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ABSTRACT:

This article addresses the problem of denoising 3D data from LIDAR. It is a step often required to allow a good reconstruction of
surfaces represented by point clouds. In this paper, we present an original algorithm inspired by a recent method developed by (Buades
and Morel, 2005) in the field of image processing, the Non Local Denoising (NLD). With a local geometric descriptor, we look for
points that have similarities in order to reduce noise while preserving the surface details. We describe local geometry by MLS surfaces
and we use a local reference frame invariant by rotation for denoising points. We present our results on synthetic and real data.

1 INTRODUCTION

LIDAR data (from fixed LIDAR Scanning or Mobile Mapping
systems) are widely used for 3D reconstruction of objects or large
indoor/outdoor environments. A common step in 3D recontruc-
tion is the creation of a triangulated mesh. However many meth-
ods are very sensitive to noise, like triangulation methods such as
the Ball Pivoting Algorithm (BPA) introduced by (Bernardini et
al., 1999). To use some triangulation algorithms, it is necessary to
remove or filter the random acquisition noise present in the data,
called "denoising". The denoising in point cloud is an essential
step to enable a faithful recontruction of a surface scanned by a
LIDAR. Many denoising methods of point cloud exist in the liter-
ature but only few of them manage to preserve the surface details
while smoothing noise. Similarly, the sharp edges and corners
are often too smooth in the denoising methods. Or to build a re-
alistic model of an environment from LIDAR data, it is important
to keep and recover the corners. In this paper, we present an in-
novative method for denoising, adapted from a so called "Non
Local Denoising" designed for noise filtering in 2D images. Our
algorithm is able to smooth the surface and preserve features due
to geometric similarities.

2 PREVIOUS WORK

There are mainly two ways to use a denoising algorithm: as pre-
processing on a point cloud before a reconstruction method or
as a post-treatment directly on meshes. The methods in such a
framework is often transferable to another context as bilateral de-
noising in (Fleishman et al., 2003) which was presented to de-
noise a mesh but which may equally well denoise a point cloud.
However, the denoising operated directly on the point cloud may
allow a better surface recontruction, especially for triangulation
algorithms which are dependent on the noise as the Ball Pivoting
Algorithm (BPA) in (Bernardini et al., 1999).

As described in (Wang et al., 2008) and (Schall et al., 2008), we
can classify the denoising methods in several categories. The two
main categories are neighborhood filtering and projection-based

approaches.

For methods based on neighborhood filtering, many are exten-
sions of 2D filters to 3D as the well-know Bilateral filter in (Tomasi
and Manduchi, 1998) adapted to meshes by (Fleishman et al.,
2003). (Choudhury and Tumblin, 2003) introduce the trilateral
filtering for images and adapt it for meshes. (Yoshizawa et al.,
2006) present an extension of the bilateral filter by adding a weight
of similarity between points like in the Non Local Denoising. We
use the same concept of geometric similarity between points to
denoise the surface but we do not need to be near the point to
denoise. Methods based on the bilateral filter also introduce a
disruptive effect of shrinkage, ie the volume loss from the sur-
face. (Schall et al., 2008) and (Huhle et al., 2008) are also based
on non-local denoising but only for depth images. (Wang et al.,
2008) use non local denoising by geometry intensity similarities
to denoise point sample surfaces.

For methods based on projections, there is the well-known moving-
least-squares (MLS) surfaces introduced by (Levin, 1998) for
finding a local approximation of the denoised surface by least
square. Mederos et. al. uses this approximation to the surface
to denoise the point cloud in (Mederos et al., 2003). (Fleishman
et al., 2005) and (Oztireli et al., 2009) extend the definition of
MLS surfaces in terms of local kernel regression which provides
a robust projection method on the MLS surface: this is the Ro-
bust Moving Least Square (RMLS) and Robust Implicit Moving
Least Square (RIMLS).

