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ABSTRACT:

Given sufficient data storage capacity, today’s full-wawvef LIDAR systems are able to record and store the entire [agdee echo
signal. This provides the possibility of further analyziing physical characteristics of the reflecting objects. el@w the size of the
captured data is enormous and currently not practical. @hass the need for compressing the waveform data. We haedoged a
methodology to efficiently compress waveform signals usirigssy compression technique based on the discrete wanagisform.
Land classification itself is also a non-trivial task. We &@wplemented an unsupervised land classification algoritequiring only
waveform data (no navigation data is needed). For the @leason Kohonen's Self-Organizing Map (SOM) has been ugeédally,
the effect of the information loss caused by the lossy cosgioa scheme on the quality of the land classification isistlid

1 INTRODUCTION a linear quantization algorithm with thresholding (Lakyadt,
2010). This question is discussed in Section 2.

Airborne laser scanning (airborne LIDAR or ALS) is used in ) . e ' .
many areas: digital elevation model generation, city miodel The second is the question of classification. As the firsioaimd

forest parameters estimation, etc (Shan and Toth, 2009). laser scanners provided only 3D point clouds, the early-algo
rithms used only LIDAR derived point clouds, based on the rel
During the development of the ALS systems, first only one back ative position of the points with respect to their neighbdrater
scattered echo per emitted pulse was provided to the ustr La the recorded intensity values were also used. The full-foane
the first and the last echoes became available. Multi-echo o#ystems made it possible to extract more information froen th
multiple pulse laser scanning systems are able to measure Wackscattered signal. The most widespread is the use of{aaus
to six pulses. The newest generation of ALS systems, the full(Wagner et al., 2006) or Generalized Gaussian functionai{@h
waveform systems, are able to digitize and record the emdick- €t al., 2007) for representing the echos in waveforms, thas p

scattered signal of the emitted pulses (Mallet and Bre@09p  Viding various parameters of it. The parameters of the nioglel
functions can be used also for classification purposes.

This technology provides the possibility of further anahggthe ] ] ) ]
physical characteristics of the reflecting objects (Jutzi &tilla, !N this study, we use the moments and the maximum intensity of
2005, Wagner et al., 2004). Adding sufficient data storage Cath_e waveform signal as mp_u_t for an unsupervised clasdificat
pabilities to the system, the waveform data can be easilyemadWith Kohonen's Self-Organizing Map (SOM (Kohonen, 1990))
available to users, thus the derived end products can beimgr (Zaletnyik etal., 2010). This question is further discubseSec-

by analyzing the waveform data. However, this raises twsgque 0N 3.

tions. The combination of the two above techniques raises a thied-qu

The first is the question of data storage and transfer. Clyren tON: how the lossy nature of the wavelet-based compresaion
the needed storage space is huge. For example, during agiest fl quenpes the precision of the classification. This is disedisa
above Toronto (Ontario, Canada) 60 seconds of full-wavefor S€ction 4.

data has been collected. This means approximately 4,000,00

waveforms, needing 580 Mbytes of additional storage space t 2 WAVELET-BASED WAVEFORM COMPRESSION

the original 460 Mbytes sensor navigation data (GPS tinte, la

tude, longitude, elevation, pitch, roll, heading, etctldn easily 2.1 Short introduction to the wavelet compression

be calculated, that for a 3-hour-long flight more than 180 &by

of storage space is needed. Thus the need for compressing tBata compression methods, in general, can be divided into tw
raw waveform data arises. Our primary goal is to develop acommain groups: lossless and lossy compression. Losslessresmp
pression method which, if it is implemented in real-timeliet sion algorithms, like run length encoding (RLE), Huffmanliow
software layer of the waveform digitizer unit, is able towed  or arithmetic coding, provide an exact reconstruction efdm-
the needed data storage capacity, thus extend the acguigitie.  pressed data, with a limited compression rate. Lossy casnpre
Moreover organizations who store large amount of archivad d sion schemes, like transform coding schemes, provide tee us
can also benefit from such a compression scheme. In this,studihe opportunity to choose between better reconstructiatitgu
we use a lossy approach to the data compression (Sayood, 2006r better compression rate. Today’s most widely known com-
Our method is based on the CDF (Cohen-Daubechies-Feauveap)ession techniques (e.g. JPEG, MP3) are based on lossy com-
3/9 wavelet transform (Cohen et al., 1992) of the waveford, a pression methods utilizing Fourier or Fourier-relatedhtégues.
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Recently methods utilizing the discrete wavelet transf(iDvwT)
have been developed (e.g. JPEG2000).

