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ABSTRACT:

The problem of laser scan analysis gained significant attention within the last decade. The standard approach to point cloud classification
utilizes Markov Random Fields (MRF). Usually, a subclass of MRFs, Associative Markov Networks (AMNs), are used. In AMN the
pairwise potential function is constant for a pair of different class labels. In some cases this constraint is too rigorous since it does not
allow expressing some natural interactions between objects, such as “roof is likely to be above the ground”. In this work we use the
general form of pairwise potentials instead. We show how to perform a tractable inference in such network using a message-passing
based algorithm. Oversegmentation technique is used to subsample a scan; this helps to eliminate noise, improve efficiency and makes
possible to use natural edge features. Experiments on two datasets obtained by an airborne laser scanner show that non-associative
Markov networks usage leads to improvement in classification accuracy.

1 INTRODUCTION

In this paper we address the problem of 3D point cloud classifi-
cation, i.e. we need to assign one of the predefined class labels
to each point of a cloud based on local properties of the point
and global properties of the cloud. This problem is hard due to
noise, occlusions, ambiguity and lack of 3D points corresponding
to small objects.

The existing methods for LIDAR data classification could be di-
vided into four groups: filtering, the methods based on unsuper-
vised learning, and on supervised learning with or without using
MRFs. The first group (Sithole and Vosselman, 2004) is used for
binary classification, e.g. separation of ground and non-ground
points, vegetation or buildings extraction. That filters can be ap-
plied consequently for extracting different classes of objects. The
common thing in these approaches is that filters always operate
only on a local neighbourhood of points (Sithole and Vosselman,
2004). This is a drawback because it is often impossible to clas-
sify points reliably without consideration of global context. The
next group of methods solves the classification problem by per-
forming semantic segmentation (Tovari, 2006), (Chehata et al.,
2008).

Supervised learning methods assume that data are separated into
training and test parts, and compute different types of features for
all points: height-, echo-, eigenvalue- or geometry- based ones
(Chehata et al., 2009). The training data features are used to build
a classifier which is applied to the test points. SVM (Lodha et al.,
2006), AdaBoost (Lodha et al., 2007) or Random Forest (Chehata
et al., 2009) classifiers have been used in the literature. (Carlberg
et al., 2009) use a cascade of classifiers to distinguish points of
each class. The method also uses region-growing segmentation
in the 3D domain to enforce a spatial coherency of classifica-
tion results. On the first stage water and ground classifiers are
applied. It limits the region growing space during classification
of the other classes. However, in the case of low buildings with
neighbouring trees the region-grow algorithm might simply shuf-
fle different classes.

(a) Typical errors of associative Markov networks

(b) Ground truth

Figure 1: AMN is likely to smooth the classification result. Color
legend: red-ground, black-building, navy-car, green-tree, cyan-
bush.

Since any single point does not give much information, spatial
context is widely used for classification. Markov network pro-
vides a natural model for interactions between points in a cloud.
(Anguelov et al., 2005) were the pioneers in semantic segmenta-
tion of 3D point clouds using MRFs, though they based on the
related work on semantic segmentation of images.

(Anguelov et al., 2005) used the subclass of MRFs called asso-
ciative Markov networks (Taskar et al., 2004). Pairwise potentials
in AMN generalize the Potts model. In the model neighbouring
nodes are encouraged to have the same label: log φij(l, l) = λl

ij ,
where λl

ij > 0, and log φij(k, l) = 0, if k 6= l. Since such
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a potential function is submodular for any pair of class labels,
it is reasonable to use alpha-expansion iterative procedure over
graph cuts for maximum a posteriori (MAP) inference (Boykov
et al., 2001). Unary and pairwise potentials are modelled as a
log-linear combination over node and edge features correspond-
ingly: log φi(l) = wl

n · xi, log φij(l, l) = wl
e · xij , where wl

n

and wl
e are label-specific model parameters, xi and xij are node

and edge features. For learning those parameters the method pro-
posed by (Taskar et al., 2004) is used. The target is to maximize
the margin of energy function value in the true label assignment
Ŷ over any different assignment Y 6= Ŷ, similar to how SVM
does it. To summarize, an AMN performs intelligent smooth-
ing of classification results. The negative effect could be seen on
Figure 1.