3 NON LOCAL DENOISING FOR IMAGES

Non Local Denoising is an algorithm for image denoising intro-
duced by (Buades and Morel, 2005). The objective is to denoise
a pixel using other pixels whose neighborhoods are similar. An
image is V = {vi | i ∈ I}. The new value of the image
pixel vi is v′i =

∑
j∈N(i) w(i, j)vj . The weight w(i, j) is a

measure of similarity between the pixel i and the pixel j with
0 ≤ w(i, j) ≤ 1 and

∑
j∈N(i) w(i, j) = 1. The similarity be-

tween pixels i and j will depend on the similarity of intensities
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of gray in the neighborhood of i and j. We have therefore:

δv(i, j, k, h) =
| v(j + k)− v(i+ k) |2

h2
(1)

w(i, j) =
1

Zi
e
−∑

k∈Nl(i) e
−‖k‖

2

a2 δv(i,j,k,h) (2)

with normalization constant,

Zi =
∑

j∈N(i)

e
−∑

k∈Nl(i) e
−‖k‖

2

a2 δv(i,j,k,h) (3)

where N l(i) is the local neighborhood of a pixel vj in order to
make the comparison of similarity with pixel vi. This neigh-
borhood should be large enough to be robust to noise and small
enough to be representative of the local image details in pixel vj .
a is the parameter for the gaussian kernel around the pixel vi, ie
the local influence of points around vi. h is a control parameter
of the similarity influence. To avoid a similarity search on all im-
age pixels, it is restricted to a large window N(i). N(i) must be
large enough to find more similar weights and small enough to
limit the time calculation.

Figure 1: NL-means strategy

We see on Figure 1 (image taken from (Buades and Morel, 2005))
that for denoising the pixel p, we compare the neighborhoods
of other image pixels with the neighborhood of p. We see here
that the similarity weight w(p, q1) between p and q1 and weight
w(p, q2) between p and q2 will be close to 1 while weightw(p, q3)
between p and q3 will be close to 0.

4 POINT CLOUD NON LOCAL DENOISING

4.1 From 2D to 3D

Buades et. al. compare pixels of neighborhood for similarity
but this notion is not extensible in 3D. For that, we have to de-
fine an other neighborhood similarity notion in point clouds. For

this, we do not restrict ourselves to points of the neighborhood as
in (Yoshizawa et al., 2006) and not just take the local geometry
intensity as in (Choudhury and Tumblin, 2003) but we want to
consider points which have the same local geometric similarity
and we use for that a local geometric description for neighbor-
hood comparison. For this we use the concept of local geometric
descriptor. Indeed, points that have the same geometry in their
neighborhood can be used to reduce noise while preserving the
surface details. We need these descriptors to be robust to noise
and to represent the local geometry by keeping the details. An
other important feature of the local descriptor is to be invariant by
rotation. For example, if we want to denoise points on a sphere,
we want to use geometric similarities of other points on the sphere
and the local descriptor must be invariant by rotation.

4.2 Algorithm Overview

Consider a point cloud P = {pi | i ∈ I} where pi is the ith
vertex. Our method proceeds in three steps. First, we define at
each point pi a local coordinate system. Then in this coordinate
system, we calculate a bivariate polynomial gi that will be a de-
scriptor of local geometric point pi. In the last step, we modify a
point vi with points vj in a large neighborhood N(i) in setting a
weight w(i, j) between two points by the difference between the
two approximation surfaces gi and gj .

4.3 Local Coordinate System

We note bi the weigthed barycenter of points in the local neigh-
borhood N l(i) of pi :

bi =
∑

j∈Nl(i)

1

Zi
e
− ‖pj−pi‖2

a2 pj (4)

with Zi the normalization constant

We use the local plane Hi = {x | ni · x − di = 0} which
minimizes the weighted sum of the distances bewteen the points
pi and the plane Hi, ie minimizing the sum :

∑
j∈Nl(i)

(ni · pj − di)2e−
‖pj−pi‖2

a2 (5)

We know that ni is the normal of the plane Hi and is the eigen-
vector of the smallest eigenvalue of the weighted covariance ma-
trix Ci associated with Hi. For more details, see (Hoppe et al.,
1992). We know that the covariance matrix of a local neighbor-
hood can be used to estimate local properties. The eigenvectors
(e0i , e

1
i , e

2
i ) of the covariance matrixCi form an orthogonal frame

associated with eigenvalues (λ0
i , λ

1
i , λ

2
i ) with λ0

i ≤ λ1
i ≤ λ2

i .
The eigenvector e0i is equal to the normal ni of the local plane
Hi. We know that the barycenter bi is on the plane Hi. We take
the vectors (e2i ,−e1i , e0i ) and the point bi as a local frame of pi
because their are robust to noise and invariant by rotation. We
call this local frame Fi.

