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ABSTRACT:

Given sufficient data storage capacity, today’s full-waveform LiDAR systems are able to record and store the entire laser pulse echo
signal. This provides the possibility of further analyzingthe physical characteristics of the reflecting objects. However the size of the
captured data is enormous and currently not practical. Thusarises the need for compressing the waveform data. We have developed a
methodology to efficiently compress waveform signals usinga lossy compression technique based on the discrete wavelettransform.
Land classification itself is also a non-trivial task. We have implemented an unsupervised land classification algorithm, requiring only
waveform data (no navigation data is needed). For the classification Kohonen’s Self-Organizing Map (SOM) has been used.Finally,
the effect of the information loss caused by the lossy compression scheme on the quality of the land classification is studied.

1 INTRODUCTION

Airborne laser scanning (airborne LiDAR or ALS) is used in
many areas: digital elevation model generation, city modeling,
forest parameters estimation, etc (Shan and Toth, 2009).

During the development of the ALS systems, first only one back-
scattered echo per emitted pulse was provided to the user. Later
the first and the last echoes became available. Multi-echo or
multiple pulse laser scanning systems are able to measure up
to six pulses. The newest generation of ALS systems, the full-
waveform systems, are able to digitize and record the entireback-
scattered signal of the emitted pulses (Mallet and Bretar, 2009).

This technology provides the possibility of further analyzing the
physical characteristics of the reflecting objects (Jutzi and Stilla,
2005, Wagner et al., 2004). Adding sufficient data storage ca-
pabilities to the system, the waveform data can be easily made
available to users, thus the derived end products can be improved
by analyzing the waveform data. However, this raises two ques-
tions.

The first is the question of data storage and transfer. Currently,
the needed storage space is huge. For example, during a test flight
above Toronto (Ontario, Canada) 60 seconds of full-waveform
data has been collected. This means approximately 4,000,000
waveforms, needing 580 Mbytes of additional storage space to
the original 460 Mbytes sensor navigation data (GPS time, lati-
tude, longitude, elevation, pitch, roll, heading, etc.). It can easily
be calculated, that for a 3-hour-long flight more than 180 Gbyte
of storage space is needed. Thus the need for compressing the
raw waveform data arises. Our primary goal is to develop a com-
pression method which, if it is implemented in real-time in the
software layer of the waveform digitizer unit, is able to reduce
the needed data storage capacity, thus extend the acquisition time.
Moreover organizations who store large amount of archived data
can also benefit from such a compression scheme. In this study,
we use a lossy approach to the data compression (Sayood, 2006).
Our method is based on the CDF (Cohen-Daubechies-Feauveau)
3/9 wavelet transform (Cohen et al., 1992) of the waveform, and

a linear quantization algorithm with thresholding (Laky etal.,
2010). This question is discussed in Section 2.

The second is the question of classification. As the first airborne
laser scanners provided only 3D point clouds, the early algo-
rithms used only LiDAR derived point clouds, based on the rel-
ative position of the points with respect to their neighbors. Later
the recorded intensity values were also used. The full-waveform
systems made it possible to extract more information from the
backscattered signal. The most widespread is the use of Gaussian
(Wagner et al., 2006) or Generalized Gaussian functions (Chauve
et al., 2007) for representing the echos in waveforms, thus pro-
viding various parameters of it. The parameters of the modeling
functions can be used also for classification purposes.

In this study, we use the moments and the maximum intensity of
the waveform signal as input for an unsupervised classification
with Kohonen’s Self-Organizing Map (SOM (Kohonen, 1990))
(Zaletnyik et al., 2010). This question is further discussed in Sec-
tion 3.

The combination of the two above techniques raises a third ques-
tion: how the lossy nature of the wavelet-based compressionin-
fluences the precision of the classification. This is discussed in
Section 4.