As the local features (Anguelov et al., 2005) use spin images
(Johnson and Hebert, 1999) of the size 5× 10 reduced by a prin-
cipal component analysis (PCA) to obtain 45 principal compo-
nents. The important thing they discovered is that the size of a
single bin should be approximately equal to the resolution of the
scan. Also, the authors used features that are invariant to rotation
in XY plane. One of such features is the distribution of points in
the neighbourhood, binned to cells of the 3 × 3 × 3 cube with
the center in the reference point and aligned with the surface ap-
proximated by its neighbourhood via principal component anal-
ysis (PCA). Another such feature is the distribution of heights of
points below and above the reference point. They had tried dif-
ferent edge features, but concluded that the constant feature for
each edge had performed best.

(Triebel et al., 2006) used a similar algorithm. Their main contri-
bution is using adaptive scan resampling in order to speed clas-
sification up. They build a kd-tree over the points of a scan and
then prune the tree. The set of points within each leaf is replaced
by a single point. In (Triebel et al., 2007) the algorithm is re-
visited. The authors noted that conventional AMN is not enough
flexible, because the potentials depend linearly on the features.
They combined nearest neighbour classifier with AMN. This led
to significant performance growth on their dataset.

(Munoz et al., 2008) continued the work of (Anguelov et al.,
2005). They tried to learn more accurate pairwise potentials. The
authors use non-constant edge features. The feature vector of an
edge is a concatenation of the spectral features of the incident
points as well as the similarity of the directional features of the
points. Spectral features tell if point’s neighbourhood looks like
a surface, a line, or noise. For a point, the tangent vector and the
normal vector are estimated. Directional features are the angles
formed by those vectors against the vertical and the horizontal
planes, scaled in some special way.

(Munoz et al., 2009b) used radically different model. They show
that a conditional random field (CRF) with higher order cliques
helps to increase the precision in addition to significant speedup.
The authors use k-means clustering in order to retrieve cliques.
The cliques are isolated from the other cliques in the CRF for-
mulation. They use the Pn Potts model for clique potentials.
For the clique Ci the potential is log φCi(Yc) = wl

Ci
· xc, if

Yi = l ∀i ∈ c, and log φCi(Yc) = 0 otherwise, where c is
the set of indices of the clique nodes (Kohli et al., 2007). The
potentials are learned by margin maximization via subgradient
projection method. Clique features xc are the same as the node
features but they are computed for the points of a clique instead
of the points in the support volume. In (Munoz et al., 2009a)
they use functional gradient boosting instead of the subgradient
method, which leads to dramatic improvement in quality.

(Lu et al., 2009) used a hybrid CRF for ground detection. The
CRF contains both discrete and continuous latent variables. They

are used to represent the state of a point (ground or non-ground)
and the actual ground elevation under the point (which is equal
to the observed elevation for ground points). The authors per-
form inference using the expectation-maximization (EM) algo-
rithm. They treat the estimated terrain map as parameters and
ground classification as hidden variables. Although EM is not
guaranteed to find the globally optimal solution, it performs well
enough in practice.

We used the classic AMN model as a starting point. Although
the AMN model gives significant advantage over classification of
3D points independently, it is still too limited. It generally fails
to detect both large and small objects due to oversmoothing. An-
other problem is error propagation, i.e. if some of the points are
incorrectly classified, it might lead to incorrect classification of
a larger region due to the same smoothing effect. See the right
side of the scan on Figure 1 for instance. Moreover, AMN model
does not allow expressing some natural interactions between ob-
jects, such as “roof is likely to be above the ground”. In con-
trast to the papers mentioned above we do not restrict ourselves
to the AMN model. In this work we use the general form of
pairwise potentials instead. We show how to perform a tractable
MAP inference in such network using the TRW-S algorithm (Kol-
mogorov, 2006). Oversegmentation technique is used to subsam-
ple the scan; this helps to eliminate noise, improve efficiency and
makes possible to use natural edge features. Experiments on two
datasets obtained by an airborne laser scanner show that using
non-associative Markov networks leads to improving classifica-
tion accuracy.

