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ABSTRACT:

Our contribution is dedicated to geographic information contained in unstructured textual documents. The main focus of this article
is to propose a general indexing strategy that is dedicated to spatial information, but which could be applied to temporal and thematic
information as well. More specifically, we have developed a process flow that indexes the spatial information contained in textual
documents. This process flow interprets spatial information and computes corresponding accurate footprints. Our goal is to normalize
such heterogeneous grained and scaled spatial information (points, polylines, polygons). This normalization is carried out at the index
level by grouping spatial information together within spatial areas and by using statistics to compute frequencies for such areas and
weights for the retrieved documents.

1 INTRODUCTION

The digitization of printed literature is currently making signifi-
cant progress. The Google Books Library Project, for instance,
aims at creating digital representations of the entire printed in-
ventory of libraries. Other initiatives specialize in the legacy lit-
erature of specific domains, such as medicine or cultural heritage
(Sautter et al., 2007). For instance, libraries or museums are now
offering their electronic contents to a growing number of users.

While some projects only aim at creating digital versions of the
text documents, domain-specific efforts often have more ambi-
tious goals (Sautter et al., 2007). For example, to maximize the
use of the contents, text documents are annotated and indexed
according to domain-specific models. The Virtual Itineraries in
the Pyrenees1 (PIV) project2 consists in managing a repository
of the electronic versions of books (histories, travelogues) from
the 19th and 20th centuries. It appears that the contents present
many geographic aspects (Marquesuzaà et al., 2005). This kind
of repository is quite stable (few suppressions and modifications,
regular inserts of documents) and not too large. Therefore, the
cost of a back-office refined semantic aware automated indexing
is reasonable (Gaio et al., 2008).

Although well-known search engines still deliver good results for
pure keyword searches, it has been observed that precision is de-
creasing, which in turn means that a user has to spend more time
in exploring retrieved documents in order to find those that satisfy
his information needs (Kanhabua and Nørvåg, 2008). One way of
improving precision is to include a geographical dimension into
the search. We consider the generally accepted hypothesis that
Geographical Information (GI) is made up of three components
namely spatial, temporal and thematic. A typical textual sam-
ple is: “Fortified towns in the south of the Aquitaine basin in the
13th century.” To process this textual unit, we claim that each
of its three components (spatial, temporal and thematic) should
be treated independently, as is put forth by (Clough et al., 2006).
This can be done by making several indexes, one per component,

1Mountains of the south west of France
2Part of this project is supported by the Greater Pau City Council and

the MIDR media library

as is advised by (Martins et al., 2005). In this way, one can limit
the search to one criterion and easily manage the indexes (e.g., to
allow adding documents to the corpus). So, our approach consists
in processing components independently, in order to better com-
bine them later on. It contributes to the field of Geographic Infor-
mation Retrieval (GIR) as defined by (Jones and Purves, 2006).

The current version of the PIV platform is comprised of three
independent process flows: spatial (Gaio et al., 2008), tempo-
ral (Le Parc-Lacayrelle et al., 2007) and thematic (Sallaberry et
al., 2007). For example, Figure 1 illustrates automatic annota-
tions resulting from such process flows: spatial information is
highlighted, temporal information is outlined and the thematic
one is underlined. Figure 2 illustrates the richness and accu-
racy of the resulting specific indexes: i.e., the PIV computes
geometric representations of spatial information, time intervals
corresponding to temporal information and lists of terms corre-
sponding to thematic information. Experiments (Sallaberry et
al., 2007) demonstrate the effectiveness of these indexes within
specific spatial, temporal or thematic information retrieval sce-
narios. Two important problems were pointed out during these
experiments: 1-results scoring does not integrate spatial features
or temporal features frequency within documents: e.g. we are
looking for “Biarritz,” D1 and D2 will have the same weight even
if D1 contains only “Biarritz” spatial feature whereas D2 con-
tains “Biarritz” spatial feature and many other ones; 2-merging
results within a geographic information retrieval process remains
a challenge (Visser, 2004): as each index is built with one dedi-
cated approach, as well as each document relevancy calculation
formula is based on different methods (which correspond respec-
tively to spatial, temporal or thematic criteria), how to combine
spatial, temporal and thematic specific relevancy scores of the re-
trieved documents?

