holes are also allowed to touch complicates the task of vali-
dation even further: holes are supposed to form an unconnected
planar graph, but if they touch the graph is connected.

3 VALIDATION WITH THE CONSTRAINED
TRIANGULATION

Our approach to validation of planar partitions uses a constrained
triangulation (CT) as a supporting structure because, as explained
in Section 3.1, CTs are by definition planar partitions. The work-
flow of our approach is as follows:

1. the CT of the input segments forming the polygons is con-
structed;

2. each triangle in the CT is flagged with the ID of the polygon
inside which it is located;

3. problems are detected by identifying triangles having no
IDs, and by verifying the connectivity between triangles.

The flagging and the verification of the connectivity of the input
polygons is performed by using graph-based algorithms on the
dual graph of the CT.

We describe in this section the concepts needed and we give a de-
tailed description of the different steps. It should be noticed that
we assume that each input polygon to our approach is individu-
ally valid (as explained in Section 2 this is an easy task and tools
are readily available).

3.1 Constrained triangulation

A triangulation decomposes an area into triangles that are non-
overlapping. As shown in Figure 4a–b, given a set S of points in
the plane, a triangulation of S will decompose its convex hull, de-
noted conv(S). It is also possible to decompose the convex hull of
a set T where points and straight-line segments are present, with
a constrained triangulation (CT). In CT(T ) every input segment
of T appears as an edge in the triangulation (see Figure 4c–d).

If T contains segments forming a loop (which defines a polygon),
it permits us to triangulate the interior of this loop (i.e. a triangu-
lation of the polygon). It is known that any polygon (also with
holes) can be triangulated without adding extra vertices (de Berg
et al., 2000, Shewchuk, 1997). Figure 5 shows an example.

In our approach, the triangulation is performed by constructing
a CT of all the segments representing the boundaries (outer +

(c)

(b)

(d)

(a)

Figure 4: (a) A set S of points in the plane. (b) A triangulation of
S; the union of all the triangles forms conv(S). (c) The set S with
3 constrained segments. (d) The constrained triangulation of the
set of points and segments. The dashed lines are the edges of the
triangulation of S that are removed since they are not conform to
the input segments.

Figure 5: (a) A polygon with 4 holes. (b) The constrained trian-
gulation of the segments of this polygon.
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Figure 6: One polygon (thick lines) with its triangulation (nor-
mal black lines). The dual graph of the triangulation is drawn
with dashed lines, and the filled black point is the centroid of the
polygon from where the walk starts.

big triangle

Figure 7: The 4 input polygons are triangulated and are inside
the big triangle. A walk from one location outside the 4 polygons
would appropriately flag as “universe” the 4 triangles inside the
convex hull of the 4 polygons.

inner) of each polygon. If the set of input polygons forms a planar
partition, then each segment will be inserted twice (except those
forming the outer boundary of the set of input polygons). This
is usually not a problem for triangulation libraries because they
ignore points and segments at the same location (as is the case
with the solution we use, see Section 4).

3.2 Flagging triangles

Flagging triangles means assigning the ID of each polygon to the
triangles inside that polygon (the triangles that decompose the
polygon). To assign this ID, we first compute one point inside
each polygon. This point is what we subsequently call the “cen-
troid” — observe here that this cannot be always the geometric
centroid of the polygon as this could be outside the polygon. Our
algorithm finds a location inside the polygon and makes sure that
this location is not inside one of the holes of the polygon. Then
for each centroid c we identify the triangle that contains c, and
we start a “walk” on the dual graph of the triangulation, as shown
in Figure 6. The walk is a depth-first search (DFS) on the dual
graph, and observe that constrained edges in the triangulation will
act as blockers for the walk. Observe also that islands are not a
problem (see Figure 8c).

Big triangle. To appropriately flag all the triangles of the CT
(those inside the convex hull of the input points/segments but not
inside an input polygon) we exploit one particularity of libraries
to compute triangulation: the so-called “big triangle”, which is
also being called the “far-away point” (Liu and Snoeyink, 2005).
Many implementations indeed assume that the set S of points is
entirely contained in a big triangle τbig several times larger than
the range of S. Figure 7 illustrates the idea. With this technique

(a) (b)

(c) (d)

Figure 8: (a) Six polygons form the input planar partition. (b)
The constrained triangulation of the boundaries of the input poly-
gons. (c) The dual graph of the triangles is drawn with dashed
lines; the dark points are the points from which the walk in each
polygon starts. (d) The result contains triangles that not flagged
(white triangles). The white triangle on the right is not a problem
since it is a “universe” triangle.

the construction of the CT is always initialised by first construct-
ing τbig , and then the points/segments are inserted. Doing this
has many advantages, and is being used by several implementa-
tions (Facello, 1995, Mücke, 1998, Boissonnat et al., 2002). To
assign an ID “universe” to the triangles, we simply start at one
triangle incident to one vertex of τbig and perform the same walk
as for the other polygons.

3.3 Identifying problems

If the set of input polygons forms a planar partition then all the
triangles will be flagged with one and only one ID. Notice that
because of the big triangle, triangles outside the spatial extent of
the planar partitions will be flagged as “universe”. Notice also
that if a polygon contains a hole, then for the planar partition to
be valid this hole must be filled completely by another polygon
(an island).

