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ABSTRACT:

The application of terrestrial laser scanning to the study of rock surface roughness faces a major challenge: the inherent range
imprecision makes the extraction of roughness parameters difficult. In practice, when roughness is in millimeter scale it is often lost

in the range measurement noise. The parameters extracted from the data, therefore, reflect noise rather than the actual roughness of
the surface. In this paper we investigate the role of wavelet de-noising methods in the reliable characterization of roughness using
laser range data. The application of several wavelet decomposition and thresholding methods are demonstrated, and the
performances of these methods in estimating roughness parameters are compared. As the main measure of roughness fractal
dimension is derived from 1D profiles in different directions using the roughness length method. It is shown that wavelet de-noising

in general leads to an improved estimation of the fractal dimension for the roughness profiles. The choice of the decomposition
method is shown to have a minor effect on the de-noising results; however, the application of hard or soft thresholding mode does
have a considerable influence on the estimated roughness measures. The presented results suggest that hard thresholding yields mor
accurate de-noised profiles for which the estimated roughness measures are more reliable.

1. INTRODUCTION roughness obtained from raw laser data is due to the fact that
roughness measures reflect more noise in the data than the
The measurement of the surface roughness of rock masses la@gual roughness of the surface. They used radial basis functions
been traditionally based on manual measurement tools such @sinterpolate the data into a smooth surface, which resulted in
carpenter's comb and compass and disc clinometers. Thgughness measures within the expected range. Although data
manual measurements are limited to small samples at accessiblfoothing by interpolation has been the common approach to
parts of the rock. Terrestrial laser scanning is an attractiveeduce the influence of noise on roughness characterization, it is
alternative measurement technique, which offers large coveraggenerally not considered an adequate noise reduction method
high resolution, and the ability to reach inaccessible high rockGonzalez and Woods, 1992). The basic assumption in data
faces. A fundamental limitation of this technique, particularly insmoothing is that the measured surface is actually smooth and
the characterization of rock surface roughness in millimeteso by smoothing one can reduce the noise without degrading the
scale, is the measurement noise inherent in laser scanner dafata related to the actual surface. As this assumption is not valid
In general, error in laser scanner data may originate from threghen dealing with rough surfaces, the result of data smoothing
main sources: the imprecision of the scanning mechanism angl the loss of roughness information. Thus, a careful treatment
the ranging technique (Dorninger et al., 2008), environmentadf noise in laser range data is of great significance if a realistic
conditions (Borah and Voelz, 2007) and the physical an&haracterization of rock surface roughness is of concern. In this
geometric  properties of the scanned surface itselpaper we investigate the influence of range measurement noise
(Soudarissanane et al., 2009). Normally, the systematisn roughness characterization of rock surfaces using the
components of the error are eliminated or modeled through @ughness length method (Malinverno, 1990). We demonstrate
proper calibration procedure (Lichti, 2007). The remainingthe application of wavelet transform (Hardle et al., 1998; Strang
random error is in the order of a few millimeters for a typicaland Nguyen, 1996) to removing noise from roughness profiles
medium-range (1-150 m) terrestrial laser scanner, and igerived from laser scanner point clouds, and compare the
commonly referred to as measurement noise. performance of various wavelet decomposition and thresholding
methods in the context of surface roughness characterization.