The paper is organized as follows. In the following section we
briefly describe the MRF model. In Section 3 we provide a de-
tailed description of the suggested technique. In Section 4 we
report on experimental results and then conclude the paper.

2 MARKOV RANDOM FIELDS

Markov random field (Markov network) is a popular graphical
model for 3D point cloud segmentation. The segmentation task
is formulated in terms of MAP estimation in Markov networks,
which is also referred to as energy minimization. In the prob-
lem of point cloud classification nodes of a graph correspond to
the points of a scan, and minimum of energy corresponds to the
best possible class labels assignment to the 3D points. The nodes
corresponding to neighbouring points are connected with edges.
Consider a scan I which contains N points. We need to come
up with a labeling Y, for each of the 3D points one of K pre-
defined labels should be assigned: Y = {Y1, . . . , YN}, Yi ∈
{1, . . . ,K}. In pairwise Markov network, for each node and for
each edge a non-negative potential function is given as a func-
tion of possible assignments: unary potentials φi(Yi|I) for nodes
and pairwise potentials φij(Yi, Yj |I) for edges. To emphasize
the fact that potential functions are conditioned by features of the
scan, the model is also referred to as conditional random field
(CRF). The energy is formulated as follows:

E(Y|I) = −
N∑

i=1

log φi(Yi|I) −
∑

(i,j)∈E

log φij(Yi, Yj |I) (1)

The problem of minimizing energy of this form is NP-hard when-
ever K > 2 (Kolmogorov and Zabih, 2004), but there exist a
number of methods for finding an approximate minimum. The
most used of them are graphcut-based methods (Boykov et al.,
2001), which are known to be both effective and efficient. How-
ever, they are inapplicable when pairwise potentials do not satisfy
submodular restrictions. The general problem could be solved
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approximately by message passing techniques like loopy belief
propagation (LBP) (Yedidia et al., 2000) and tree-reweighted mes-
sage passing (TRW). LBP is likely to fall into endless loop, while
TRW is proven to converge to some fixed point, which is often
close to the optimum. In practice, TRW also shows better perfor-
mance than LBP.

Sequential variation of the algorithm (TRW-S) was developed by
Vladimir Kolmogorov (Kolmogorov, 2006). It is proven to find
the global minimum of the concave lower bound on the energy
function. The graph is spanned by a set of so-called monotonic
chains, i.e. chains, that have their nodes ordered according to
some global order on the nodes of the graph. Each node of the
graph should be contained by at least one chain. For each chain
there exists its own parameter vector. The tightest lower bound on
the energy is formulated as a concave function of those vectors.
For further information please see (Kolmogorov, 2006).

3 PROPOSED METHOD

The workflows for learning and classification stages are similar,
so we describe them in parallel. First, a spatial index is built over
test/train set, which is also considered as segmentation. Then
a graph over segment medoids is built. After that, features for
unary and pairwise potentials are computed. For unary poten-
tials computation, Random Forest classifier is used. To train it
the subsampled set of point features from the train set is used.
During the classification stage all segment medoids are classified
by the trained Random Forest classifier. For pairwise potentials
computation Naı̈ve Bayes classifier is used. It is trained on the
features extracted from the train set graph. When unary and pair-
wise potentials are computed, MRF inference returns the final
label assignment. These stages are described in the appropriate
subsections.

3.1 Spatial Index and Segmentation

Spatial index allows rapid performing spatial queries (like k near-
est neighbours retrieval). For this purpose we use modified R-
Tree data structure (Guttman, 1984). Instead of the split that at-
tempts to minimize the sum of volumes of the resulting bounding
boxes, we used k-means clustering as a split algorithm. Also, we
implemented a tailored strategy for inserting points. A point is to
be inserted to the leaf with the closest centroid. Since search of
the best leaf is computationally intensive, an heuristic for search
space reduction is used.1 These modifications led to the com-
pact clusters of points within each leaf, so we consider the leaf
structure as a form of oversegmentation. See Figure 3(a) for ex-
ample of segmentation result. On the classification stage for each
segment we classify only its medoid and then spread the results
to the other points of the segment. This technique helps to cope
with acquisition and labelling noise, but fails to find objects of
sub-segment size. The possible loss caused by segmentation is
analyzed in Section 4.1. However, this form of subsampling leads
to dramatic classification speedup. It is tractable to classify mil-
lions of points using a single model.