2 WAVELET-BASED WAVEFORM COMPRESSION

2.1 Short introduction to the wavelet compression

Data compression methods, in general, can be divided into two
main groups: lossless and lossy compression. Lossless compres-
sion algorithms, like run length encoding (RLE), Huffman coding
or arithmetic coding, provide an exact reconstruction of the com-
pressed data, with a limited compression rate. Lossy compres-
sion schemes, like transform coding schemes, provide the user
the opportunity to choose between better reconstruction quality
or better compression rate. Today’s most widely known com-
pression techniques (e.g. JPEG, MP3) are based on lossy com-
pression methods utilizing Fourier or Fourier-related techniques.
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Recently methods utilizing the discrete wavelet transform(DWT)
have been developed (e.g. JPEG2000).

The principle of DWT-based compression is the following: we
are looking for a base, in which the data to be compressed has
a sparse or nearly sparse representation. This means, that the
wavelet coefficient vector of the data (in this case the waveform
signal) has many zero or near-to-zero elements (see Figure 1).
After eliminating the elements having the lowest values (i.e. thresh-
olding), we can store the coefficient vector in a more compact
form.
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(a) Typical waveform

(b) CDF/3/9 wavelet coefficients

(c) Sorted magnitude of wavelet coefficients
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Figure 1: CDF 3/9 wavelet transform of a typical waveform

The next key step of the compression algorithm is storing there-
maining coefficients. In most cases, the wavelet coefficients are
real numbers, even if the input signal is a discrete-valued one. In
our case, the waveform signal has discrete values between 0 and
255. These values can be stored as 8-bit (1-byte) unsigned inte-
gers. The wavelet coefficients, however, are calculated as single
precision (32 bits, 4 bytes) or double precision (64 bits, 8 bytes)
floating point numbers. This offers great precision for storing the
coefficients, but considerably increases the needed storage space.
One solution to overcome this problem is to quantize the coef-
ficients, i.e. to map the coefficients to certain discrete numbers,
giving the opportunity to store these using a smaller numberof
bits.

The elimination of the not-exactly-zero elements and the quanti-
zation of the remaining coefficients cause the error of the recon-
struction. The reconstruction quality is thus greatly influenced by
choosing the wavelet family, the threshold, and the method and
granularity of the quantization.

2.2 Applied compression method

For developing our compression method, we have been using the
WaveLab toolbox (Buckheit and Donoho, 1995). The first task
was to choose the best wavelet family for this purpose (Laky
et al., 2010). The evaluation of the performance was based on
the values of the standard deviation and the maximum absolute
error of the reconstruction at given compression rates. Theex-
periments were run on a sample of 500 representative waveforms
from the test area. This time no quantization has been used, and

the threshold was chosen so, that all but the largest given percent
of the wavelet coefficients became zero (e.g. in Figure 1(c),in
case of a 0.25 (25%) compression ratio, all wavelet coefficients
after the 25% mark are to be zeroed out).

The target compression ratio is 0.20. (The compression ratio is
the ratio of the storage space needed for the compressed dataver-
sus the storage space needed for the uncompressed data. The
lower the number, the better the compression performance is.)
The performance of a few wavelet families, based on our evalua-
tion, is listed in Table 1. In this range the CDF (Cohen-Daubechies-
Feauveau ) wavelet family outperforms the other wavelet families
in terms of the average standard deviation and maximum absolute
error of the reconstruction (the reconstruction error is the differ-
ence of the original signal and the signal after DWT, coefficient
vector truncation and inverse DWT).

Wavelet Std of Maximum
family the error absolute error
Haar 1.14 3.88

Daubechies 0.46 1.44
Symmlet 0.44 1.39

CDF 0.40 1.29

Table 1: Evaluating the performance of some wavelet families at
0.20 compression rate (errors in intensity units)

After further evaluation of the CDF family (regarding its param-
eter values), the CDF 3/9 wavelet has been selected. It is impor-
tant to mention, that CDF is a biorthogonal wavelet family, which
means, that different base functions are used for the analysis and
the synthesis of the signal (see Figure 2).
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(b) Synthesizing

Figure 2: CFD/3/9 wavelet base functions

The second parameter to choose was the quantization method of
the wavelet coefficients. For this purpose, a 8-bit (256 levels)
linear quantizer has been chosen. It is important to note, that the
quantizer has to have a level for storing exactly zero values(i.e.
it has to be a mid-tread quantizer). This is because of the nature
of the wavelet compression.