The effect of laser scanner measurement noise on roughness
characterization has been pointed out in a few previous studi€phe paper proceeds with an overview of the laser scanning
Fardin et al., (2004) reported that the fractal dimension obtaine@chnique and the derivation of roughness profiles from laser
from raw laser data of a rock face is larger than the expectadnge data in Section 2. In Section 3, the principles of wavelet-
range (according to Kulatilake and Um (1999) 1.2-1.7 for 1Dpased de-noising are presented along with a description of
profiles, and 2.2-2.7 for 2D patches). They attributed thesarious decomposition and thresholding methods. Section 4
overestimated roughness to the irregular distribution of theeports the experimental analysis of the influence of noise on
points in the original point cloud, and performed anroughness characterization and the results of wavelet de-noising
interpolation of the points into a uniform distribution to reducepf roughness profiles. The paper concludes with some remarks
the fractal dimension to within the expected range. Rahman @} Section 5.
al., (2006) suggested that the overestimation of surface
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2. ROCK SURFACE ROUGHNESS FROM LASER Hurst exponent as D = 2-H for a 1D profile, and D = 3-H for a
RANGE DATA 2D patch. A large fractal dimension indicates a very rough
surface with abrupt changes of the residual height whereas a
Laser scanning is an active measurement technique based $fall fractal dimension implies a smooth surface without much
emitting laser beams to a surface of interest and recording thgughness. More details on the estimation of fractal dimension
reflections. A scanning mechanism, usually a rotating mirrorfor 1D profiles can be found in Kulatilake and Um (1999), and
deflects the emitted beam towards the surface in such a way tifat 2D patches in Fardin et al., (2004). In the rest of the paper
the entire surface is scanned at regular horizontal and vertic@gle focus on the characterization of roughness in 1D profiles.
angular intervals. The range measurement principle in medium-
range terrestrial laser scanners is most often based on the phgse WAVELET DE-NOISING OF ROUGHNESS
difference between the emitted and received waveforms. From PROFILES
the measured range and horizontal and vertical scan angles, 3D
coordinates are computed for each point in a CartesiaWwavelet de-noising is based on the wavelet transform (Strang
coordinate system with its origin at the centre of the scanneand Nguyen, 1996) for decomposing a signal into several
Today's laser scanners can measure more than a hundredmponents of different scale and resolution. The basic
thousand points per second at an angular resolution smaller tharinciple is that high-frequency components are more likely to
0.01 degrees (see for instance Faro (2009)). By scanning at suatntain noise than low-frequency components that contain the
high resolution from a few tens of meters distance to a rock faageneral trend of the signal. The purpose of wavelet
one can acquire a dense point cloud that represents tldecomposition in de-noising laser range data is to remove noise
geometry of the scanned surface in great detail. only from the high frequency components so as to preserve the
low frequency content of the data as much as possible. The
Before roughness information is derived from a point cloud it iprocedure for the wavelet de-noising of a roughness profile
convenient to rotate the point cloud such that surface roughnesensists of several steps as shown in Fig. 1. The first step is the
corresponds to variations in the directionZofixis. Based on decomposition, which can be done by the discrete wavelet
the assumption that the point cloud represents a more or less fteansform or by the wavelet packet method. The actual de-
surface, the rotation can be computed simply by performing theoising is performed by applying a threshold to the high-
principal components analysis (Jolliffe, 2002). The eigenvectorfequency components. The value of the threshold depends on
and eigenvalues of the covariance matrix of the points descritan estimation of the level of noise in the data and the threshold
the axes of maximum and minimum variation in the point cloudselection method. The application of the threshold can also be
and provide a transformation of the points to these principadlone in the hard as well as soft mode. The final step involves
axes. By fitting a smooth (usually planar) surface to this rotatethe reconstruction of the thresholded components to yield the
point cloud a representation of the roughness as the residud-noised profile. The following sections provide a more
height of the points can be obtained. detailed description of the wavelet de-noising procedure.

A common method for roughness characterization, which is alsB.1 Wavelet decomposition and reconstruction

adopted in this paper, is the fractal-based roughness length

method (Malinverno, 1990). In this method, roughness isihe wavelet decomposition process consists of two operations:
characterized by two measures: fractal dimension anéiltering and downsampling. Filtering separates the signal into
amplitude. Both measures can be derived from a 1D profile or@@mponents of different scale: convolution with a low-pass
2D patch extracted from the point cloud. In either case, thélter generates the low-frequency components known as
roughness measures are estimated based on a power law relag@proximation coefficients, and convolution with a high-pass
between the standard deviation of the residual height of th@éter results in the high frequency components known as detail

points,s, and the length of a sampling windew coefficients. The downsampling operation reduces the
resolution of the coefficients to one-half. The decomposition
S(W):AWH (1) process may be iterated in several levels. In multi-level

decomposition we distinguish between two decomposition
where parameterd andH are called amplitude and the Hurst principles. In the discrete wavelet transform (DWT), the
exponent respectively. These parameters are estimated from tcomposition is applied to approximation coefficients only. In
intercept and slope of a log-log plot ®fversusw for several the wavelet packet method (WP) both the approximations and
lengths of the sampling window. The main measure othe details are decomposed.
roughness is the fractal dimension, which is derived from the