We propose to normalize each geographic indexing criteria. It
consists on rearranging geographic information within a uniform
representation form: we represent geographic information within
spatial tiles (spatial areas), temporal tiles (calendar intervals) and
thematic tiles (concepts) and compute each tile evocation fre-
quency in the documents. Then, we apply statistic formulae gen-
erally used for plain-text information retrieval to compute rele-
vancy scores for each resulting document.
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Figure 1: Example of automatically annotated textual documents

Figure 2: Example of spatial, temporal and thematic indexes

This approach proposes (1) frequency parameter integration within
the relevance scoring algorithms and (2) geographic data normal-
ization within a new level of spatial, temporal and thematic in-
dexes. Moreover, we propose to produce different granularity
level indexes (for example, spatial administrative segmentations:
cities, counties, countries) in order to parse the indexes best suited
to the grain of each query.

Merging results provided by such hybrid querying criteria would
only make sense if such normalized indexes were homogeneous
as well as if the relevance calculation formulae were similar. That
is why the next section presents a spatial normalization approach,
which we will later apply to the temporal and thematic aspects.

The paper is organized as follows. Section 2 briefly outlines the
textual process flow indexing geographic information within the
PIV prototype. Section 3 describes related works and our propos-
als for the creation of new indexes through spatial normalization.
Section 4 details the proposed model for computing spatial rele-
vance and describes experiments we carried out to evaluate these
propositions. Finally, section 5 and 6 discuss our future perspec-
tives and conclude.

2 TEXTUAL PROCESS FLOW LEADING TO SPATIAL
NORMALIZATION

A document textual content processing sequence is usually com-
posed of four main steps: (a) “tokenization” splits the document
into smaller blocks of text, (b) lexical and morphological anal-
ysis carries out recognition and transformation of these blocks
into lexemes, (c) the syntactic analysis, based on grammar rules,
allows links between lexeme to be found, finally, (d) the “seman-
tic” step carries out a more specific analysis allowing meaningful
lexeme groupings to be interpreted.

As explained hereinafter, our data processing sequence is quite
different. This spatial information process flow is described in
Figure 3. Steps 1 to 4 are detailed in (Gaio et al., 2008). This ap-
proach was developed and experimented within the PIV project:

1. After a classical textual tokenization preprocessing sequence
and according to (Baccino and Pynte, 1994) we adopt an ac-
tive reading behavior, that is to say sought-after information
is a priori known. A marker of candidate spatial token lo-
cates spatial named entities using typographic and lexical
rules (involving spatial features initiator lexicons). Then, a

Figure 3: Spatial information process flow

morphosyntactic analyzer associates a lemma and a nature
with each candidate token (e.g. “Marais”, noun).

2. A semantic analyzer marks candidate Absolute Spatial Fea-
tures (ASF, e.g. “Marais district”) first and candidate Rel-
ative Spatial Features (RSF, e.g. “Marais district vicinity”)
next thanks to a Definite Clause Grammar (DCG). For in-
stance, syntagms of composed nouns (i.e. “Marais district,”
“Emile Zola street,” “Wild Chamois peak”) are brought to-
gether and spatial relationships (adjacency, inclusion, dis-
tance, cardinal direction) are tagged (Egenhofer, 1991).

3. ASF are validated and geolocalized thanks to external and/or
internal gazetteers (IGN French Geographic Institute resources,
Geonames resources and contributive hand-craft local re-
sources). Then expressions containing RSF are built from
pointed out ASF: embedded spatial relationships (e.g. ad-
jacency: “vicinity”) are interpreted and corresponding ge-
ometries are computed.

4. Only validated spatial features are retained. Thus we get a
spatial index describing each SF with the corresponding ge-
ometry, text, paragraph and document. This first level of in-
dex supports IR scenarios: query/index overlapping geome-
tries are computed and scored relevant textual paragragraphs
are returned.

5. SF are grouped, weighted and mapped into a set of seg-
mented grids. We propose different grained tiling grids: reg-
ular and administrative grids (district, city, county, . . . ). We
use information retrieval TF.IDF formulae (Spärck Jones,
1972) to compute spatial tiles’ frequencies and weight them.

