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ABSTRACT: 
The paper presents an approach for the reclassification and generalization of land-use information from topographic information. 
Based on a given transformation matrix describing the transition from topographic data to land-use data, a semantic and geometry 
based generalization of too small features for the target scale is performed. The challenges of the problem are as follows: (1) 
identification and reclassification of heterogeneous feature classes by local interpretation, (2) presence of concave, narrow or very 
elongated features, (3) processing of very large data sets. The approach is composed of several steps consisting of aggregation, 
feature partitioning, identification of mixed feature classes and simplification of feature outlines.  
The workflow will be presented with examples for generating CORINE Land Cover (CLC) features from German Authoritative 
Topographic Cartographic Information System (ATKIS) data for the whole are of Germany. The results will be discussed in detail, 
including runtimes as well as dependency of the result on the parameter setting. 
 

1. INTRODUCTION 

1.1 Project Background 

The European Environment Agency collects the Coordinated 
Information on the European Environment (CORINE) Land 
Cover (CLC) data set to monitor the land-use changes in the 
European Union. The member nations have to deliver this data 
every few years. Traditionally this data set was derived from 
remote sensing data. However, the classification of land-use 
from satellite images in shorter time intervals becomes more 
cost intensive. 
 
Therefore in Germany the federal mapping agency (BKG) 
investigates an approach of deriving the land cover data from 
topographic information. The BKG collects the digital 
topographic landscape models (ATKIS Base DLM) from all 
federal states. The topographic base data contains up-to-date 
land-use information. But there are some differences between 
ATKIS and CLC. 
 
1.2 CORINE Land Cover (CLC) 

CORINE Land Cover is a polygon data set in the form of a 
tessellation: polygons do not overlap and cover the whole area 
without gaps. The scale is 1:100000. Each polygon has a 
minimum area of 25 hectare. There are no adjacent polygons 
with the same land-use class as these have to be merged.  
Land cover is classified hierarchically into 46 classes in three 
levels, for which a three digit numerical code is used. The first 
and second level groups are: 
 

1. artificial (urban, industrial, mine) 
2. agricultural (arable, permanent, pasture, 

heterogeneous) 
3. forest and semi-natural (forest, shrub, open) 
4. wetland (inland, coastal) 
5. water (inland, marine) 

 
CLC has a detailed thematic granularity concerning vegetation 
objects. In the agricultural group, there are also some 
aggregated classes for heterogeneous agricultural land-use. 
Such areas are composed of small areas of different agricultural 
land-use, e.g. class 242 which is composed of alternating 
agricultural uses (classes 2xx).  
 

1.3 ATKIS Base DLM 

The Base Digital Landscape Model (DLM) of the Authoritative 
Topographic Cartographic Information System (ATKIS) is 
Germany’s large scale topographic landscape model. It contains 
polygon and also poly-line and point data. The scale is approx. 
1:10000. The minimum area for polygons is one hectare. The 
data set is organized in thematic layers, which can also overlap. 
The land cover information is spread among these different 
layers. 
 
Each object has a four digit class code1 and different attributes 
consisting of a three character key and a four digit alphanumeric 
attribute. The classes are also organized hierarchically in three 
levels. The seven first levels groups are: 
 

1. presentation 
2. residential 
3. traffic (street, railway, airway, waterway) 
4. vegetation 
5. water 
6. relief 
7. areas (administrative, geographic, protective, danger) 
 

Table 1 gives a summarized comparison of the two data sets. 
 

Data set ATKIS Base DLM CORINE LC 
scale 1:10000 1:100000 

source aerial images, cadastre satellite images 
min. area size 1 ha 25 ha 

topology overlaps, gaps e.g. 
between the divided 

carriageways 

tessellation 

feature classes 90 relevant 
(155 with attributes) 

44 (37 in Germany) 

agricultural 
feature 
classes 

5 relevant 
(9 with attributes) 

11 (6 in Germany) 
4 (2) heterogeneous 

classes 
 

Table 1: Comparison of ATKIS and CLC 

                                                                 
1 In the new AAA model, which is currently being introduced, 
there is a 5-digit object code. 
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1.4 Automatic derivation of CLC from DLM 

The aim of the project is the automated derivation of CLC data 
from ATKIS. This derivation can be considered as 
generalization process, as there it requires both thematic 
selection and reclassification, and geometric operations due to 
the reduction in scale. Therefore, the whole workflow consists 
of two main parts. The first part is a model transformation and 
consists of the extraction, reclassification and topological 
correction of the data. The second part, the generalization part, 
which will be described in more detail in this paper, is the 
aggregation and simplification for the smaller scale. 
 