4.4 MLS Surface

As local geometric descriptor, we use a variant of the MLS sur-
faces, like explained in (Levin, 1998) and in (Alexa et al., 2001).
Once we have found a local frame for a point pi, we can com-
pute a local bivariate polynomial approximation gi(u, v) which
minimizes the following weighted sum :
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∑
j∈Nl(i)

(gi(u
j
i , v

j
i )− wji )2e−

‖pj−pi‖2
a2 (6)

Here, (uji , v
j
i , w

j
i ) are the local coordinates of point pj in the

frame Fi. gi is thus a smoothed representation of the surface
around the point pi. We see that gi depends on the local system
chosen forHi. The local coordinates of the point pi is (uii, v

i
i , w

i
i).

wii represents the signed distance from the point pi to the plane
Hi.

gi represents the smoothed local surface of the point pi. In or-
der to compare these local descriptors in the second step, it re-
quires that gi are calculated in a similar local reference, ie that
gi must be invariant under rotation of the neighborhood of the
point pi. Therefore we have choosen as reference the local basis
(e2i ,−e1i , e0i ) with eigenvectors of the covariance matrix of Ci
sorted in ascending eigenvalues and for the center the weighted
barycenter. As explained in (Pauly et al., 2002), eigenvalues rep-
resent the configuration of the point around the plane Hi and if
the local neighborhood distribution of two points pi and pj is the
same with a certain rotation, we know that gi and gj will be iden-
tical in their local frame Fi and Fj .

Figure 2: Local Descriptor gi

The Figure 2 shows for a red point pi the plane Hi in gray, the
barycenter bi in blue, the bilateral polynomial gi in black and the
denoised surface in green.

4.5 Denoising

For denoising a point pi, we look for points that have the same
local surface descriptor, that is why we use a weight of similarity
between points pi and pj like :

w(i, j) =
1

Zi
exp
− ‖gi−gj‖2P

h2 (7)

with Zi the normalization constant
and ‖ ‖P =

∑k=n
k=0 | ak |

(ak are the coefficients of the bivariate polynomial gi)

The coordinates of the new point p′i is calculated as follows:

p′i = bi +
∑

j∈N(i)

w(i, j)(ujje
2
i − vjje1i + wjje

0
i ) (8)

where (ujj , v
j
j , w

j
j ) are the local coordinates of points pj in their

frame Fj . If the weight w(i, j) is close to one (ie pi and pj have
the same local geometry) then we use the local coordinates of pj
in Fj to smooth the point pi.

4.6 Other Local Descriptors

We have used MLS surfaces as local descriptor but we could
imagine other local descriptors. For example, the covariance ma-
trix represents the variation of distribution in local neighborhood,
robust to the noise but not invariant by rotation. Eigenvalues of
the covariance matrix describe also the variation of the sampling
distribution in the tangent plane, are robust to noise and invariant
by rotation. So it could be used as local descriptor. But only 3
values is poor to describe a local distribution of points. We have
found best results with MLS surface descriptor but we can imag-
ine other local descriptors like Radial basis functions (RBF) as in
(Yoshizawa et al., 2006).

5 RESULTS AND DISCUSSION

5.1 Parameters

We give here the parameters for our non local denoising (NLD)
algorithm. We use for the large neighborhood N(i) the 200 near-
est neighbors. The larger the neighborhood N(i) is, the more
points will be properly denoised because they will find more points
with the same local geometry. However, the computing time will
be larger. For the local neighborhoodN l(i), we keep the 20 clos-
est neighbors. The parameter a in the weight gaussian kernel
represents the locality of the surface descriptor gi. We have taken
a equal to the distance from pi to the farthest point in the local
neighbor in N l(i). For the degree of the bivariate polynomial gi,
we have chosen polynomials of degree 3. We use these values for
all tested point clouds.

The parameter h used in the weight similarity bewteen two lo-
cal surface gi and gj is the most difficult to choose because it
depends on the sampling distribution of the point cloud and the
noise. It varies from 0.1 to 10.

