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ABSTRACT: 

 

This paper addresses the problem of aerial image matching. We analyze existing approaches to this problem and show that, though 

the modern algorithms cope with the task quite well, their results are deteriorated in case of low overlap and significant rotation 

angle between the images. A two-stage feature-based image matching scheme is presented. It is shown that preliminary stage of 

simplified (shift-rotation) model estimation is crucial in case of low overlap and influences significantly the whole matching scheme. 

We introduce a novel method of shift-rotation model estimation, based on the voting procedure in parameter space, which allows 

finding the correct model in case of extremely difficult input data (overlap area is less than 10%) without using any additional 

information. Finally, the experimental results of our method on both synthetic and real data are presented. We compare our results 

with one of the state of the art SAC-based model estimators and show that our algorithm outperforms existing methods in case of 

very small overlap. 

 

 

1. INTRODUCTION 

Automatic aerial image matching, or aerial triangulation, is the 

field of active research at the moment. Matching is necessary 

for further creation of orthophotomaps and 3D modelling, both 

finding an application in such areas as geodesy, cartography, 

Earth monitoring and others. With the rapid development of 

geoinformation systems and the growth of input data amount, a 

fully automated technology of aerial image processing is 

becoming the main goal in this area. 

 

A lot of different techniques have been introduced recently and 

commercial software is already available on the market. But the 

existing state of the art algorithms still are not able to ensure the 

stable work of automated systems. Because of the complexity of 

aerial images obtaining process, some difficulties inevitably 

appear in the input data. Among them are the cases of very 

small overlap area and significant rotation angle that usually 

occur when matching a whole block of images divided into 

sequences. The aim of our work was to develop a technique that 

outperforms existing matching methods in these cases. Note that 

image scale is assumed to be constant as it is a typical situation 

for aerial images. See Figure 1 for an example of input data. 

 

The structure of the paper is the following. In Section 2 we 

discuss existing approaches to aerial images matching. The two-

stage feature-based matching scheme is given in Section 3 and 

the novel voting-based method of shift-rotation model 

estimation is introduced in Section 4. We present our 

experimental results in Section 5. Section 6 concludes the 

paper. 

 

 

2. RELATED WORK 

Aerial triangulation operates with hundreds or even thousands 

of images but actually this complex procedure is based on 

image pair matching. Aerial images are usually very large 

(hundreds of mega pixels) making it necessary to use 

hierarchical scale pyramid.  

 

 

 

Figure 1. An example of input aerial images. The overlap area 

(5.7%) detected by the proposed method is outlined 
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On the highest level of the pyramid two images are small 

enough to be compared within the whole area. If this step is 

successful then we only need to refine the matching results on 

the lower pyramid levels. Thus, we concentrate on the high 

level image matching in our work. 

 

Image matching methods can be classified into two separate 

groups: area-based and feature-based. The area-based methods 

(Kaneko et al., 2003; Zheng et al., 1993; Grün, 1985) normally 

apply a floating window to compare source and target images 

using the correlation technique. The most popular similarity 

measures are the sum of squared differences and the normalized 

cross-correlation. According to (Zitova et al., 2003), the 

straightforward correlation-based approaches are practically 

applicable only in case of shift and small rotation between 

images due to a huge computational complexity needed for 

determination of an arbitrarily rotation angle. The more 

advanced group of methods employing Fourier transform, 

following the idea of (Reddy et al., 1996), can handle arbitrarily 

rotation, but these methods are dealing mainly with the case of 

different image scales when one of the images may be 

considered as a template, so that the overlap area is quite big. 

 

Feature-based methods (Lowe, 2004; Matas et al., 2002; Flusser 

et al., 1994) exploit different kinds of features presented in the 

image such as segments, lines, curves and interest points. 

Specially constructed descriptors are computed for each feature 

in order to be compared and to produce a set of feature pairs 

(putative matches). We refer to (Tuytelaars et al., 2008; Li et al., 

2008; Remondino et al., 2006) as exhaustive surveys on feature 

detectors and descriptors. Finally, an affine or an epipolar 

model is fitted by the use of robust model estimators. Feature-

based methods do not depend on the rotation transform, but 

their crucial weak point is robust model fitting. One of the most 

popular robust estimators is the RANSAC algorithm (Fischler et 

al., 1981). It can handle a significant percent of false putative 

matches (outliers) efficiently, but the probability of finding the 

correct model decreases rapidly when outlier level exceeds 

50%. But this basic algorithm is being constantly improved with 

a new modification of RANSAC being published practically 

each year. In our work we refer to PROSAC (Chum et al., 2005) 

as one of the best modifications for matching purposes (Choi, 

2009) that have been proposed up to date. The PROSAC 

algorithm can employ information about descriptor’s similarity 

which increases the probability of finding a correct model even 

if the number of outliers is much higher than 50%. However, as 

we show in Section 5, even PROSAC fails to provide enough 

robustness in case of very low image overlap. 