The first part consists of the following steps: after the extraction 
of the relevant features from the DLM the topological problems 
like overlaps and gaps area solved automatically using 
appropriate algorithms. The reclassification is done using a 
translation table which takes the ATKIS classes and their 
attributes into account. In the cases where a unique translation 
is not possible, a semi-automatic classification from remote 
sensing data is used. The derived model is called DLM-DE LC. 
 
In the second part the high level information from the DLM-DE 
is generalized to the small scale of 1:100000 of the CLC. For 
that purpose a sequence of generalization operations is used. 
The operators are dissolve, aggregate, split, simplify and a 
mixed-class filter. 
 
1.5 Main Challenges 

One of the main challenges of the project is the huge amount of 
data. The DLM-DE contains ten million polygons. Each 
polygon consists in average of thirty points, so one has to deal 
with 300 million points, which is more than a standard PC can 
store in the main memory. Therefore a partitioning concept is 
needed that allows processing the data sequentially or in 
parallel. Fast algorithms and efficient data structures reduce the 
required time.  
 
Another challenge is the aggregation of agricultural 
heterogeneous used areas to a group of 24x-classes in the case 
that a special mixture of land-uses occurs. The difficulty is to 
separate these areas from homogeneous as well as from other 
heterogeneous classes. 
 

2. RELATED WORK 

CORINE Land Cover (Büttner et al. 2006) is being derived by 
the European States (Geoff et al. 2007). The Federal Agency of 
Cartography and Geodesy attempts to link the topographic data 
base with the land-use data. To this end, transformation rules 
between CLC and ATKIS have been established (Arnold 2009).  
As described above, the approach uses different generalization 
and interpretation steps. The current state of the art in 
generalization is described in Mackaness et al. (2007). The 
major generalization step needed for the generalization of land-
use classes is aggregation. The classical approach for area 
aggregation was given by Oosterom (1995), the so-called GAP-
tree (Generalized Area Partitioning). In a region-growing 
fashion areas that are too small are merged with neighboring 
areas until they satisfy the size constraint. The selection of the 
neighbor to merge with depends on different criteria, mainly 
geometric and semantic constraints, e.g. similarity of object 
classes or length of common boundary. This approach is 
implemented in different software solutions (e.g. Podrenek, 
2002). Although the method yields areas of required minimum 
size, there are some drawbacks: a local determination of the 
most compatible object class can lead to a high amount of class 

changes in the whole data set. Also, objects can only survive the 
generalization process, if they have compatible neighbors. The 
method by Haunert (2008) is able to overcome these drawbacks. 
He is also able to introduce additional constraints e.g. that the 
form of the resulting objects should be compact. The solution of 
the problem has been achieved using an exact approach based 
on mixed-integer programming (Gomory, 1958), as well as a 
heuristic approach using simulated annealing (Kirkpatrick 
1983). However, the computational effort for this global 
optimization approach is very high. 
 
Collapse of polygon features corresponds to the skeleton 
operation, which can be realized using different ways. A simple 
method is based on triangulation; another is medial axis or 
straight skeleton (Haunert & Sester, 2008).  
 
The identification of mixed classes is an interpretation problem. 
Whereas interpretation is predominant in image understanding 
where the task is to extract meaningful objects from a collection 
of pixels (Lillesand & Kiefer, 1999), also in GIS-data 
interpretation is needed, even when the geo-data are already 
interpreted. E.g. in our case although the polygons are 
semantically annotated with land-use classes, however, we are 
looking for a higher level structure in the data which evolves 
from a spatial arrangement of polygons. Interpretation can be 
achieved using pattern recognition and model based approaches 
(Heinzle & Anders, 2007).  
 