3.2 Graph Construction

Both in training and classification stage we need to build a graph
over medoids of the segments in order to perform MRF inference.
The common approach to building graph is to add all the edges
that connect points to their k nearest neighbours. The typical
value of k for AMN varies from 3 to 5 (Munoz et al., 2008). Since

1Implementation and details of the algorithm are available on-line:
http://graphics.cs.msu.ru/en/science/research/3dpoint/lidark

our pairwise potentials are not ”attractive”, there is nothing bad
in adding more edges to a graph. Thus, we add all 5-connected
edges.

Aerial scans have its specific. They are scanned from the top,
hence there are a lot of discontinuities instead of the vertical sur-
faces such as walls and fences. For example, the roof of a build-
ing or the crown of a tree could be isolated from the ground in
the graph. Since the edges between such segments are extremely
useful, we use the following workaround: in addition to the 5NN
edges we add to the graph all the 5-connected edges in the cloud
projection to a horizontal plane.

3.3 Features and Potentials

3.3.1 Unary Potentials. We use the output of the Random
Forest algorithm (Breiman, 2001) as unary potentials. Since Ran-
dom Forest consists of multiple trees (we use 50)2, it is possible
to assign the value of the potential function of each class label
proportionally to the number of trees voted for the label. On the
Figure 3(b) one can see a typical probabilistic output of the mul-
ticlass Random Forest, which is the unary potential function as
well.

To train Random Forest it is not necessary to use all the train set
points. It is reasonable to do random subsampling. We subsam-
ple the points of the different classes proportionally to the class
frequency, so there is nearly equal number of points of each class
in the train set. According to (Elkan, 2001), a classifier trained
on the balanced data yields an unbiased classification result. The
following local features are used for classification:

• spectral and directional features as described in (Munoz et
al., 2008), totally 7 real-valued features;

• spin images of size 9×18 (Johnson and Hebert, 1999), with
simple dimensionality reduction applied, totally 27 features;

• angular spin images of size 9×18 (Endres et al., 2009), also
with reduced dimensionality, totally 27 features;

• distribution of heights of the points in infinite vertical cylin-
der around the point (approximated with a 5-bin histogram),
minimum point height in the cylinder and difference of the
point height with the min height, totally 7 features.

In total, we use 68 real-valued Random Forest features. Exper-
iments showed that dropping any group of features or reducing
spin image size leads to performance degradation, so we consider
this set irredundant.

3.3.2 Pairwise Potentials. Pairwise potentials used in AMNs
have the following drawback: they are always null for different
class labels (log φij(k, l) = 0, if k 6= l). So, it is impossible
to express any kind of inter-class relations (like ”tree could not
be lower than ground”) within such model, though it appears to
be extremely useful. We do not restrict ourselves with such con-
straints. Using the graph built on the medoids of train/test scan
segments, we compute three edge features:

• cosine of the angle between approximated normals in the
medoids: np · nq/(||np||||nq||);

• difference in altitudes of the medoids p and q normalized
by the distance between them: (pz − qz)/||p− q||;

• distance between medoids ||p− q||.
Please note that the last two features are statistically significant
only due to oversegmentation. It is not reasonable to use them if
MRF is built over points of a scan.

2OpenCV is used: http://sourceforge.net/projects/opencvlibrary/
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Let us denote these three features’ values for some edge f1, f2
and f3. Using Bayes’ theorem it is possible to compute the prob-
ability of assignment the labels l1 and l2 if all the features are
known:

P (l1l2|f1, f2, f3) =
P (f1|l1l2)P (f2|l1l2)P (f3|l1l2)P (l1l2)

P (f1, f2, f3)
(2)

The experiments have shown that the term P (l1l2) is dominating,
i.e. if the prior probability for the pair of classes is big, it is un-
likely to get any other assignment, even if the features vote for it.
So, we ignore the prior term in the formula. In order to estimate
the rest four probabilities in the right side of (2) we discretize
feature value range and collect the statistics from the edges of
labelled train set scans. Thus, we approximate the distributions
with histograms. We refer to this technique as Naı̈ve Bayes learn-
ing. During classification pairwise potentials are estimated with
respect to the edge features: φij(k, l) = P (kl|f1, f2, f3).