the threshold was chosen so, that all but the largest giverepe

of the wavelet coefficients became zero (e.g. in Figure 1ic),
case of a 0.25 (25%) compression ratio, all wavelet coeffisie

The principle of DWT-based compression is the following: we after the 25% mark are to be zeroed out).

are looking for a base, in which the data to be compressed has

a sparse or nearly sparse representation. This meanshthat tThe target compression ratio is 0.20. (The compression isti
wavelet coefficient vector of the data (in this case the wavef  the ratio of the storage space needed for the compressedetiata
signal) has many zero or near-to-zero elements (see Figure Isus the storage space needed for the uncompressed data. The
After eliminating the elements having the lowest values fhresh- lower the number, the better the compression performange is
olding), we can store the coefficient vector in a more compaciThe performance of a few wavelet families, based on our avalu

form. tion, is listed in Table 1. In this range the CDF (Cohen-Dahies-
(a) Typical waveform _Feauveau ) wavelet family outperforr_ns_the other Wa_lveletlfem
S0 ‘ ‘ ‘ - in terms of the average standard deviation and maximum atesol
s | error of the reconstruction (the reconstruction error ediffer-
30 L | ence of the original signal and the signal after DWT, coedfiti
20 | /\ 4 vector truncation and inverse DWT).
10 | -
0 ! \ \ 1 \ Wavelet Std of Maximum
20 40 60 80 100 120 family the error | absolute error|
(b) CDF/3/9 wavelet coefficients Haar i 114 3.88
200 F ‘ ‘ ‘ — Daubechies| 0.46 1.44
First 25% of the wavelet Symmlet 0.44 1.39
100 - <« coefficients (by order) 7 CDF 0.40 1.29
0 M/W/L“* Table 1: Evaluating the performance of some wavelet famdaie
-100 | ! ! ! ! ! L - 0.20 compression rate (errors in intensity units)
20 40 60 80 100 120 ] ) o
After further evaluation of the CDF family (regarding itsrpm-
(¢) Sorted magnitude of wavelet coefficients eter values), the CDF 3/9 wavelet has been selected. It isrimp
200 ‘ ‘ ‘ ‘ tant to mention, that CDF is a biorthogonal wavelet familigjet
150 - Fi%s_t 25% ogthe Wa\{el(eit means, that different base functions are used for the daalyd
100 coefficients (by magnitude) the synthesis of the signal (see Figure 2).
50 |- 7] (a) Analyzing (b) Synthesizing
0 1 1 | | | | ———r—— T T T T
20 40 60 80 100 120
e T~
Figure 1: CDF 3/9 wavelet transform of a typical waveform | —~_ —~_ — |
4\/\/\/\,

The next key step of the compression algorithm is storingéhe
maining coefficients. In most cases, the wavelet coeffisiang W
real numbers, even if the input signal is a discrete-valuesl tn

our case, the waveform signal has discrete values betweed 0 a
255. These values can be stored as 8-bit (1-byte) unsigned in
gers. The wavelet coefficients, however, are calculatedhgtes
precision (32 bits, 4 bytes) or double precision (64 bitsy&)
floating point numbers. This offers great precision forisipthe
coefficients, but considerably increases the needed stepage.
One solution to overcome this problem is to quantize the-coef
ficients, i.e. to map the coefficients to certain discrete lens,
giving the opportunity to store these using a smaller nunaber
bits.

\/\/\/‘
|

-
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Figure 2: CFD/3/9 wavelet base functions

The second parameter to choose was the quantization method o
the wavelet coefficients. For this purpose, a 8-bit (256 1&ve
linear quantizer has been chosen. It is important to no&e tke
quantizer has to have a level for storing exactly zero vafues

it has to be a mid-tread quantizer). This is because of the@at

The elimination of the not-exactly-zero elements and trengu  ©f the wavelet compression.

zation of the remaining coefficients cause the error of teeme Quantization] Std of Maximum Compression
struction. The reconstruction quality is thus greatly ieflaed by threshold | the error | absolute error rate
choosing the wavelet family, the threshold, and the methat a 10 084 5909 028
granularity of the quantization. ' ’ ' '

3.0 0.89 3.17 0.23
2.2 Applied compression method ?8 282 gjg gg(l)
For developing our compression method, we have been using th 9.0 1.21 3.90 0.19