3. APPROACH 

3.1 Data and index structures 

Efficient algorithms demand for efficient data and search 
structures. For topology depending operations a topologic data 
structure is essential. For spatial searching a spatial index 
structure is needed; furthermore, also structures for one-
dimensional indexing are used. 
 
In the project the we use a extended Doubly Connected Edge 
List (DCEL) as topologic structure and grids (two-dimensional 
hashing) as spatial index. 

3.1.1 Extended DCEL 
The doubly connected edge list (DCEL) is a data structure for 
polygonal meshes. It is a kind of boundary representation. The 
topological elements (and their geometric correspondence) are 
faces (polygon), edges (lines) and nodes (points). All topologic 
relations (adjacencies and incidences) are expressed by explicit 
links (see Figure 1).. For efficient iteration over all nodes or 
edges of a face or all incident edges of a node the edges are split 
into a pair of two directed half-edges. Each half-edge links its 
origin (starting point), its twin, the previous and next half-edge 
and the incident face. The node contains the geometric 
information and a link to one of the incident half-edges. The 
face contains a link to a half-edge from the outer loop and if the 
polygon has holes also, a half-edge from each inner loop 
respectively. 
 

 
Figure 1: UML Diagram of the extended DCEL 
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Figure 2: Left: A Face with an inner face in DCEL Right: 
Topological relations of a half-edge 

 
For reasons of object orientated modeling loops were placed 
between the faces and half-edges, as one can often find in 3D 
data-structures (e.g. ACIS). The loop represents a closed ring of 
half-edges. This ring can be an inner or outer border of a face 
(see Figure 2). Algorithms for calculation the area (the area of 
inner loops is negative) or the centroid are implemented as 
member function of the loop. Because of the linear time 
complexity the values will be stored for each loop. For efficient 
spatial operations also the bounding box of the loop is stored. 
The land-use code is attached to faces.  

3.1.2 GRID 
As spatial index for nodes, edges and faces we use a simple two 
dimensional hashing. We put a regular grid over the whole area. 
Each cell of this grid contains a list of all included points and all 
intersecting edges and faces, respectively. This simple structure 
can be used, because of the approximately equally distributed 
geometric features.  
 
For the DLM-DE a grid width of 100 m for points and edges 
(<10 features per cell) and 1000 m for faces (40 faces per cell) 
leads to nearly optimal speed. Experiments with a KD-tree for 
the points lead to similar results. 
 
3.2 Topological cleaning 

Before starting the generalization process, the data have to be 
imported into the topological structure. In this step we also look 
for topological or semantic errors. Each polygon is check for a 
valid CLC class. Small sliver polygons with a size under a 
threshold of e.g. 1 m will be rejected. A snapping with a 
distance of 1 cm is done for each inserted point. With a point in 
polygon test and a test for segment intersection overlapping 
polygons are detected and also rejected. Holes in the tessellation 
can be easily found by building loops of the half-edges which 
not belong to any face. Loops with a positive orientation are 
holes in the data set. The largest loop with a negative 
orientation is the outer border of the loaded data. 
 
3.3 Generalization operators  

3.3.1 Dissolve 
The dissolve operator merges adjacent faces of the same class. 
For this purpose the edges which separate such faces will be 
removed and new loops are built. Besides the obvious cases 
which reduce the number of loops, there are also cases which 
generate new inner loops (see Figure 3). 
 

 
 
Figure 3: Beside the obvious cases (left and middle) of a merge, 

where the number of loops is reduced there are also 
cases which produce new inner loops (right). 

3.3.2 Aggregate 
The aggregation step aims at guarantying the minimum size of 
all faces. The aggregation operator in our case uses a simple 
greedy algorithm. It starts with the smallest face and merges it 
to a compatible neighbor. This fast algorithm is able to process 
the data set sequentially. However, in some cases it may lead to 
unexpected results, as shown in Figure 4. This is due to the fact 
that the decisions are only taken locally and not globally. 
 