Naı̈ve Bayes classifier fits the problem well. It is simple, non-
linear and allows coping with imbalance easily. However, it treats
all edges independently. Structured learning techniques like cutting-
plane training of SVM (Joachims et al., 2009), which optimize
parameters of the potentials jointly, are promising here.

3.4 Inference

Since we use general form of energy function (without submodu-
lar restrictions (Kolmogorov and Zabih, 2004)), graph cut based
inference techniques are inapplicable. We tried to use loopy be-
lief propagation and TRW-S3, the latter turned out to perform bet-
ter, which corroborates the theoretical guarantees behind it. Al-
though loopy BP sometimes yields the same results as TRW-S, it
is less stable. LBP fails more often when an MRF contains more
edges.

4 EXPERIMENTAL RESULTS

We evaluate our method on two data sets obtained in different re-
gions using airborne laser scanning system ALTM 2050 (Optech
Inc.). We refer to them as airborne datasets A and B.4 We use the
following class labels: “ground”, “building”, “tree”, “low vege-
tation”; for the first scan “car” label is used as well. The data are
distributed among the labels in the following proportion: 43.8%
for ground, 2.0% for building, 0.3% for car, 53.1% for tree and
0.8% for low-vegetation in the “dataset A” scan. The propor-
tion is similar for the “dataset B” with the exception that it has
no cars. It can be seen that there are few cars in the first scan
too, but we consider it as a separate class to make the problem
more challenging. We split each sample into a train set and a
test set of sizes 1.1M and 1.0M points for ”dataset A”, and 1.5M
and 1.2M points for ”dataset B”, respectively. To train unary
potentials we subsample the train sets with respect to class fre-
quency, which results in unbiased train sets. Thus, the number
of training vectors for ”dataset A” is reduced to 9K. To train
the pairwise potentials we segment the train sets, compute the
medoid for each segment, build the graph upon them and com-
pute the statistics of its edges as described in Section 3.3.2. In
order to train the Naı̈ve Bayes classifier, we approximate all the
distributions with histograms. The altitude difference feature and
the directional feature both vary in the range [−1, 1]. We dis-
cretized them into 10 equally-sized bins. The distance feature is
discretized into 6 bins, which are scan-specific. They are found

3We used the implementation by Vladimir Kolmogorov:
http://www.cs.ucl.ac.uk/staff/V.Kolmogorov/papers/TRW-S.html

4The labelled sets and their characteristics could be found at http://
graphics.cs.msu.ru/en/science/research/3dpoint/classification

empirically to approximate the distributions well. For ”dataset
A” the bins’ borders are (2.0, 4.0, 6.0, 8.0, 12.0), for ”dataset B”
they are (2.5, 3.5, 4.5, 6.0, 8.0).

4.1 Least Theoretical Error

In this section we investigate the problem of inaccurate detection
of object boundaries due to use of preliminary segmentation. In
order to estimate how crucial the problem is, we computed the
minimum error, which is possible to get by assigning a single
label to each segment. For each segment, we assigned the most
frequent ground truth label in the segment to all of its points, and
then computed the overall error. The results for both data sets are
shown on the Figure 2. The smaller error for the ”dataset B” scan
could be explained by the absence of the ”car” label; the class of
cars is unlikely to be segmented well since cars are usually small,
and they tend to stick to the ground.

Figure 2: Minimum theoretical error caused by segmentation
The maximum segment size affects the classification error, which
is traded-off against the efficiency, because it depends directly
on the number of segments. We decided to set the maximum
segment size equal to 64 points, which results to the theoretical
segmentation error 2.2% for ”dataset A” and 1.6% for ”dataset
B” and about 30K segments for each scan.