WaveLab toolbox (Buckheit and Donoho, 1995). The first tasktaple 2: Choosing the quantization threshold (errors ierisity
was to choose the best wavelet family for this purpose (Lakyjpits)
et al., 2010). The evaluation of the performance was based on

the values of the standard deviation and the maximum alesolutFinally the quantization threshold had to be chosen. Theasbj
error of the reconstruction at given compression rates. éiae tive was to achieve the highest possible compression raile wh
periments were run on a sample of 500 representative wamsfor not allowing the standard deviation of the reconstructionreo
from the test area. This time no quantization has been used, a exceed 1.00 intensity values. After evaluating differémices,
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a value of 5.0 has been decided (see Table 2). It is imporant tMany studies are dealing with LIDAR data classifications.eTh
mention, that the choice of quantization threshold dependbe  first LIDAR classification algorithms were based only on LIRA
chosen wavelet family. Using wavelet families other thanFCD derived geometric data (Maas, 1999), or were combined with
may enable better compression rates than 0.21 using a tidesh other data acquisition method such as aerial imagery (&Bragt
of 5.0, but the reconstruction quality may decrease (seleTgb  and Tolt, 2008). As now the entire waveform can be available
to the users, the shape of the waveforms can be analyzed to de-
rive more information. (Ducic et al., 2006) decomposed the
waveforms into Gaussian components and used the parameters
1. Preparing the waveform signal for compression: the intenof the Gaussian functions, such as the maximum intensitytend

sity values are decreased by 10.0 (this is the threshole valustandard deviation (pulse width) to separate vegetatiohan-

of the digitizer), and the signal is zero-padded at the end/egetation areas. (Mallet et al., 2008) used Generalizedsan

to have the length of the nearest power-of-two to the actuamodel with one more parameter for classification purposesh B

length (this is needed because WavelLab operates on signadsudies used supervised classification algorithm.

of such length).

The final scheme of the compression is the following:

Classification algorithms can be divided into two main giup
supervised and unsupervised classification. In the sugevlas-
sification a training and a test dataset is used, where we kmew
3. Truncating the coefficient vector at a length of 25% (sge Fi output class types belonging to the inputs. In the case af-uns
ure 1(b)). This means, that only the average coefficients angervised classification, first data has to be grouped intstets
the coefficients of first 4 detail level are kept. Our experi- based on some measure of similarity. Then these groups gan ha
ments have shown, that more than 99% of the signal energglasses associated with them (this can be done manuallyftor w
is stored in the first 25% of the coefficients (see Figure 3). the help of a small number of samples with known group-class
correspondence). The advantage of this classificatiomtghbre

4. The remaining coefficients are thresholded with a value ofs no need to have a priori knowledge of the class types bigigng
5.0 (i.e. all the coefficients with a magnitude smaller thany, a training or test dataset.

this value are made exactly zero).

5. The coefficients are quantized using a 8-bit (256-leved) | In thi§ paper, the feasibility study of clas_sii_‘ying the refleg sur-
ear mid-thread quantizer. Actually only 255 levels are usedace is based on Kohonen's Self-Organizing Map (SOM), an un-
for the quantization, the highest level is kept for speciatp supervised learning algorithm. SOM was first described as an
poses (e.g. marking the end of the waveforms, or markin rtificial neural network model by Teuvo Kohonen (Kohonen,

the blocks of the RLE compression in the next step). _990)._ Our choice is moti_vatgd by the_flexipi!ity of the algo-
rithm (in terms of parametrization), and its ability to atdeyell

6. An RLE compression is applied to the quantized coeffisient to highly non-linear mapping problems. The SOMK program
to find sequences of repeated values in the quantized coepackage, which was prepared by the SOM programming team of
ficient vector (usually sequences of zeros are found), anthe Helsinki University of Technology (Kohonen et al., 1996
replace them with shorter code blocks. has been used.

2. Calculating the CDF 3/9 wavelet transform of the waveform
signal.

(a) Level 1 (b) Level 2 The used sample LiDAR dataset is from Ontario, collectethfro

a residential area of Scarborough (Toronto) by an OptechM\LT
3100 full-waveform LiDAR system. The original Scarborough
area dataset contained more than 800 000 waveforms. For our
classification study we have chosen a smaller area ( 50 x 65 m)
containing different types of surface coverage (roof, paset,
grass, trees), with around 6000 waveforms. The distaneaiest

two adjacent points in a scan line is about 0.25 m, but thaudlist
between the scan lines is about 2-3.5 m, which strongly inflas

the spatial resolution of the classified map.