 
 

Figure 4: The sequential aggregation can lead to an unexpected 
result: The black area is dominating the source data 
set, but after aggregation the result is grey 
(according to Haunert (2008)) 

 
There are different options to determine compatible neighbors. 
The criterion can be:  
 

• the semantic compatibility (semantic distance),  
• the geometric compactness 
• or a combination of both. 

 

 
 

Figure 5: Small extract of the CLC priority matrix 
 
The semantically nearest partner can be found using a priority 
matrix. We use the matrix from the CLC technical guide 
(Bossard, Feranec & Otahel 2000) (Figure 5). The priority 
values are from an ordinal scale, so their differences and their 
values in different lines should not be compared. The matrix is 
not symmetric, as there may be different ranks when going from 
one object to another than vice versa (e.g. settlement -> 
vegetation). Priority value zero is used if both faces have the 
same class. The higher the priority value, the higher is the 
semantic distance. Therefore the neighbor with the lowest 
priority value is chosen.  
 

 
 
Figure 6: (left to right) Original situation, the result of the 

semantic and geometric aggregation. 
 
As geometric criterion the length of the common edge is used. 
This leads to compact forms. Compactness can be measured as 
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the ratio of area and perimeter. A shorter perimeter leads to 
better compactness. So the maximum edge length has to be 
reduced to achieve a better compactness.  
 
The effects of using the criteria separate are shown in a real 
example in Figure 6. The semantic criterion leads to non-
compact forms, whereas the geometric criterion is more 
compact but leads to a large amount of class change.  
 
The combination of both criteria allows merging of 
semantically more distant objects, if the resulting form is more 
compact. This leads to Formula 1. 
 

  ሺ1ሻ 

 
The formula means that a b-times longer shared edge allows a 
neighbor with the next worse priority. The base b allows to 
weight between compactness and semantic proximity. A value 
of b=1 leads to only compact results, a high value of b leads to 
semantically optimal results. Using the priority values is not 
quite correct; it is only a simple approximation for the semantic 
distance. 
 
Another application of the aggregation operation is a special 
kind of dissolve that stops at defined area size. It merges small 
faces of the same class to bigger compact faces using the 
geometric aggregation with the condition that only adjacent 
faces of the same class are considered. 

3.3.3 Split 
In addition to the criterion of minimal area size also the extent 
of the polygon is limited to a minimum distance. That demands 
for a collapse operator to remove slim, elongated polygons and 
narrow parts. The collapse algorithm by Haunert & Sester 
(2008) requires buffer and skeleton operations that are time 
consuming. Therefore - as faster alternative - a combination of 
splitting such polygons and merging the resulting parts with a 
geometric aggregation to other neighbors is used. 
 

 
 
Figure 7: The operator splits the polygon at narrow parts if there 

is a higher order node or a concave node. An 
existing node is preferred if it is close to the 
orthogonal projection. 

 
The split operator cuts faces at narrow internal parts. First, the 
concave or higher order node with the smallest distance to a 
non-adjacent edge is calculated. A new node will be inserted at 
the orthogonal projection if there is no existing node nearby. An 
edge is inserted if it fulfills the conditions being inside and not 
intersecting other edges. Else the next suited node is chosen 
(see Figure 7). After the split operator the aggregate operator 
merges too small pieces to other adjacent faces. 

3.3.4 24x-Filter 
In CORINE land-cover there is a group of classes which stands 
for heterogeneous land-uses. The classes 242 and 243 are 
relevant for Germany. Class 242 (complex cultivation pattern) 
is used for a mixture of small parcels with different cultures. 

Class 243 is used for land that is principally occupied by 
agriculture, with significant areas of natural vegetation.  
 