4.2 Classification Accuracy

We performed several experiments to compare our method with
the existing techniques. First, we perform Random Forest clas-
sification without MRF. Second, we test the graph cut algorithm
over associative Markov network with constant pairwise poten-
tials (log φij(Yi, Yj) = [Yi = Yj ]), adding to the graph all the
edges, which connect nodes to their 3-connected neighbours. It is
less than we use for non-associative MRF, because AMN is likely
to smoothen results if more edges are used. Third, we show the
results for our method.

Tables 1 and 2 demonstrate the confusion matrices for our results,
precision and recall for all three featured methods. To compare
the results we use the mean f-score metrics. F-score is the har-
monic mean of precision and recall. Mean f-score is the average
f-score over all classes. We consider it better metrics than over-
all precision since it treats small classes properly, while they are
almost ignored by the overall precision. Mean f-scores for Ran-
dom Forest, constant AMN and non-associative MRF are 46.7%,
46.8%, 59.3% and 76.0%, 75.1%, 77.4% correspondingly for
”dataset A” and ”dataset B” scans.

Constant AMN smooths the results, removing both classification
noise and small details (Figure 3(e)). On the first scan, such
smoothing improved the result dramatically, while on the second
one it did not help. Non-associative Markov network contained
more edges, whose potentials vary depending on the distance be-
tween points and other features. This helps to perform more in-
telligent smoothing (Figure 3(f)). Moreover, the new form of po-
tential function allow potentials that stimulate the relations like
“roof is higher than ground”.
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Our method ground building car tree low veg Recall RF Recall AMN recall
ground 395228 696 5606 1227 37232 0.9620 0.9700 0.9640
building 288 17004 9 212 2079 0.5846 0.1959 0.0783

car 1549 77 1196 4 409 0.1608 0.1082 0.2094
tree 12648 10721 180 491016 17287 0.9970 0.9643 0.9042

low veg 1124 587 445 49 5553 0.0888 0.0590 0.1243
Precision 0.8983 0.8679 0.3697 0.9232 0.7158

RF Precision 0.7889 0.3761 0.4526 0.8999 0.7379
AMN Precision 0.7476 0.0792 0.3255 0.9879 0.8866

Table 1: The confusion matrix for “dataset A” scan. All the scan points are included, not only the medoids of the segments

Our method ground building tree low veg Recall RF Recall AMN recall
ground 958243 395 556 18593 0.9800 0.9652 0.9895
building 722 43948 3835 6027 0.8059 0.8210 0.8591

tree 3655 3560 99225 4556 0.8940 0.9305 0.8646
low veg 5158 1816 364 9607 0.5670 0.5396 0.1822

Precision 0.9901 0.8839 0.9543 0.2477
RF Precision 0.9902 0.8101 0.9295 0.2246

AMN Precision 0.9686 0.9301 0.9594 0.2811

Table 2: The confusion matrix for “dataset B” scan. All the scan points are included, not only the medoids of the segments

As you can see in Figure 3(f), after non-associative Markov net-
work classification there remain some errors. But the kinds of
errors are different for those methods. While the constant AMN
misclassifies whole objects, our method misclassifies parts of them,
so such errors could be corrected using some filtering technique.
They also might be eliminated by more accurate pairwise poten-
tials tuning.

We also estimate the eligibility of our method for building detec-
tion. We consider a building correctly detected if at least 70% of
its points are marked as building and form a continuous set. On
the “dataset A” all 19 buildings are detected correctly. There are
31 wrong detections, but they could be easily filtered out during
post-processing, because they typically consist of a single seg-
ment. On the “dataset B” 55 buildings out of 58 are detected
correctly along with 63 wrong detections.

4.3 Efficiency

Since we subsample a cloud by means of segmentation, our method
runs relatively fast. The timing characteristics are collected in
the Table 3. The tests were run on the machine with 2.80 GHz
CPU and 1Gb of RAM. Please note that we perform all oper-
ations on scans, whose sizes exceed a million points instead of
splitting them explicitly, in opposite to, for example, (Munoz et
al., 2009b). We build R-Tree, using its leaves as segmentation.
There are 26K and 27K segments on ”dataset A” and ”dataset
B”, respectively. Then we build the new R-Tree over medoids of
the segments, which is the base of a scalable graph construction
algorithm.

dataset A dataset B
Building index 278 315

Feature computation 100 146
Building graph 351 498

Random Forest classification 8 8
MRF inference 86 60

Total 823 1027

Table 3: Time of computation, sec

5 CONCLUSIONS AND FUTURE WORK

In this paper we proposed the new technique of laser scanning
data classification based on non-associative Markov networks.