(c) Level 3 (d) Level 4

In our approach the waveforms are first separated according t
the number of peaks. For this we used a pulse detection method
(e) Level 5 () Level 6 to count the number of the pulses in the waveforms. This basic
peak detection method is based on the zero crossings of she fir
derivative on the thresholded version of the waveform (®bau

et al., 2007). In our method first we used a low pass filter to-eli
inate peaks caused by noise, and then the peaks were detected
with the method referenced above.

Figure 3: Reconstruction of a typical waveform using watele after the waveforms were separated into two classes (ohe-ec
detail coefficients up to the specified levels and multiple-echo), the multiple-echo waveforms weresifasi
as trees or roof. (Because multiple-echo waveforms canaglso
pear due to other man-made objects, such as cars, etcatlsiex
3 SOM-BASED CLASSIFICATION some class speckle in the classification, which can laterebe r
moved by e.g. mode filtering.) The one-echo signals weréetdea
As the recently appeared full-waveform LIDAR systems alle ab as probability density functions, to determine importdatistical
to digitize and record the entire backscattered signas, pnd-  parameters, according to the shapes of the waveforms, subh a
vides the possibility of further analyzing the waveform attdis,  maximum intensity value (amplitude), standard deviatioulge
obtaining additional information about the reflecting abje width), skewness (measure of the asymmetry of the waveform,
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third central moment) and the kurtosis (measure of the mkake are the numbers of the waveforms whose classification did not
ness, fourth central moment). These parameters are then usehange, the off-diagonal elements are the numbers of the mis
as input parameters for the SOM algorithm. With this methodclassified waveforms.

grass, trees, pavement and roof can be separated quiteTiell.

most problematic part is the separation between pavemeht armThe classification of 9.7% of the waveforms was affected ley th
roof, where the slope has a very important role. In out casegompression method, while the classification of 90.3% of the
one flat roof has been categorized as pavement. This problemaveforms did not change. The three significant cases wé¥ 2.
can be solved applying a two step classification, using tballo of the tree waveforms being recognized as grass, 1.4% ofdhe t
range differences in the second step. The ranges are daltula waveforms recognized as pavement, and 1.2% of the roof wave-

as the expected value of the probability density functiars phe
starting time of the backscattered waveform. In this way éow

forms being recognized as pavement.

eas (pavement) and locally high areas (roofs) can be separat Grass | Roof | Tree | Pavement
well (Zaletnyik et al., 2010). The classification is baset/am Grass | 32.4% | 0.0% | 0.3% 0.2%
waveform data, i.e. no navigation data is used. This mehas, t Roof 0.9% | 18.3% | 0.4% 1.2%
the coordinates of the LIDAR points need not to be calculéded Tree 24% | 0.1% | 4.7% 1.4%
carry out the classification. Of course, the coordinateg habe Pavement] 1.0% | 0.4% | 1.4% 34.8%

calculated later to georeference the classified waveforms. Table 4: Effect of the compression on the classification

(a) Classification (b) Aerial image

On the search for the cause of these significant misclaggfica
cases, it was discovered, that depending on the shape dfigfire 0
nal waveform, the estimation of ranges (used for the seiparat
roofs from pavement) was suffering from a high degree ofaegr
dation in some cases. Also some compression artifacts fest af
the shape of the waveforms, thus altering its statisticedmpa-
ters, and disturbing the peak detection method. These bl
can be eliminated by further development of the compressiion
gorithm.

’/;ﬂ’ f’f;/’o 5 THE ROLE OF THE COMPRESSION RATE
. P ‘.f’./ -
J & & 3 w o= As stated before, the wavelet based compression has the-adva
B Grass [ | Roof [ Tree [l Pavement tage, that the user can choose between good compression rati
. o o and low reconstruction error. Lowering the quantizatioresh-
Figure 4: The result of the classification process. Aeri@dde  gq is expected to cause some loss in the compression perfor-
Google Maps. mance, but is also expected to provide better reconstruetimr

statistics, thus increasing the performance of land diaation.

The result of the classification is shown in Figure 4. Compar-AISO the fine tuning of the quantizer (e.g. using a non-lirgzm-

ing the result with an aerial imagery visually, it can be st tization scheme) is to be carried out.

using the statistical parameters with unsupervised ¢leason
method, the waveforms can be classified effectively. Forerum
ical validation (see Table 3), 700 sample points have beem ma
ually classified using the aerial image (the total numberlad-c
sified points was 5934). The rows are the classes of the manual
classification, the columns are the classes of the SOM-lAasd
sification. The percentages in the diagonal show the theeperc
ages of the waveforms that have been correctly classifie@%84

of the waveforms). The most significant case of misclassifioa Table 5: The effect of compression on the classificationgperf

Quantization| Misclassification
threshold percentage
1.0 8.0%
3.0 8.2%
5.0 9.7%
7.0 13.6%
9.0 15.1%

is 8.8% of the waveforms, which has manually been classied amance using different quantization thresholds

trees, was classified as grass in the SOM-based approach. Thi

can possibly relate to seasonal changes.