Heterogeneous classes are not included in the ATKIS schema. 
To form these 24x-classes an operator for detecting 
heterogeneous land-use is needed. The properties of these 
classes are that smaller areas with different, mostly agricultural 
land-use alternate within the minimum area size (actually 25 ha 
in CLC). For the recognition of class 242 only the agriculture 
areas (2xx) are relevant.  For 243 also forest, semi- and natural 
areas (3xx, 4xx) and lakes (512) have to be taken into account. 
The algorithm calculates some neighborhood statistics for each 
face. All adjacent faces within a distance of the centroid smaller 
than a given radius and with an area size smaller than the target 
size are collected by a deep search in the topological structure. 
The fraction of the area of the majority class and the 
summarized fractions of agricultural areas (2xx) and 
(semi-)natural areas (3xx, 4xx, 512) are calculated. In the case 
the majority class dominates (>75%) then the majority class 
becomes the new class of the polygon. Otherwise there is a 
check, if it is a heterogeneous area or only a border region of 
larger homogeneous areas. 
 
For that purpose the length of the borders between the relevant 
classes is summarized and weighted with the considered area. A 
heterogeneous area is characterized by a high border length, as 
there is a high number of alternating areas. To distinguish 
between 242 and 243 the percentage of (semi-natural) areas has 
to be significant (>25%). 

3.3.5 Simplify 
The simplify-operator removes redundant points from the loops. 
A point is redundant, if the geometric without using this point is 
lower than an epsilon and if the topology do not change.  
 
We implemented the algorithm of Douglas & Peucker (1973) 
with an extension for closed loops and a topology check. The 
algorithm is running over all loops, between each pair of 
adjacent topological nodes (degree > 2). If the loop contains no 
topological nodes, the first one is chosen. The algorithm tries 
like Douglas-Peuker to use the direct line between the two end 
nodes and searches for the farthest point of the original line to 
this new line. The first extension is for the case, that both end 
points are the same nodes. Then the point to point distance is 
used instead of point to straight line distance. If the distance of 
the farthest point is larger than the epsilon-value then the point 
is inserted in the new line and the algorithm processes both 
parts recursively. If the distance is smaller than epsilon the 
Douglas-Peucker algorithm would remove all points between 
the end nodes. Here the second extension is done to checks the 
topology. All points in the bounding-box spanned by the two 
nodes are checked for switching the side of the line. If a point 
switches the side, the farthest point is inserted to the line (i.e. 
treating it as if it were too far). 
 
3.4 Process chain  

In this section the use of the introduced operators and their 
orchestration in the process change is shown. The workflow for 
a target size of 25 ha is as follows: 
 

1. import and data cleaning 
2. fill holes 
3. dissolve faces < 25 ha 
4. split faces < 50 m  
5. aggregate faces < 1 ha geometrically (base 1.2) 
6. reclassify faces with 24x-filter (radius 282 m) 
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7. aggregate faces < 5 ha weighted (base 2) 
8. aggregate faces < 25 ha semantically 
9. simplify polygons (tolerance 20 m) 
10. dissolve all 

 
During the import step (1) semantic and topology is checked. 
Small topologic errors are resolved by a snapping. The hole-fill 
step (2), searches for all outer loops and fills gaps with dummy 
objects. These objects will be merged to other objects in the 
later steps. 
 
A first dissolve step (3) merges all faces with an adjacent face 
of the same CLC class which are smaller than the target size 
(25 ha). The dissolve is limited to 25 ha to prevent polygons 
from being too large (e.g. rivers that may extend over the whole 
data set). This step leads to many very non-compact polygons. 
To be able to remove them later, the following split-step (4) 
cuts them at narrow internal parts (smaller than 50 m = 0.5 mm 
in the map). Afterwards an aggregation (5) merges all faces 
smaller than the source area size of 1 ha to geometrically fitting 
neighbors. 
 
The proximity analysis of the 24x-filter step (6) reclassifies 
agricultural or natural polygons smaller than 25 ha in a given 
surrounding as heterogeneous (24x class).  
The next step aggregates all polygons to the target size of 25 ha. 
First we start with a geometric/semantically weighted 
aggregation (7) to get more compact forms, second only the 
semantic criterion is used (8) to prevent large semantic changes 
of large areas. 
 