We showed how to perform a tractable MAP inference in a net-
work with non-attractive pairwise potentials and obtained better
results than associative Markov network did. Naı̈ve Bayes clas-
sifier was used for pairwise potentials tuning just to demonstrate
that the method is viable. We believe it is possible to get signif-
icant performance improvement by introducing a tailored learn-
ing technique. Also, considering higher-order cliques (similar to
(Munoz et al., 2009a)) might be fruitful.

ACKNOWLEDGMENTS

The work was partially supported by the federal target program
“Scientific and scientific-pedagogical personnel of innovative Rus-
sia in 2009-2013” and RFBR grant #08-01-00883a.

We would thank Vladislav Kinshakov, the director of NPO ”Re-
gion” for valuable advices and proofreading, and Dmitry Vetrov
for his insightful ideas on usage of MRFs for the task. We also
thank Nathalie Chufarova for the help with preparing ground truth
data.

REFERENCES

Anguelov, D., Taskar, B., Chatalbashev, V., Koller, D., Gupta, D.,
Heitz, G. and Ng, A., 2005. Discriminative Learning of Markov
Random Fields for Segmentation of 3D Scan Data. In: IEEE
Conference on Computer Vision and Pattern Recognition, San
Diego, CA, pp. 169–176.

Boykov, Y., Veksler, O. and Zabih, R., 2001. Fast approximate
energy minimization via graph cuts. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence 23(11), pp. 1222–1239.

Breiman, L., 2001. Random forests. Machine Learning 45(1),
pp. 5–32.

Carlberg, M., Gao, P., Chen, G. and Zakhor, A., 2009. Classi-
fying urban landscape in aerial LiDAR using 3D shape analysis.
In: IEEE International Conference on Image Processing, Cairo,
Egypt, pp. 1701–1704.

Chehata, N., David, N. and Bretar, F., 2008. LIDAR Data Classi-
fication using Hierarchical K-means clustering. The International
Archives of Photogrammetry, Remote sensing and Spatial Infor-
mation Sciences 37, pp. 325–330.

Chehata, N., Guo, L. and Mallet, C., 2009. Airborne lidar fea-
ture selection for urban classification using Random Forests. The
International Archives of Photogrammetry, Remote sensing and
Spatial Information Sciences 38(3/W8), pp. 207–212.

In: Paparoditis N., Pierrot-Deseilligny M., Mallet C., Tournaire O. (Eds), IAPRS, Vol. XXXVIII, Part 3A – Saint-Mandé, France, September 1-3, 2010

107



(a) Segment structure (b) Unary potentials (c) Ground truth

(d) Random Forest without MRF (e) Constant AMN (f) Our method

Figure 3: (a) The output of the segmentation algorithm a piece of “dataset A”. Segments are colored with random colors. (b) The output
of Random Forest treated as unary potentials for MRF. Background colour reflect ground truth class label, round histograms reflect the
output of multiclass classifier. (c) - (f) Results of the different algorithms. The colours correspond to the classes: red – ground, black –
building, deep blue – car, green – tree, cyan – low vegetation. Better viewed in colour and magnified!

Elkan, C., 2001. The foundations of cost-sensitive learning. In:
International Joint Conference on Artificial Intelligence, Seattle,
WA, pp. 973–978.

Endres, F., Plagemann, C., Stachniss, C. and Burgard, W., 2009.
Unsupervised Discovery of Object Classes from Range Data us-
ing Latent Dirichlet Allocation. In: Robotics: Science and Sys-
tems, Seattle, WA.

Guttman, A., 1984. R-trees: A dynamic index structure for spa-
tial searching. In: ACM SIGMOD International Conference on
Management of Data, ACM New York, NY, USA, pp. 47–57.

Joachims, T., Finley, T. and Yu, C., 2009. Cutting-plane training
of structural SVMs. Machine Learning 77(1), pp. 27–59.