6. Finally, we get a spatial index describing each tile with the
corresponding frequency and SF (geometry, text, paragraph
and document). This second level of index supports new
IR capabilities: a query is mapped to the more convenient
grid and query/index overlapping areas are computed and
relevance scoring algorithms integrate each tile frequency.
This promotes textual paragraphs centered on the required
SF only. Moreover, it allows different querying strategies:
for example, thin-scale queries are compared to district grids
and large-scale ones are compared to country grids.

A GIS supports spatial operations of all the previous stages. This
paper focuses on the spatial information normalization process
(stage 5). It describes statistical IR approaches integration in such
a process. An experiment compares different index tiling grids
and IR statistical formulae to validate our propositions.
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3 SPATIAL INFORMATION GATHERING FOR
SPATIAL NORMALIZATION

3.1 Related works

One of the most popular models developed in textual-based in-
formation retrieval research is the vector space model (Salton
and McGill, 1983). Using a vector space model, the content
of each document can be approximately described by a vector
of (content-bearing) terms (Cai, 2002). An information retrieval
system stores a representation of a document collection using a
document-by-term matrix (Table 1), where the element at (i, j)
position corresponds to the frequency of occurrence of term i in
the jth document (Manning et al., 2008, Cai, 2002).

T1 T2 . . . Tt

D1

D2

...
Dn

0BBB@
w11 w21 . . . wt1

w21 w22 . . . wt2

...
...

...
wn1 wn2 . . . wtn

1CCCA
Table 1: Document-by-T matrix within the vector space model

The vector space model can support selecting and ranking of doc-
uments by computing a similarity measure between a document
and a query or another document (Salton and McGill, 1983).
There are obvious advantages and disadvantages of using vector
space model in retrieving geographical information. Vector space
model is well accepted as an effective approach in modeling the-
matic subspace and it allows spatial information to be handled
the same way as thematic information (Cai, 2002). (Cai, 2002)
proposed to manage place names within a vector space model.
Place names are integrated as independent dimensions in a vec-
tor space model, whereas in fact, they are points (or regions) in a
two-dimensional geographical space. In order to improve such a
keyword-based search method, (Cai, 2002) proposed to integrate
proper ontologies of places as promoted by (Jones et al., 2001).

Our approach is different as it extends such a term-based matrix
to a tile-based matrix. In the vector space model, all the objects
(terms, spatial tiles, temporal tiles, thematic tiles (concepts)) can
be similarly represented as vectors. This paper proposes to gather
SF into spatial tiling grids to compute a similar document-by-tile
matrix (Figure 1), where the element at (i, j) position corresponds
to the frequency of occurrence of spatial tile i in the jth document.

On the one hand, current spatial oriented research works distin-
guish:

• spatial generalization: defined as spatial features selection,
displacement and/or simplification processes (Zhang, 2005,
Zhou and Jones, 2004, Zhou et al., 2000, Glander and Döllner,
2007);

• spatial normalization: defined as an image registration pro-
cess estimating and applying warp-fields (Robbins et al.,
2003);

• spatial summarization: defined as spatial features aggrega-
tion / combination into larger features (i.e. cell-based struc-
ture) (Rees, 2003).

On the other hand, information retrieval oriented research works
define normalization as a stemming process of words in order to
gather and weight them (Spärck Jones, 1972, Li et al., 2002).
So, what we call normalizing spatial information, in the follow-
ing section, means spatial information (representations computed
from textual documents) gathering into spatial tiles in order to
weight them according to frequency computations.

The originality of the approach described in the following section
consists in:

a) the proposition of different granularity level spatial indexes:
administrative and/or regular grids;

b) the adaptation of effective full-text IR technics in order to
process such indexes.

3.2 Spatial Gathering for normalization

First, we detail the spatial normalization process (stage 5 Figure
3) leading to the index2 (stage 6 Figure 3). Then, we briefly
explain how we take advantage of this normalized index within
an IR process.