Quantization Std of Maximum Compression
threshold the error absolute error rate

1.0 0.84 2.99 0.28
3.0 0.89 3.17 0.23
5.0 0.96 3.30 0.21
7.0 1.04 3.46 0.20
9.0 1.21 3.90 0.19

Table 2: Choosing the quantization threshold (errors in intensity
units)

Finally the quantization threshold had to be chosen. The objec-
tive was to achieve the highest possible compression rate while
not allowing the standard deviation of the reconstruction error to
exceed 1.00 intensity values. After evaluating different choices,
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a value of 5.0 has been decided (see Table 2). It is important to
mention, that the choice of quantization threshold dependson the
chosen wavelet family. Using wavelet families other than CDF
may enable better compression rates than 0.21 using a threshold
of 5.0, but the reconstruction quality may decrease (see Table 1).

The final scheme of the compression is the following:

1. Preparing the waveform signal for compression: the inten-
sity values are decreased by 10.0 (this is the threshold value
of the digitizer), and the signal is zero-padded at the end
to have the length of the nearest power-of-two to the actual
length (this is needed because WaveLab operates on signals
of such length).

2. Calculating the CDF 3/9 wavelet transform of the waveform
signal.

3. Truncating the coefficient vector at a length of 25% (see Fig-
ure 1(b)). This means, that only the average coefficients and
the coefficients of first 4 detail level are kept. Our experi-
ments have shown, that more than 99% of the signal energy
is stored in the first 25% of the coefficients (see Figure 3).

4. The remaining coefficients are thresholded with a value of
5.0 (i.e. all the coefficients with a magnitude smaller than
this value are made exactly zero).

5. The coefficients are quantized using a 8-bit (256-level) lin-
ear mid-thread quantizer. Actually only 255 levels are used
for the quantization, the highest level is kept for special pur-
poses (e.g. marking the end of the waveforms, or marking
the blocks of the RLE compression in the next step).

6. An RLE compression is applied to the quantized coefficients,
to find sequences of repeated values in the quantized coef-
ficient vector (usually sequences of zeros are found), and
replace them with shorter code blocks.

(a) Level 1

(c) Level 3

(e) Level 5

(b) Level 2

(d) Level 4

(f) Level 6

Figure 3: Reconstruction of a typical waveform using wavelet
detail coefficients up to the specified levels

3 SOM-BASED CLASSIFICATION

As the recently appeared full-waveform LiDAR systems are able
to digitize and record the entire backscattered signal, this pro-
vides the possibility of further analyzing the waveform and, thus,
obtaining additional information about the reflecting object.

Many studies are dealing with LiDAR data classifications. The
first LiDAR classification algorithms were based only on LiDAR
derived geometric data (Maas, 1999), or were combined with
other data acquisition method such as aerial imagery (Brattberg
and Tolt, 2008). As now the entire waveform can be available
to the users, the shape of the waveforms can be analyzed to de-
rive more information. (Ducic et al., 2006) decomposed the
waveforms into Gaussian components and used the parameters
of the Gaussian functions, such as the maximum intensity andthe
standard deviation (pulse width) to separate vegetation and non-
vegetation areas. (Mallet et al., 2008) used Generalized Gaussian
model with one more parameter for classification purposes. Both
studies used supervised classification algorithm.

Classification algorithms can be divided into two main groups,
supervised and unsupervised classification. In the supervised clas-
sification a training and a test dataset is used, where we knowthe
output class types belonging to the inputs. In the case of unsu-
pervised classification, first data has to be grouped into clusters
based on some measure of similarity. Then these groups can have
classes associated with them (this can be done manually, or with
the help of a small number of samples with known group-class
correspondence). The advantage of this classification is that there
is no need to have a priori knowledge of the class types belonging
to a training or test dataset.