The simplify step (9) smoothes the polygon outlines by 
reducing the number of nodes. As geometric error tolerance 20 
m (0.2 mm in the map) is used. The finishing dissolve step (10) 
removes all remaining edges between faces of same class. 

 
4. RESULTS 

4.1 Runtime and memory 

The implemented algorithms are fast but require a lot of 
memory. Data and index structures need up to 160 Bytes per 
point on a 32 bit machine. With 6 GB free main memory on a 
64 bit computer we were able to process up to 30 million points 
at once, which corresponds to the tenth part of Germany. 
 
The run-time was tested with a 32 bit 2.66 GHz Intel Core 2 
processor with a balanced system of RAM, hard disk and 
processor (windows performance index 5.5). The whole 
generalization sequence for a 45 x 45 km data set takes less than 
two minutes. The most time expensive parts of the process are 
the I/O-operations which take more than 75% of the computing 
time. We are able to read 100000 points per second from shape 
files while building the topology. The time of the writing 
process depends on the disk cache. In the worst case it is the 
same as for reading. 
 
The time of the operations highly depends on the data. The most 
expensive one is the split operation that is quadratic with the 
number of points per polygon. At the introduced position in the 
process chain the split operation takes the same time as the 
reading process. 
 
The other operations are ten and more times faster than I/O 
operations. The aggregation operator processes one million 
points per second. The line generalization with 0.7 million 

points per second is a bit slower, but it works on the reduced 
data set at the end of the generalization process.  
 
4.2 Semantic and geometric correctness 

To evaluate the semantic and geometric correctness we did 
some statistics comparing input, result and a CLC 2006 
reference data set, which was derived from remote sensing data. 
 

Data set DLM-DE Result CLC 2006 
Polygons 91324 1341 878 
Points per Polygon 24 104 77 
Area per Polygon 2.3 ha 155 ha 238 ha 
Perimeter per Polygon 0.6 km 9.4 km 10.1 km 
Avg. Compactness 50% 24% 33% 

 
Table 2: Statistic of the test data set Dresden (45 x 45 km) 

 

 

Figure 8: Percentage of area for each CLC class (bars) and 
percentage of match (A0) and κ-values for the 
Dresden data set. 

 
Figure 9 shows the input data (DLM-DE), our result and the 
CLC 2006 of the test area Dresden. The statistics in Figure 8 
verifies that our result matches with DLM-DE (75%) better than 
the reference data set (60%). This is not surprising as for 
CLC 2006 different data sources were used. Because of the 
removing of the small faces our generalization result is a bit 
more similar to CLC 2006 (66%) than CLC 2006 to our input.  
 
Table 2 shows, that our polygons are only a bit smaller and 
more complex and less compact than the CLC 2006 polygons. 
The percentage of the CLC classes is similar in all data sets 
(Figure 9). There are some significant differences between the 
DLM-DE and CLC 2006 within the classes 211/234 
(arable/grass land) and also between 311/313 (broad-
leaved/mixed forest) and 111/112 (continuous/discontinuous 
urban fabric). We assume that it comes from different 
interpretations. The percentages in our generated data set are 
mostly in the middle. The heterogeneous classes 242 and 243 
are not included in the input data. Our generalization generates 
a similar fraction of these classes. However, the automatically 
generated areas are mostly not at the same location as in the 
manually generated reference data set. We argue though, that 
this is the result of an interpretation process, where different 
human interpreters would also yield slightly different results.  
 
Input (DLM-DE) and the result match with 75%. This means 
that 25% of the area changes its class during generalization 
process. This is not an error; it is an unavoidable effect of the 
generalization. The κ-values 0.5-0.65 which stand for a 
moderate up to substantial agreement should also not be 
interpreted as bad results, because it is not a comparison with 
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the real truth, or with a defined valid generalization, 
respectively. 

Douglas, D. & Peucker, T., 1973. Algorithms for the reduction 
of the number of points required to represent a digitized line or 
its caricature, The Canadian Cartographer 10 (1973) 112-122. 

 

Figure 9: Extract (20 x 25 km) of test data set Dresden from left to right: input DLM-DE, our result and CLC 2006 as reference. 
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