3.2.1 Information Indexing. Our approach consists in gath-
ering spatial information into a unique type of spatial represen-
tation: the tile. So we divide space by attaching each detected
SF to tiles. It is similar to the lemmatisation process, for which
each term is attached to a lemma. Two segmentation types are
possible. The first concerns regular tiles (i.e., segmentation into
rectangular tiles of the same size — see Figure 4). It is similar to
truncation 3. The second concerns administrative tiles (i.e., seg-
mentation into cities for example — see Figure 5 ). It is similar
to lemmatisation 4. To calculate a tile frequency, one just has to
count the number of SF that intersect it, while keeping in mind
that a SF can intersect several tiles.

For illustration purposes, let’s go back to the example in Figure
1 and 2. If we choose to use regular segmentation (Figure 4),
we obtain the tiles index shown in Table 2. In this table, several
scenarios are presented. First, SF #5 intersects two tiles (T2 and
T3); so the discrete frequency of both of them is incremented
by 1. Moreover tile T2 is intersected by two SF (#1 and #5);
consequently it has a weight of 2.

Figure 4: Part of thin-grained SF obtained in index1 projected on
a segmentation by regular grid

idt idsf list discrete frequency continuous frequency
T1 [] 0 0
T2 [#1;#5] 2 0.15
T3 [#5] 1 0.20
. . .

Table 2: Spatial index2 with regular tiles (phase 6 - Figure 3)

One should note the granularity problem of the spatial informa-
tion that is being processed, and the proportionality issue between

3e.g. for word “forgotten” the truncation returns “forgott”
4e.g. for word “forgotten” the lemmatisation returns “forget”
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Figure 5: Part of thin-grained SF obtained in index1 projected on
an administrative segmentation (cities)

Discrete
frequency freqt =

P
freqsf

Continuous
frequency

freqt =
P

freqsf ∗
Arsf,t

Art
∗ 1

NbTilessf

Table 3: Frequency formulae (Arsf,t: SF area on tile t, Art: tile
t area, NbTilessf : number of tiles intersected by the SF)

its representation (SF) and a tile as well as the size of their over-
lapping area. Indeed, one may wonder whether a SF’s area that
only covers a small part of a tile should have as great a weight as
a SF’s area that covers most of the area of the same tile? Thus, we
suggest two frequency calculation (see Table 3). Indexing may be
discrete; so, for a given document unit, a tile frequency is incre-
mented by 1 every time there is an intersection with a SF (Table
2 column 3). We have also considered a continuous indexing ap-
proach. According to the ratio overlay SF/tile, a tile frequency is
incremented by a value between 0 and 1 (Table 2 column 4).

These indexes are intended to support spatial IR. This involves
weighting the results. Consequently, we use regular IR formulae
and carry out experiments on such indexes of spatial tiles.

3.2.2 Information Retrieval. We propose 4 IR formulae (Ta-
ble 4). TF, TF.IDF and OkapiBM25 are dedicated to discrete
weighting. They are widely used in full-text IR (Manning et al.,
2008, Savoy, 2002). In our context, the TF formula avoids re-
ducing the weight of overly frequent tiles. Nevertheless, classical
frequency does not take spatial specificity like granularity into
account. That is why we decided to apply TF onto continuous
frequency, and we call this approach TFc.

4 EXPERIMENTS

Our hypothesis is that the segmentation must be adapted to the
SF type of the corpus and of the queries. We propose to use
the granularity of the query to choose the best suited index. For
complex queries, composed of different grained SF, we propose
to define a default well suited index. So here we are looking for
what segmentation and weighting formula give the better results
for our corpus.

Our approaches are based on thin-grained spatial data. But spatial
evaluation campaigns like GeoCLEF (Mandl et al., 2007) do not
give accurate resources (like polygons) and do not handle French
documents. That’s why we realize our experiment on our cultural
heritage digital library.

10 French books were indexed. In order to compare our propo-
sitions to manually sorted methods, we chose a sample of 1,019

Tile Frequency
(TF)

Wt,Du = TFt,Du =
freqt,DuPn
i=1 freqi

TF.IDF
Wt,Du = TFt,Du ∗ IDFt

and IDFt = log
“

NDu
NDut

”

OkapiBM25
Wt,Du =

“
(k1+1)∗TFt,Du

(K+TFt,Du)

”
and K = k1 ∗ [(1− b) + b∗n

advl
]