In this paper, the feasibility study of classifying the reflecting sur-
face is based on Kohonen’s Self-Organizing Map (SOM), an un-
supervised learning algorithm. SOM was first described as an
artificial neural network model by Teuvo Kohonen (Kohonen,
1990). Our choice is motivated by the flexibility of the algo-
rithm (in terms of parametrization), and its ability to adopt well
to highly non-linear mapping problems. The SOMPAK program
package, which was prepared by the SOM programming team of
the Helsinki University of Technology (Kohonen et al., 1996)
has been used.

The used sample LiDAR dataset is from Ontario, collected from
a residential area of Scarborough (Toronto) by an Optech ALTM
3100 full-waveform LiDAR system. The original Scarborough
area dataset contained more than 800 000 waveforms. For our
classification study we have chosen a smaller area ( 50 x 65 m)
containing different types of surface coverage (roof, pavement,
grass, trees), with around 6000 waveforms. The distance between
two adjacent points in a scan line is about 0.25 m, but the distance
between the scan lines is about 2-3.5 m, which strongly influences
the spatial resolution of the classified map.

In our approach the waveforms are first separated according to
the number of peaks. For this we used a pulse detection method
to count the number of the pulses in the waveforms. This basic
peak detection method is based on the zero crossings of the first
derivative on the thresholded version of the waveform (Chauve
et al., 2007). In our method first we used a low pass filter to elim-
inate peaks caused by noise, and then the peaks were detected
with the method referenced above.

After the waveforms were separated into two classes (one-echo
and multiple-echo), the multiple-echo waveforms were classified
as trees or roof. (Because multiple-echo waveforms can alsoap-
pear due to other man-made objects, such as cars, etc., this causes
some class speckle in the classification, which can later be re-
moved by e.g. mode filtering.) The one-echo signals were treated
as probability density functions, to determine important statistical
parameters, according to the shapes of the waveforms, such as the
maximum intensity value (amplitude), standard deviation (pulse
width), skewness (measure of the asymmetry of the waveform,
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third central moment) and the kurtosis (measure of the peaked-
ness, fourth central moment). These parameters are then used
as input parameters for the SOM algorithm. With this method
grass, trees, pavement and roof can be separated quite well.The
most problematic part is the separation between pavement and
roof, where the slope has a very important role. In out case,
one flat roof has been categorized as pavement. This problem
can be solved applying a two step classification, using the local
range differences in the second step. The ranges are calculated
as the expected value of the probability density function plus the
starting time of the backscattered waveform. In this way lowar-
eas (pavement) and locally high areas (roofs) can be separated
well (Zaletnyik et al., 2010). The classification is based only on
waveform data, i.e. no navigation data is used. This means, that
the coordinates of the LiDAR points need not to be calculatedto
carry out the classification. Of course, the coordinates have to be
calculated later to georeference the classified waveforms.

(a) Classification (b) Aerial image

PavementGrass Roof Tree

Figure 4: The result of the classification process. Aerial image:
Google Maps.

The result of the classification is shown in Figure 4. Compar-
ing the result with an aerial imagery visually, it can be seenthat
using the statistical parameters with unsupervised classification
method, the waveforms can be classified effectively. For numer-
ical validation (see Table 3), 700 sample points have been man-
ually classified using the aerial image (the total number of clas-
sified points was 5934). The rows are the classes of the manual
classification, the columns are the classes of the SOM-basedclas-
sification. The percentages in the diagonal show the the percent-
ages of the waveforms that have been correctly classified (84.9%
of the waveforms). The most significant case of misclassification
is 8.8% of the waveforms, which has manually been classified as
trees, was classified as grass in the SOM-based approach. This
can possibly relate to seasonal changes.

Grass Roof Tree Pavement
Grass 21.6% 0.0% 0.4% 0.7%
Roof 0.3% 25.6% 0.3% 0.1%
Tree 8.8% 0.4% 4.2% 0.0%

Pavement 1.9% 0.0% 2.2% 33.5%

Table 3: Numerical verification of the classification process.

4 INFLUENCE OF THE COMPRESSION ON THE
LAND CLASSIFICATION QUALITY

Table 4 summarizes effect of the compression on the classifica-
tion. The rows show the original categories, the columns show
the categories after decompression. The numbers in the diagonal

are the numbers of the waveforms whose classification did not
change, the off-diagonal elements are the numbers of the mis-
classified waveforms.