Noisy profile De-noised profile
Penalized Soft thresholding 4
! | |
Wavelet Estimation of Threshold Application of Wavelet
—> > —>| >

decomposition noise level selection threshold o reconstruction

it f f f

DWT WP Median Absolute Fixed-form Hard thresholding
Deviation

Fig. 1. Wavelet de-noising procedure.
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Wavelet reconstruction is the process of recovering the origindlhe sparsity parametex can be tuned to obtain different
profile from its components. The reconstruction processhreshold values. Three levels of penalized thresholding are
consists of two operations: upsampling and filtering. Thecommon: penalized lowu(= 1.5); penalized mediumu (= 2);
components are upsampled by inserting zeros between tla@d penalized highu(= 5).

samples and then convolved with the reconstruction filters. The

approximation coefficients are convolved with a dual low-pasShe application of the threshold can also be done in two modes.
filter, and the detail coefficients are convolved with a dual high-The standard hard thresholding criterion is defined as:

pass filter. The reconstructed approximations and details are

then summed up to vyield the reconstructed profile. The R w;, if |Wj,k|2t
decomposition and reconstruction filters should meet certain ik = . (M
requirements in order to guarantee a perfect reconstruction of 0 if |Wj,k|<t

the data from the coefficients. A detailed description of the ] o

(1996). sdft thresholding criterion is defined as:
3.2 Thresholding of wavelet coefficients . sgn(w,,) (w1 if w2t ©
H 0 it |w [t

De-noising by the thresholding of wavelet coefficients is based

on an |mporta_mt pro_perty of wayelet (_jecomposmon that‘l’he soft thresholding criterion for wavelet de-noising was
transforms white noise into white noise (Donoho and

- . suggested by Donoho (1995). In contrast to hard thresholding,
Johnstone, 1995). Since normally systematic _errors al%hich can result in discontinuities (sharp drops) in the de-

- . . . X UNiBised profile, soft thresholding yields a smooth output. Fig. 2
that the remaining error is white noise with GausS'andemonstrates the difference between the hard and soft

distri_bL_Jtion. The thresholding is us_ually applied to the deta"thresholding modes. In the hard thresholding mode data beyond
coefficients to ensure the preservation of the actual data. The, ffe threshold are preserved, but discontinuities are inevitable.

are several methods for the estl_matlon of the th_reshold value. oft thresholding on the other hand shrinks the entire profile in
this paper, we compare two main threshold estimation methods‘rder to prevent the occurrence of discontinuities
fixed-form thresholding and penalized thresholding. '

The fixed-form thresholding method was proposed by Donoho
and Johnstone (1994). For the detail coefficients of a profile Threshold /\

obtained by the discrete wavelet transform the fixed-form | -====------ Ao\ -mmmmmmmm -
threshold is estimated as: / \

t' =0,4/2logd) 2

whered is the length of the detail coefficients at the first level /\
of decomposition, and, is the standard deviation of noise. For

the wavelet packet decomposition of a profile the fixed-form Hard

_ A thresholding
threshold is estimated as:
t' =0,,/2log(d log@d)/log(2) ©)
To estimate the standard deviation of noise from the data the Soft
median absolute deviation (MAD) of the coefficients has been thresholding

proposed by Donoho and Johnstone (1995):

1 Fig. 2. The concept of hard and soft thresholding.
o, = Median(w,|) @)
0.6745

4. EXPERIMENTSAND RESULTS

where w, are the detail coefficients at the first level. . )
The wavelet decomposition and thresholding methods were

. . ) applied to roughness profiles extracted from a laser point cloud
The penalized thresholding method was proposed by Birge ang "5 ook surface with millimeter-scale roughness. Fractal

Massart (1997). This method is based on minimizing a penaltyfimension was estimated for the de-noised profiles as well as
function defined as: the original laser profiles, and also for the manually measured

roughness profiles to serve as reference. The following sections

tﬂzarg mir{—z @VE k<t )+ ZJHZ o+ Iogg )% (5) describe the experimental setup followed by the results and
t=l..n comparisons.