TFc Wt,Du = TFct,Du =
freqCt,DuPn
i=1 freqCi

freqt,Du : tile frequency in the document unit,
n : number of tiles in the document unit,
NDut : number of document units with tile t,
NDu : number of document units, k1 = 1.2,
b = 0.75, advl = 900, freqC: continuous frequency

Table 4: Weighting formulae, used with index2, for a tile t and a
document unit Du

in downtown Paris (Inclusion) near Gavarnie (Proximity)

on Tarbes-Lourdes axis
(Union)

in south of Ile-de-France
(Orientation)

Table 5: Examples of RSF

document units, corresponding to 1,028 SF (902 ASF and 126
RSF). Each document unit may contain from 0 to many SF. We
submitted 40 queries (the baseline is index1). 15 queries involve
an ASF : 5 of each type (small grained like peaks, intermediate
grained like cities and large grained like regions). 25 other con-
tain a RSF : 5 of each type (orientation, proximity, union, inclu-
sion, distance). Table 5 shows some examples of relations. We
observed that 30% of our ASF are well identified cities, 12% are
larger well identified ASF (department, regions), 38% are smaller
ASF (peaks, cabins, . . . ) and the others (approximatively 20%)
have a variable average size.

We tried 6 different indexing segmentations: 3 administrative
segmentations (city, department and region) and 3 regular seg-
mentations (grid of 100x100, grid of 200x200 and grid of 400x400).
The grid of 200x200 corresponds to the average city size. Finally,
we tested all theses segmentations with the 4 weighting formulae
presented in last section (TF, TF-IDF, OkapiBM25, TFc).

As we can see in Table 6, for all segmentations, the TFc gives the
best results. As we explained in section 3, every classical statis-
tical weighting formulae (TF, TF-IDF, OkapiBM25) use discrete
frequency. They give the same weight for a geometry which fills
the major part of one tile, and for a geometry which represents
a little part of the same tile. On the contrary, the TFc uses con-
tinuous frequency and gives a weight depending on the area of
overlapping between the tile and the SF’s geometry.
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Concerning the segmentation, the Table 6 shows that all segmen-
tations give good results excepts department and regions (they
are too large so they gather SF which are too far away from each
other). For segmentation by regular grid, the one of 200x200
gives the best results. Concerning the administrative segmenta-
tion, city segmentation gives the best results. The main explana-
tion is that an important part of the indexed ASF concerns well
identified cities. So it confirms our hypothesis that the segmenta-
tion must be adapted to the type of the SF contained in the corpus.

Tables 6 and 7 also show that the city segmentation associated to
the TFc gives better results than our baseline. Let’s take example
of Figure 1 to illustrate why we obtain such results. If we consider
query “in Biarritz,” the relevancy score for D2 on index1 is 1.0
because the text contains the SF “in Biarritz.” It does not take into
account the other SF. On the other hand, the city segmentation
associated to the TFc gives a relevancy score of about 0.17. It
computes a lower score to the document unit because it contains
other less relevant SF.

MAP TF TF-IDF Okapi TFc
City Segmentation 0.61 0.61 0.63 0.70
Department Segmentation 0.40 0.39 0.40 0.53
Region Segmentation 0.40 0.39 0.39 0.56
Grid of 100x100 0.59 0.59 0.62 0.68
Grid of 200x200 0.61 0.60 0.63 0.69
Grid of 400x400 0.63 0.62 0.65 0.66

Table 6: Results of experiment on SF with different segmenta-
tions and weighting formulae

MAP Spatial Overlapping
index1 (baseline) 0.62

Table 7: Results of experiment on SF with baseline (index1)

In conclusion, we advise segmentation into cities and the TFc
formula (cf Table 6) for cultural heritage digital libraries. This
normalization allows one to introduce an initial approximation of
the spatial context (weighting a document unit takes into account
all the SF it contains).

5 ONGOING AND FUTURE WORK

The PIV platform supports a similar processing sequence produc-
ing temporal indexes (Figure 3). It deals with calendar temporal
features (CTF) that may be absolute (ACTF) or relative (RCTF)
like spatial ones.

Let one consider that the previous text sample involves the fol-
lowing temporal features: CTF1-“the 26th of December”, CTF2-
“Saturday 29th of December at 2pm”, CTF3-“at the beginning of
the winter”, CTF4“the last days of December 1933”. The PIV
produces such an index (Table 8, Figure 6).