5.2 Results on synthetic data

First, we have tested our algorithm on synthetic data : a corner
point cloud and a ring point cloud. With synthetic data, we can
control the noise and evaluate the denoising method. The cor-
ner point cloud is made of 2 planes with a 90 degree angle with
1000 points on each plane (2000 points in all) and with a dis-
tance bewteen points of 1 meter. We have add a gaussian noise
on points with a standard deviation of 0.5 meter. For comparison,
we have implemented the Bilateral algorithm from (Fleishman et
al., 2003) and the Robust Implicit Moving Least Square (RIMLS)
algorithm from (Oztireli et al., 2009). For Bilateral and RIMLS,
we tried to choose the parameter settings that produce the best
results. All methods presented here work on point cloud data but
for better visualization purpose, we have constructed the surface
mesh with a triangulation algorithm which is a variant of the Ball
Pivoting Algorithm (Bernardini et al., 1999).

We can see the results of denoising algorithms on Figure 3. Our
NLD algorithm is able to keep the corner due to geometric simi-
larities, ie other points of the corner that has been used to remove
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the noise. To have a quantitative comparison, we use the Haus-
dorff distance bewteen meshes.

The Hausdorff distance bewteen two surfaces is :

d(X,Y ) = max{sup
y∈Y

inf
x∈X

δ(x, y), sup
x∈X

inf
y∈Y

δ(x, y)} (9)

We compute the distance between each denoised mesh and the
original mesh. The results are in the Table 1. We see that our
denoised mesh is more closer from the original mesh than other
denoised meshes. We get a surface closer to the original sur-
face than the bilateral filter or RIMLS filter. We can also see a
difference in computation time. It is because other algorithms
have to do multiple iterations (around 4-5 for bilateral and 2-3
for RIMLS) but our algorithm works in one pass.

CORNER CORNER RING RING
Mesh H-distance Time H-distance Time
Noise 0.159103 m - 0.113102 m -

Bilateral 0.126050 m 1.5 s 0.081701 m 1.4 s
RIMLS 0.095922 m 1.7 s 0.069357 m 1.8 s

NLD 0.073229 m 1.2 s 0.06316 m 1.1 s

Table 1: Comparison of denoising methods on corner point cloud
and ring point cloud with Hausdorff distance (H-distance) from
the original mesh.

We have also compared denoising algorithms on an other syn-
thetic point cloud : a ring. This is a half sphere with 2000 points.
The mean distance between points is 0.3 meter and we have add
a gaussian noise with a standard deviation of 0.1 meter. We can
see the results of denoising algorithms on Figure 4. We have also
the Haussdorff distance comparison bewteen meshes on the table
1. We see that our algorithm has a good behavior on the border of
the ring because we almost recover the border of the original ring
but we have worst result on the little variation of the border. It is
because we have no other point with the same local geometry. It
is one limitation of our algorithm. If a point has a singular geom-
etry in his large neighborhood N(i), then we cannot denoise it.
It is why we think we can have better results by adding just one
pass of a projection denoising algorithm after the NLD algorithm
like the RIMLS filter. This idea is on work.

5.3 Results on real data

We have tested our algorithm on real data from fixed scanner and
data from mobile scanners as in Figures 5, 6 and 7. In these three
cases, we see that the noise has greatly decreased while keeping
details like edges. We can see that points in windows with singu-
lar geometry have not been denoised.

6 CONCLUSION

We have proposed an innovative method for 3D point cloud de-
noising that is an extension of the 2D "Non Local Denoising"
by using MLS surfaces as local descriptors. We have tested on
synthetic and real data sets and compared with state of the art in
denoising algorithm. We have demonstrated its ability to smooth
the surface in noisy areas and to keep edges and corners by lo-
cal geometric similarities on the point cloud. We have seen one

limitation of this algorithm in points with singular geometry, i.e.
points with no neighborhood similarities in their neighborhood.
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Figure 3: Results of denoising a corner point cloud (top left : original, top right : noise, bottom left : RIMLS, bottom right : NLD)

Figure 4: Results of denoising a ring point cloud (top left : original, top right : noise, bottom left : Bilateral, bottom right : NLD)
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Figure 5: Results of denoising a fandisk point cloud (left : original, right : denoised by NLD)

Figure 6: Results of denoising a point cloud from a mobile mapping system (left : original, right : denoised by NLD)

Figure 7: Results of denoising a point cloud from a mobile mapping system (left : original, right : denoised by NLD)
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