wherea is a sparsity parameter andis the number of detail 41 study area
coefficients wy, sorted in descending order. The penalized
threshold for both the discrete wavelet transform and th&he scanned rock is situated in Tailfer, about 20 km south of

wavelet packet is then estimated as: the city of Namur and on the east side of the Meuse River in
southern Belgium. The geological character of the scanned rock
tP :‘\NtD (6) is a slightly metamorphosed limestone that is part of Lustin

formation of carbonate mounts.
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4.2 Datadescription To study the role of wavelet de-noising, different wavelet
decomposition and thresholding methods were applied to the
The rock surface was scanned with a Faro LS880 terrestrifdser profiles and the estimated fractal dimensions for the de-
laser scanner (Faro, 2009). The scanner was positioned @éised profiles were compared with those of the manual
approximately 5 meters distance to the rock surface, angrofiles. For all profiles the decomposition was performed in 3
operated at the highest possible angular resolution, i.e. 0.008vels using a Daubechies wavelet of order 3 (db3). The
degrees. The resulting point cloud contained about 1.2 milliogtandard deviation of noise was estimated at 1.8 mm, 1.3 mm,
points on the rock surface with a point-spacing of 1 mm orind 1.5 mm, respectively for the laser profile in the horizontal,
average. According to the technical specifications of the lasefiagonal and vertical direction. From these estimated noise
scanner, the nominal range precision at a perpendiculagvels thresholds were computed using the methods described in
incidence angle, which was roughly the case in our scan, ection 3.2, and were applied to the detail coefficients globally
between 0.7 mm and 5.2 mm respectively for objects of 90%t all decomposition levels. Table 1 summarizes the fractal
and 10% reflectivity at a distance of 10 m. dimensions estimated for the de-noised profiles obtained by
using the discrete wavelet transform as the decomposition
Roughness data were also collected manually along threfethod. The same measures estimated for the de-noised profiles
profiles on the rock surface by using a carpenter’s profile gauggbtained by using the wavelet packets are summarized in Table
with metallic rods at 1 mm intervals. These profiles were2, |t can be seen that the fractal dimensions of the de-noised
marked with white chalk and were visible in the reflectancgrofiles vary across different thresholding methods; the

image of the laser scanner data. Fig. 3 shows the profiles alogriation is however smaller across different decomposition
which manual measurements were made, and their traces in thfthods.

reflectance data of the point cloud.

The principal components were computed for a cutout of the
point cloud that contained the profiles. The transformation

parameters were then applied to rotate the point cloud into a
more or less horizontal surface. Guided by the chalk traces in
the reflectance image, three corresponding roughness profiles
were extracted from the point cloud with samples interpolated at
regular 1 mm intervals. The results of this procedure were three
pairs of roughness profiles derived correspondingly from the

manual and laser measurements with the same length and spatial
resolution. We refer to these as the horizontal, diagonal and
vertical profiles. Fig. 4 depicts the corresponding manual and
laser roughness profiles in the horizontal direction.

4.3 Results

Using the roughness length method the fractal dimension was
estimated for roughness profiles from both the laser scanner
data and the manual measurements. The unit of profile length
was chosen as 1 cm for all profiles to guarantee an appropriate
density of 10 points per unit length. The power law relation was
determined for each profile by calculating the standard
deviation of the profile height within windows of 8 different
sizes ranging from 3% to 10% of the profile length. Fig. 5
illustrates the power law relation between the window size and
the standard deviation of the profile height for the laser and
manual profiles in the horizontal direction. Here, the fractal
dimension is estimated at 1.17 for the manual profile, and 1.96
for the laser profile. Considering the expected range of 1.2-1.7,

the laser profile yields a clearly overestimated measure of B
roughness, while the fractal dimension of the manual profile ifig. 3. A. manual measurement of roughness profiles; B. cutout
also slightly below the expected range. of the rotated point cloud of the rock surface

visualized with reflectance values.