The PIV temporal information normalization process (ongoing
development similar to the spatial normalization process) would
return weighted temporal intervals presented in Figure 7. This ex-
ample illustrates calendar segmentation where each interval rep-
resents a week: TF4 intersects weeks W51 and W52. For ex-
ample the week W52 has a weight of 4 according to the discrete
indexing approach.

Currently, we are working on temporal normalization experiment.
We aim to propose spatial and temporal criteria combination strate-
gies with geographic IR scenarii.

idctf text type timestamp
ctf1 the 26th of

December
actf (1933-12-26,

1933-12-26)
ctf2 Saturday 29th of

December
actf (1933-12-29,

1933-12-29)
ctf3 at the beginning of

the winter
rctf (1933-12-22,

1934-03-19)
ctf4 the last days of

December 1933
rctf (1933-12-21,

1933-12-31)

Table 8: Index of temporal features in PIV

Figure 6: Temporal Index

6 CONCLUSION

The Virtual Itineraries in the Pyrenees (PIV) project consists in
managing a repository of the electronic versions of books (histo-
ries, travelogues) from the 19th and 20th centuries. The PIV en-
gine automatically annotates, interprets and indexes spatial, tem-
poral and thematic information contained in those documents.
Three independent process flows support spatial, temporal and
thematic indexing and IR operations.

Two important problems were pointed out during a first campaign
of experiments (Sallaberry et al., 2007): 1-results scoring does
not integrate spatial or temporal features frequency within doc-
uments; 2-merging results within a geographic information re-
trieval process remains a challenge. The main problem of current
geographic IR systems comes from the fact that the index struc-
ture and relevancy computation approaches used for space, time
and theme are intrinsically different (Visser, 2004).

Our hypothesis is based on a spatial, temporal and thematic tiling
of information in order to build higher level indexes and to adapt
effective full-text IR technics to process such indexes.

In this paper we propose an approach for normalizing spatial in-
dexes automatically. Such a gathering of spatial features into spa-
tial tiles implies some loss of accuracy. However, as we have dif-
ferent grained indexes, we may select the best suited one during
a querying stage. Moreover, experiments point out the effective-
ness of our solution: a continuous spatial tiles frequency compu-
tation associated to a continuous document units relevancy com-
putation formula gives better results than our baseline dedicated
to the weighting of the most relevant SF of a document unit.

As explained before, the aim of this normalization method is to
develop a general indexing strategy that is suited for spatial, tem-
poral and thematic information in order to combine such geo-
graphic IR results. We are currently working on the evaluation
of the effectiveness of this indexation on a larger sample of texts
and queries. We are also working to apply normalization meth-
ods for the building of normalized temporal and thematic indexes
from textual input. Future improvement of the presented ap-
proach would be to explore how to combine normalized spatial,
temporal and thematic indexes and compute a unique relevancy
scoring. Merging results for a geographic IR approach combining
such different criteria is a recurring research question nowadays
(Martins et al., 2008, Vaid et al., 2005).
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Figure 7: Calendar Segmentation
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Revue Document Numérique 10(2), pp. 129–148.

Li, H., Srihari, K. R., Niu, C. and Li, W., 2002. Location Normal-
ization for Information Extraction. In: 19th International Con-
ference on Computational Linguistics (COLING2002)- Howard
International House and Academia Sinicaand Taipeiand Taiwan,
Association for Computational Linguistics.

Mandl, T., Gey, F. C., Nunzio, G. M. D., Ferro, N., Larson,
R., Sanderson, M., Santos, D., Womser-Hacker, C. and Xie, X.,
2007. GeoCLEF 2007: The CLEF 2007 Cross-Language Geo-
graphic Information Retrieval Track Overview. In: Carol Peters
and Valentin Jijkoun and Thomas Mandl and Henning Muller and
Douglas W. Oard and Anselmo Penas and Vivien Petras and Di-
ana Santos (ed.), CLEF, Lecture Notes in Computer Science, Vol.
5152, Springer, pp. 745–772.

Manning, C. D., Raghavan, P. and Schütze, H., 2008. Introduc-
tion to Information Retrieval. Cambridge University Press, New
York.
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