Johnson, A. and Hebert, M., 1999. Using Spin Images for
Efficient Object Recognition in Cluttered 3D Scenes. IEEE
Transactions on Pattern Analysis and Machine Intelligence 21(5),
pp. 433–449.

Kohli, P., Kumar, M. and Torr, P., 2007. P3 and Beyond: Solving
Energies with Higher Order Cliques. In: IEEE Conference on
Computer Vision and Pattern Recognition, Minneapolis, MN.

Kolmogorov, V., 2006. Convergent tree-reweighted message
passing for energy minimization. IEEE Transactions on Pattern
Analysis and Machine Intelligence 28(10), pp. 1568–1583.

Kolmogorov, V. and Zabih, R., 2004. What energy functions
can be minimized via graph cuts? IEEE Transactions on Pattern
Analysis and Machine Intelligence 26(2), pp. 147–159.

Lodha, S. K., Fitzpatrick, D. M. and Helmbold, D. P., 2007.
Aerial Lidar Data Classification using AdaBoost. In: Interna-
tional Conference on 3-D Digital Imaging and Modeling, Mon-
treal, pp. 435–442.

Lodha, S. K., Kreps, E. J., Helmbold, D. P. and Fitzpatrick, D.,
2006. Aerial LiDAR Data Classification Using Support Vector
Machines (SVM). In: International Symposium on 3D Data Pro-
cessing, Visualization and Transmission, IEEE, Chapel Hill, NC,
pp. 567–574.

Lu, W.-L., Murphy, K. P., Little, J. J., Sheffer, A. and Fu,
H., 2009. A Hybrid Conditional Random Field for Estimat-
ing the Underlying Ground Surface From Airborne LiDAR Data.
IEEE Transactions on Geoscience and Remote Sensing 47(8/2),
pp. 2913–2922.

Munoz, D., Bagnell, J., Vandapel, N. and Hebert, M., 2009a.
Contextual classification with functional Max-Margin Markov
Networks. In: IEEE Conference on Computer Vision and Pat-
tern Recognition, Miami, FL, pp. 975–982.

Munoz, D., Vandapel, N. and Hebert, M., 2008. Directional as-
sociative markov network for 3-d point cloud classification. In:
International Symposium on 3D Data Processing, Visualization
and Transmission, Atlanta, GA.

Munoz, D., Vandapel, N. and Hebert, M., 2009b. Onboard con-
textual classification of 3-D point clouds with learned high-order
Markov Random Fields. In: IEEE International Conference on
Robotics and Automation, Kobe, Japan, pp. 4273–4280.

Sithole, G. and Vosselman, G., 2004. Experimental comparison
of filter algorithms for bare-Earth extraction from airborne laser
scanning point clouds. ISPRS Journal of Photogrammetry and
Remote Sensing 59(1-2), pp. 85–101.

Taskar, B., Chatalbashev, V. and Koller, D., 2004. Learning as-
sociative Markov networks. In: International Conference on Ma-
chine Learning, Banff, Alberta, Canada, pp. 102–109.

Tovari, D., 2006. Segmentation Based Classification of Airborne
Laser Scanner Data. In: PhD thesis, Universitat Fridericiana zu
Karlsruhe.

Triebel, R., Kersting, K. and Burgard, W., 2006. Robust 3d scan
point classification using associative markov networks. In: IEEE
International Conference on Robotics and Automation, Orlando,
FL, pp. 2603–2608.

Triebel, R., Shmidt, R., Mozos, O. and Burgard, W., 2007.
Instance-based AMN Classification for Improved Object Recog-
nition in 2D and 3D Laser Range Data. In: International
Joint Conference on Artificial Intelligence, Hyderabad, India,
pp. 2225–2230.

Yedidia, J., Freeman, W. and Weiss, Y., 2000. Generalized belief
propagation. In: NIPS, Vancouver, Canada, pp. 689–695.

In: Paparoditis N., Pierrot-Deseilligny M., Mallet C., Tournaire O. (Eds), IAPRS, Vol. XXXVIII, Part 3A – Saint-Mandé, France, September 1-3, 2010

108


