Constraint Energies for the Adaptation of 2D River Borderlines to Airborne Laser Scanning Data using Snakes

Jens Goepfert, Franz Rottensteiner, Christian Heipke, Yasin Alakese and Bodo Rosenhahn

Leibniz Universität Hannover, Germany
<table>
<thead>
<tr>
<th>Content</th>
<th>Motivation</th>
<th>Method</th>
<th>Data</th>
<th>Examples</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Motivation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Method</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>➢ General Workflow</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>➢ Active Contours – Snakes:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Internal energy – vector data</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Image energy – ALS data</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Constraint energy – object knowledge</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Energy minimization</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Data</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Examples</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Conclusion and Outlook</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Motivation

Goal

- Integration of topographic vector data (e.g., ATKIS® roads) and DSM

Problem

- Discrepancies between the data sets due to
 - differences in time, surveying methods, and modeling
Objectives

- Method for adaptation of 2D vector data and ALS data
 - Considering object information in the ALS data (structure elements – break lines, distinctive points)
 - Using the ALS data for the adaptation without sophisticated feature extraction and subsequent assignment to single vector objects
 - Considering of the **semantics** of the objects
 - Calculation of shift vectors
 - Focus on objects with height related features: roads and rivers
Semantics in terrain modeling

Object representation

- Horizontal plane
 - Increasing terrain outside
- Tilted subplanes
 - Maximum slope and curvature
 - Decreasing heights and increasing terrain outside
- Height relations
<table>
<thead>
<tr>
<th>Content</th>
<th>Motivation</th>
<th>Method</th>
<th>Data</th>
<th>Examples</th>
<th>Conclusion</th>
</tr>
</thead>
</table>

Strategy using snakes

Adaptation of the vector objects to the ALS data

- Initialization of the snakes using the 2D vector data (defining **internal energy** / topology)
- Definition of the **image energy** from ALS data or derived products
- Integration of additional object knowledge (**constraint energy**)
- Iterative energy optimization process – updating the position and shape of the snake with respect to the ALS data
- Goal: consistency of ALS features and vector data
Roads

Initialization

Iterations
This presentation is focused on rivers.
Snakes

- Parametric Active Contours (Kass et. al, 1988)

 - Parametric Contour $C(s) = (x(s), y(s))$
 - $s \in [0,1]$: arc length

 - Image $I(x,y)$

 - Energy functional $F(C(s))$
 \[
 F(C(s)) = \int_0^1 \left[E_{int}(C(s)) + E_{img}(C(s)) + E_{con}(C(s)) \right] ds
 \]

 - Fit contour to the image such that $F(C(s)) \rightarrow \text{min}$
Snakes – Internal Energy

- Internal energy $E_{int}(C(s))$: geometric model of the object

$$E_{int}(C(s)) = \frac{1}{2} \left(\alpha(s) \cdot |C_s(s)|^2 + \beta(s) \cdot |C_{ss}(s)|^2 \right)$$

- with: C_s, C_{ss}: derivatives of C with respect to s
 $\alpha(s)$: elasticity control
 $\beta(s)$: rigidity control

- Approximation of the derivatives by finite differences

$$\alpha\left((C_i - C_{i-1}) - (C_{i+1} - C_i) \right)$$
$$+ \beta\left(C_{i-2} - 2C_{i-1} + C_i \right) - 2\beta\left(C_{i-1} - 2C_i + C_{i+1} \right) + \beta\left(C_i - 2C_{i+1} + C_{i+2} \right)$$
Snakes – Image Energy

- Image energy E_{img} represents object properties
- 1. step: combined Image from ALS height and intensity data:

$$\text{Image} = a \cdot E_{\text{Int}} + b \cdot E_{\text{DSM}}$$

a,b – weights

E_{Int} – intensity image

E_{DSM} – digital surface model
Snakes – Image Energy

- 2. Step: image energy E_{img} from the combined ALS image:
 - Negative second derivatives of the Image

$$E_{img} = -\sqrt{\left(\frac{\delta^2 G}{\delta x^2} * I\right)^2 + \left(\frac{\delta^2 G}{\delta y^2} * I\right)^2}$$

G – Gaussian
I – combined Image
Snakes – Constraint Energy

- Integration of object or context knowledge using constraint energy

- Originally (Kass et. al, 1988): springs and volcanoes

- Three components in the proposed method:

\[E_{con} = E_{Twin} + E_{Flow} + E_{Gradient} \]
Institute of Photogrammetry and GeoInformation

Snakes – Constraint Energy

- Integration of object knowledge using *constraint energy*
 \[
 E_{con} = E_{Twin} + E_{Flow} + E_{Gradient}
 \]

- **First component**: Twin snakes for river borderlines (Kerschner, 2001)
 \[
 E_{Twin} = \kappa_{Twin} \cdot (d(v_i) - d_0)^2
 \]

- Connection of the opposite borderlines using a predefined distances (e.g., from GIS data)

<table>
<thead>
<tr>
<th>Content</th>
<th>Motivation</th>
<th>Method</th>
<th>Data</th>
<th>Examples</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