Grass | Roof | Tree | Pavement
Grass 21.6% | 0.0% | 0.4% 0.7%
Roof 0.3% | 25.6% | 0.3% 0.1%
Tree 8.8% | 0.4% | 4.2% 0.0%
Pavement| 1.9% 0.0% | 2.2% 33.5%

The results of the initial experiments concerning the e¢fftéthe
guantization threshold on the misclassification percentag be
seen in Table 5 (for the corresponding compression ratids an
error statistics, see Table 2).

6 CONCLUSIONS

Table 3: Numerical verification of the classification praces )
In this study we have developed a new methodology for an un-

supervised classification of full-waveform LiDAR data, ed®n
only the waveform shape parameters (i.e. no navigationwdasa
used). We have also implemented an efficient method for the
compression of the waveforms, in order to lower the storamgk a
Table 4 summarizes effect of the compression on the classific data transfer needs. The effect of the information lossexhby
tion. The rows show the original categories, the columnsvsho the lossy compression scheme on the classification quabty w
the categories after decompression. The numbers in thertihg also studied.

4 INFLUENCE OF THE COMPRESSION ON THE
LAND CLASSIFICATION QUALITY
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For compression, the wavelet-based compression was used aBucic, V., Hollaus, M., Ullrich, A., Wagner, W. and Melzer,

the effectiveness of different wavelet families were exaadi Fi-

T., 2006. 3d vegetation mapping and classification using ful

nally, the biorthogonal CDF 3/9 was chosen with the best comwaveform laser scanning. In: Proc. Workshop on 3D Remote

pression rates for this problem. The wavelet coefficientsewe
thresholded first (with a value of 5.0) to discard the small co
efficients representing unimportant features, and thenfaram

mid-tread quantizer with 255 levels and RLE was applied & th

data. With this method a compression rate of 0.21 was adthieve

i.e. the data was compressed to less then one quarter ofigfie or
nal size, with the reconstruction error having a standavihtien
of only 1 intensity value.

Both the original and the reconstructed waveform data wasscl
fied using an unsupervised classification method, the bastteo

SOM algorithm, and the efficiency of the waveform data to use

for classification purposes was examined before and after co
pression.

Sensing in Forestry. EARSeL/ISPRS pp. 211-217.

Jutzi, B. and Stilla, U., 2005. Measuring and processing the
waveform of laser pulses. In: A. Gruen and H. Kahmen (eds),
Optical 3-D Measurement Techniques VII., Vol. |, pp. 194 320

Kohonen, T., 1990. The self-organizing map. Proc. IEEE }8(9
pp. 1464-1480.

Kohonen, T., Hynninen, J., Kangas, J. and Laaksonen, J§.199
Sompak, the self-organizing map program package. Technical
Report A31, Helsinki University of Technology, Laborataf
Computer and Information Science, FIN-02150 Espoo, Fihlan
27 pages.

Laky, S., Zaletnyik, P. and Toth, C., 2010. Compressing LFDA
waveform data. Proceedings of the International LIiDAR Magp

Correlation was observed between the shape of the wavefornrsorum 2010.

and the backscattering material. After the waveforms wepe s
arated into one- and multiple-echo waveforms, statispeaam-

Maas, H. G., 1999. Fast determination of parametric hous: mo

eters of the one-echo waveforms were calculated for the Sol\/pls from dense airborne laserscanner data. The Interaation

based classification (standard deviation, skewness, diarsmd
amplitude). As a result, the observation set was divideltimee
subsets, corresponding to trees, grass and non-vegetatas.
The classification was enhanced by separating the nonatéget
areas into pavement and roof, using the local range diftegn
calculated from the center of mass values and the startimeyaf
the backscattered waveforms.

Visual comparison of the result of the classification withiae
imagery shows, that full-waveform LiDAR data can be useg ver
efficiently to separate the different types of surfaces. Hrtical
verification shows a success rate of 84.9%.

Comparing the classification of the original and the recoicstd
waveforms, 9.7% misclassification was observed. Furthezlde
opment of the compression and the classification algorithexi
pected to overcome this difficulty.
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