Horizontal profile
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Fig. 4. Manually measured and laser scanned roughness profiles in the horizontal direction.
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Fig. 6 depicts the variation in the fractal dimension of the dewas shown that fractal dimension values estimated for profiles
noised profiles in the horizontal direction across differentderived from laser scanner data are generally larger than the
decomposition and thresholding methods. As it can be seen, te&pected values. The role of wavelet de-noising was
choice of the decomposition method has a minor impact on thavestigated through the comparison of fractal dimensions
fractal dimension of the de-noised profiles: the fractalestimated for the de-noised profiles with those of the
dimensions pertaining to the discrete wavelet transform are onlyorresponding manually measured profiles. The results of
slightly larger than those of the wavelet packets. This can b&avelet de-noising methods in general led to an improvement of
verified also for the diagonal and vertical profiles from Table 1the roughness measures estimated for the laser profiles. The
and Table 2. fractal dimensions obtained for most of the decomposition and
thresholding methods were within the expected range. The
A noticeable difference in the performance of the de-noisinghoice of the decomposition method was not found to affect the
methods can be seen in the application of hard and softe-noising result; however, the application of hard or soft
thresholding modes. Fig. 7 shows the influence of hard and saftiresholding mode did have an impact on the estimated
thresholding on the fractal dimension obtained for the de-noisedughness measures. The presented results suggest that hard
profiles in the horizontal direction. Soft thresholding results inthresholding yields more accurate de-noised profiles for which
too smooth de-noised profiles for which the estimated fractahe estimated roughness measures are more reliable.
dimensions are smaller than that of the manually measured
profile and below the expected range. On the contrary, the déa this research, the de-noising methods were applied to 1D
noised profiles obtained by hard thresholding yield fractaprofiles extracted from the laser scanner point cloud. Future
dimensions that are within the expected range, except wheaesearch will focus on 2D wavelet de-noising of a range image,
penalized-high thresholding method is used. The fractalvhich is the fundamental data structure of terrestrial laser
dimensions corresponding to the penalized high thresholdingcanners. Other topics for further research include an
with both decomposition methods are in fact smaller than linvestigation of the role of point density and profile length, and
The difference between the performances of hard and saodin analysis of the de-noising results using other roughness
thresholding methods can be seen also for the diagonal awtfiaracterization methods.
vertical profiles in Table 1 and Table2.

Horiz. | Diag. | Vert.

An examination of the results of different thresholding methads___ : profile | profile | profile
suggests that the fixed-form threshold applied in hard mode toriginal profileextracted fromlaser | | oo | ;g9 | 190
the coefficients obtained by the wavelet packet decomposition data

yields fractal dimension values that are closer to those of jthe Fixed-form 1.05 1.23 0.81
manually measured profiles and are also within the expected Soft Low | 1.23 1.38 119

range. With the discrete wavelet transform as the decompositigre-noised Thresh

method the penalized low thresholding method applied in sofprofiles Penalized Med.| 1.07 | 1.32| 1.07

mode seems to be an appropriate choice. Fig. 8 shows the regsult High | 0.94 1.19 0.62
of penalized-low soft thresholding applied to the DWT Discrete Fixed-form 151 1.46 1.33
coefficients of the horizontal laser profile, which compares well\wavelet

with the corresponding manually measured profile. Transform| Hard Low | 1.68 1.76 1.68

; ; ; —T— ! Thresh.| penalized Med.| 1.51 | 1.69| 1.59

| | | | | Laser profile .

: : : : | s=oaimwoees High | 0.94 1.44 0.62
2-3?:;::::::%:::}:?::}——L— ,,,,, = M anually measured profile 117 | 132 | 120
1;: B R Table 1. Fractal dimension values estimated for the de-noised

| | | | b | profiles using discrete wavelet transform as the

- T T R M decomposition method.

B |

e ——_—_—,—,,, - -

L e S D A Horiz. | Diag. Vert.
sL__ profile | profile | profile

T . . .

) L « Manual profie Original profile extracted from laser 19 1.89 1.90
_ 083 data
| | 5=0.019w -
el S [ T | Fixed-form 0.95 1.09 0.74

; ; ; o ; Soft low | 1.10 | 1.40| 1.11

1 1 1 L l De-noised| Thresh.| penalized Med.| 1.10 | 1.26 | 0.95

.5 1 15 2 25 3 4.5 rOfileS -

wem) P High | 0.94 | 1.08| 0.66
) o | Wavelet Fixed-form 1.42 1.38 1.30
Fig. 5. The log-log plot of the standard deviation of profile
height against window length for the laser arjd Packets | Hard Low | 152 | 1.79| 1.66
manually measured profiles in the horizontal Thresh.| Penalized Med.| 1.52 | 1.74| 1.47
direction. High | 094 | 1.19| 1.18
Manually measured profile 1.17 1.32 1.20

5 CONCLUDING REMARKS Table 2. Fractal dimension values estimated for the de-noised

) i n profiles using wavelet packets as the decomposition
We investigated the role of wavelet de-noising of laser range method.

data in reliable characterization of rock surface roughness. It
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Fig. 6. Effect of decomposition method on the fractal dimensiorrig. 7. Effect of hard and soft thresholding on the fractal
of de-noised profiles. dimension of de-noised profiles.
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Fig. 8. De-noised laser profile obtained by penalized-low soft thresholding of the DWT coefficients compared with the
corresponding manually measured profile.
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