[Diagram of initialization and solution]
Integration of object knowledge using constraint energy

\[E_{\text{con}} = E_{\text{Twin}} + E_{\text{Flow}} + E_{\text{Gradient}} \]

• Second component: Flow direction of the river (downhill)

\[E_{\text{Flow}} = \kappa_{\text{Flow}} \cdot w_{\Delta h_i} \cdot h(v_i) \]

• with

\[w_{\Delta h_i} = \begin{cases} |h_{i-1} - h_i| & \text{if } h_{i-1} - h_i < 0 \\ 0 & \text{else} \end{cases} \]
Integration of object knowledge using *constraint energy*

\[E_{\text{con}} = E_{\text{Twin}} + E_{\text{Flow}} + E_{\text{Gradient}} \]

- Third component: gradient direction at the embankments
- Choose the most probable edge for each snake node

\[E_{\text{Gradient}} = \kappa_{\text{Gradient}} \cdot d(v_i) \]
Snakes – Constraint Energy

- Integration of object knowledge using **constraint energy**

\[E_{con} = E_{Twin} + E_{Flow} + E_{Gradient} \]

- Third component: gradient direction at the embankments

\[E_{Gradient} = \kappa_{Gradient} \cdot d(v_i) \]
Energy minimization

- Functional minimization: variational calculus
 \[F(C) = \int_0^1 E(s, C, C_s, C_{ss}) ds \rightarrow \min \]

- Solution: Euler’s differential equation

- Iterative Solution (discretisation in time)
 \[AC_t + \frac{\partial E_{img}(C_{t-1})}{\partial C} = -\gamma(C_t - C_{t-1}) \]

 \(A \) – internal energy, \(\gamma \) – step size
Data

- **ALS data – 3D point cloud**
 - Optech ALTM 3100
 - Flying altitude: 1000 m
 - Point density: 4 Pt/m²
 - First/Last echo mode
 - 0.15 m (height), 0.3 m (horizontal accuracy)

- **2D vector data**
 - German ATKIS Digital Landscape Model (DLM)
 - 3-5 m horizontal accuracy (roads and rivers)
 - Object knowledge in attributes
<table>
<thead>
<tr>
<th>Content</th>
<th>Motivation</th>
<th>Method</th>
<th>Data</th>
<th>Examples</th>
<th>Conclusion</th>
</tr>
</thead>
</table>

Data – DSM

![Image of DSM data for a geographic area]
Data – Airborne Laser Scanning
(backscattered intensity)
<table>
<thead>
<tr>
<th>Content</th>
<th>Motivation</th>
<th>Method</th>
<th>Data</th>
<th>Examples</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gradient direction</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Second derivatives</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DSM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Examples

<table>
<thead>
<tr>
<th>Content</th>
<th>Motivation</th>
<th>Method</th>
<th>Data</th>
<th>Examples</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initialization</td>
<td>Solution</td>
<td>Data</td>
<td>Examples</td>
<td>Conclusion</td>
<td></td>
</tr>
</tbody>
</table>

Examples

<table>
<thead>
<tr>
<th></th>
<th>α</th>
<th>β</th>
<th>k_{Image}</th>
<th>k_{Twin}</th>
<th>k_{Flow}</th>
<th>k_{Gradient}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shift: 10m</td>
<td>0.16</td>
<td>1.2</td>
<td>3</td>
<td>0.2</td>
<td>10</td>
<td>0.05</td>
</tr>
<tr>
<td>Shift: 20m</td>
<td>0.16</td>
<td>1.2</td>
<td>3</td>
<td>0.2</td>
<td>10</td>
<td>0.05</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RMS of point to line distances (m)</th>
<th>shift: 10 m</th>
<th>shift: 15 m</th>
<th>shift: 20 m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initialization</td>
<td>8.90</td>
<td>13.34</td>
<td>17.77</td>
</tr>
<tr>
<td>Solution</td>
<td>1.15</td>
<td>1.23</td>
<td>3.40</td>
</tr>
</tbody>
</table>
Examples

<table>
<thead>
<tr>
<th>Content</th>
<th>Motivation</th>
<th>Method</th>
<th>Data</th>
<th>Examples</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initialisation</td>
<td>Solution</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DSM</td>
<td>Shift: 10m</td>
<td>DTM</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

RMS of point to line distances (m)

<table>
<thead>
<tr>
<th></th>
<th>DSM</th>
<th>DTM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initialisation</td>
<td>8.16 8.13</td>
<td>8.16 8.13</td>
</tr>
<tr>
<td>Solution</td>
<td>3.01 2.53</td>
<td>1.04 2.42</td>
</tr>
</tbody>
</table>
Conclusion

- Active contours for the adaptation of 2D river borderlines to ALS features
- Flexible algorithm for different line objects (rivers, roads)
- Promising results with simple definition of the image energy
- Different possibilities for the integration of object knowledge
- The two borderlines support each other due to twin energy
Outlook - Object Knowledge

- **Bridges** – strong features in DTM, hints for river
- Increasing the transferability of the weights
- Combined road and river networks

example for bridge energy for roads
Thank you for your attention!

Questions?