If there are gaps and/or overlaps in the input planar partition then
some triangles will not be flagged. We can detect these easily by
verifying the IDs. Figure 8 illustrates one input planar partition
that contains 6 polygons; notice that one has an island and that
some polygons overlap and that there are also gaps. The walk
starting from each centroid is shown in Figure 8c, and the result-
ing flagging of triangles is shown in 8d (the grey shadings repre-
sent the IDs). When 2 or more polygons overlap then depending
on the location of the centroids some triangles will not be flagged
(because the constrained edges block the walks).

Another problem that could arise is when the union of the in-
put polygons forms more than one polygon. Figure 9 shows one
example with 5 input polygons: 4 of them form a valid planar
partition but one is not connected to the others (thus the 5 poly-
gons do not form a planar partition). We solve that problem by
starting a walk from any centroid, but that walk is not stopped by
the constrained, only by the triangles flagged as “universe”. The
connectivity problem simply boils down to ensuring that all the
triangles flagged with an ID other than “universe” can be reached.
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Figure 9: Five polygons, with one unconnected to the other ones.
The dual graph for the flagged triangles is shown in with dashed
lines.

(a) (b)

Figure 10: (a) Two overlapping polygons. (b) CGAL’s con-
strained triangulation of the polygons.

4 IMPLEMENTATION AND EXPERIMENTS

We implemented the algorithm described in this paper with the
Python language4. Our implementation reads as input either a
shapefile or a set of WKTs, and tells the user what problems are
present in the input polygons (if any).

For the constrained triangulation, we rely entirely on the imple-
mentation of CGAL (we use the Python bindings of CGAL5).
Each segment of the input polygons is inserted incrementally in
the CT. When 2 segments are identical, the second one is sim-
ply ignored. Since the input if formed of individual polygons,
it is faster (and simpler) to rely on the spatial indexing scheme
of CGAL to detect the duplicate edges than to pre-process them
with an auxiliary data structure. It should be noticed that we use
the default tolerance in CGAL to determine if 2 points are at the
same location.

We also rely on CGAL for ensuring that a valid triangulation is
formed when 2 or more polygons overlap. As shown in Figure 10,
if 2 polygons overlap their segments will intersect (which would
not be a valid planar graph). However, CGAL has built-in opera-
tions to calculate the intersection of 2 segments and to create new
sub-segments.

We have tested our implementation with different parts of the
CORINE2000 dataset. This is a dataset modelling the land cover
for the whole of Europe, and it is freely available6. The dataset is
divided into tiles and each tile can be downloaded as a shapefile.
Although the specifications of CORINE2000 state that the poly-
gons form a planar partition and that validation rules are used, we
found several errors.

One example is when creating one planar partition from two ad-
jacent tiles, as shown in Figure 11. The process of tiling the
whole dataset has obviously introduced errors because several

4http://www.python.org
5http://cgal-python.gforge.inria.fr
6More information can be found on http://www.eea.europa.eu/

themes/landuse/clc-download

Figure 11: CORINE2000’s tiles E39N32 and E40N32.

Figure 12: A polygon manually shifted (from CORINE2000 tile
E41N27) – it is overlapping with neighbours on one side and gaps
are present on the opposite side.

sliver polygons were detected during our experiments. We have
also found one case where a polygon had been obviously “shifted”
manually by a user (see Figure 12).

5 DISCUSSION AND CONCLUSIONS

The problem of validating a planar partition stored with Simple
Features is theoretically a simple one: construct the planar graph
of the input, and define a set of geometric and topological valida-
tion rules. Unfortunately, the implementation of a planar graph
construction algorithm and of the validation rules is far from be-
ing trivial (especially when the input polygons contain holes) and
can often not scale to big datasets containing millions of poly-
gons.

We have presented in this paper a new algorithm and we have
successfully implemented it. Our approach solves most of the
current problems and has in our opinion several advantages:

1. The algorithm is simple and can be implemented easily over
a CT library such as CGAL. The only things needed are:
(i) to be able to add attributes to triangles (for the IDs);
(ii) having access to the data structure. All the validation
rules simply boil down to flagging triangles and graph-based
searches.

2. The holes/islands inside polygons are easily handled by the
CT. No additional data structure or special mechanisms are
necessary, as is the case with planar graph approaches.

3. The implementation can be built over well-known and op-
timised CT implementations, which are fast and can handle
millions of objects. It is known that triangulations of several
millions points can be managed in main memory (Amenta
et al., 2003, Blandford et al., 2005).
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4. If problems are present in the input, we believe the CT could
be used to automatically repair the planar partition. That
would simply involve (re)flagging the IDs of problematic
triangles (based on some user-defined rules) and then “fol-
lowing” the boundaries between IDs to reconstruct polygons
and give them back to the user in Simple Features format.
We see great potential for such an application.

5. Apart from static integrity checking, our approach could be
used for keeping a dataset consistent under a set of edits
(dynamic checking). The CT can then be used to locally
check the validity of an update.

For future work, we plan on implementing the algorithm in C++
to be able to scale to massive datasets, and we also plan on work-
ing on the automatic repairing and incremental updates with the
help of the CT. Finally, the ideas presented in this paper are all
valid in higher dimensions and we plan on implementing them
for constrained tetrahedralization (Si, 2004), which would permit
us to validate 3D city models for instance.
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