The classification of 9.7% of the waveforms was affected by the
compression method, while the classification of 90.3% of the
waveforms did not change. The three significant cases were 2.4%
of the tree waveforms being recognized as grass, 1.4% of the tree
waveforms recognized as pavement, and 1.2% of the roof wave-
forms being recognized as pavement.

Grass Roof Tree Pavement
Grass 32.4% 0.0% 0.3% 0.2%
Roof 0.9% 18.3% 0.4% 1.2%
Tree 2.4% 0.1% 4.7% 1.4%

Pavement 1.0% 0.4% 1.4% 34.8%

Table 4: Effect of the compression on the classification

On the search for the cause of these significant misclassification
cases, it was discovered, that depending on the shape of the origi-
nal waveform, the estimation of ranges (used for the separation of
roofs from pavement) was suffering from a high degree of degra-
dation in some cases. Also some compression artifacts can affect
the shape of the waveforms, thus altering its statistical parame-
ters, and disturbing the peak detection method. These problems
can be eliminated by further development of the compressional-
gorithm.

5 THE ROLE OF THE COMPRESSION RATE

As stated before, the wavelet based compression has the advan-
tage, that the user can choose between good compression ratio
and low reconstruction error. Lowering the quantization thresh-
old is expected to cause some loss in the compression perfor-
mance, but is also expected to provide better reconstruction error
statistics, thus increasing the performance of land classification.
Also the fine tuning of the quantizer (e.g. using a non-linearquan-
tization scheme) is to be carried out.

Quantization Misclassification
threshold percentage

1.0 8.0%
3.0 8.2%
5.0 9.7%
7.0 13.6%
9.0 15.1%

Table 5: The effect of compression on the classification perfor-
mance using different quantization thresholds

The results of the initial experiments concerning the effect of the
quantization threshold on the misclassification percentage can be
seen in Table 5 (for the corresponding compression ratios and
error statistics, see Table 2).

6 CONCLUSIONS

In this study we have developed a new methodology for an un-
supervised classification of full-waveform LiDAR data, based on
only the waveform shape parameters (i.e. no navigation datawas
used). We have also implemented an efficient method for the
compression of the waveforms, in order to lower the storage and
data transfer needs. The effect of the information loss caused by
the lossy compression scheme on the classification quality was
also studied.
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For compression, the wavelet-based compression was used and
the effectiveness of different wavelet families were examined. Fi-
nally, the biorthogonal CDF 3/9 was chosen with the best com-
pression rates for this problem. The wavelet coefficients were
thresholded first (with a value of 5.0) to discard the small co-
efficients representing unimportant features, and then a uniform
mid-tread quantizer with 255 levels and RLE was applied to the
data. With this method a compression rate of 0.21 was achieved,
i.e. the data was compressed to less then one quarter of the origi-
nal size, with the reconstruction error having a standard deviation
of only 1 intensity value.

Both the original and the reconstructed waveform data was classi-
fied using an unsupervised classification method, the based on the
SOM algorithm, and the efficiency of the waveform data to use
for classification purposes was examined before and after com-
pression.

Correlation was observed between the shape of the waveforms
and the backscattering material. After the waveforms were sep-
arated into one- and multiple-echo waveforms, statisticalparam-
eters of the one-echo waveforms were calculated for the SOM-
based classification (standard deviation, skewness, kurtosis and
amplitude). As a result, the observation set was divided into three
subsets, corresponding to trees, grass and non-vegetationareas.
The classification was enhanced by separating the non-vegetation
areas into pavement and roof, using the local range differences,
calculated from the center of mass values and the starting time of
the backscattered waveforms.

Visual comparison of the result of the classification with aerial
imagery shows, that full-waveform LiDAR data can be used very
efficiently to separate the different types of surfaces. Numerical
verification shows a success rate of 84.9%.

Comparing the classification of the original and the reconstructed
waveforms, 9.7% misclassification was observed. Further devel-
opment of the compression and the classification algorithm is ex-
pected to overcome this difficulty.
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