 

Meanwhile, some special methods of matching slightly 

overlapping images have been already introduced. In the work 

(Pires et al., 2004) authors use a special adaptive sliding 

window. But this method was tested only on a few samples and 

there was no example with a considerable rotation. The paper 

(Begg et al., 2004) introduces a brute force method. In order to 

estimate image overlap authors compute image similarity for all 

possible image position on the highest pyramid level. This 

method works only with shift transformation. In our opinion, 

the advanced feature-based matching scheme (see Section 5 for 

details) outperforms all other existing methods, thus we 

compare our algorithm only with this scheme. 

 

In the context of this paper it is important to refer to the method 

described in (Xiong et al., 2006) which is based on a voting 

procedure. Voting schemes are widely used in computer vision 

algorithms. One of the most popular methods is Hough 

transform (Hough, 1962) which is very robust to noise and can 

be used in very challenging cases of parameters estimation. 

Unlike SAC-based methods, adaptability of Hough transform 

depends on model complexity. But if it is possible to carry out 

the voting procedure efficiently, this approach turns out to be 

quite powerful as it is fully deterministic, its runtime does not 

depend on the inliers percentage and it localizes the peak in 

parameters space more precisely because all points are used, not 

only a subsample. The method (Xiong et al., 2006) does not use 

descriptors at all. Image matching is divided into two stages: 

rotation and scale estimation. On the first step lots of corners 

are detected in both images and small image patches 

surrounding each corner are extracted. For each patch the main 

angle direction is computed using principal component analysis 

of pixel intensities. Then the voting procedure is used to get the 

rotation angle. For this purpose the differences between each 

pair of corners are summarized into angular bins. The maximum 

of histogram defines the angle between images. This method 

works only with heavily overlapped images but the proposed 

voting idea is very promising. We also point to the papers (Seo 

et al., 2003; Seedahmed et al., 2003) in which very similar 

matching approaches are proposed. 

 

 

3. IMAGE MATCHING OUTLINE 

In this paper we consider the feature-based image matching 

scheme that consists of the following consecutive steps: 

1) Putative matching 

2) Shift-rotation model estimation 

3) Overlap detection 

4) Rematching in overlap area 

5) Final model estimation 

Although this scheme seems to be quite obvious, we have not 

seen it mentioned in the literature. In this paper we focus on the 

second step, which is discussed in detail in the next section. 

 

Putative matching and model estimation are the two basic steps 

of feature-based image matching process. But in case of low 

overlap, when the percentage of true point matches is low, very 

few points are usually left after model estimation. Even if those 

points are inliers the estimated model may be too rough to use it 

on the lower levels of image pyramid, especially if the desired 

model is a complex one (e.g. a fundamental matrix). In this case 

one can first estimate the overlapping region by computing a 

simple shift-rotation model and then repeat the matching 

procedure only within that region. This produces more 

matching points uniformly distributed along the overlap area 

and, as a result, a complex model can be estimated robustly and 

precisely. Thus, in our work we concentrated on creating a 

robust shift-rotation model estimation algorithm. 

 

 

4. A VOTING SCHEME FOR SHIFT-ROTATION 

MODEL ESTIMATION 

The main contribution of this paper is a new method for shift-

rotation model estimation based on a voting scheme. Unlike the 

algorithm in (Xiong et al., 2006), the proposed method takes 

putative matches as an input. As we deal with the highest level 

of the image pyramid, it is possible to carry out an efficient 

putative matching procedure before running model estimation 

(about the way we obtained putative matches - see Section 5). 

 

The workflow of our algorithm is divided into two stages. At 

the first stage the rotation angle between the images is 
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estimated. It is absolutely necessary to compensate this angle in 

order to further shift estimation work correctly. Recall that our 

algorithm deals with the general case of an arbitrary rotation 

angle. Once the rotation is compensated, the second stage 

begins and the shift is computed. Both rotation and shift 

estimation are performed in the way similar to Hough 

transform. These two stages are separated because the applied 

voting technique is computationally efficient only if the 

dimensionality of accumulator is not greater than 2. Thus, we 

independently employ voting for an angle in a 1D space and 

voting for a shift in a 2D space. The detailed description of 

these voting procedures is given below. 

 

4.1 Rotation angle estimation 

To compute the rotation angle between the images we run 

through all available pairs of matches and accumulate their 

votes. Let M  be the set of putative matches and 

MmMm ∈∈ 21 ,  - two concrete matches from this set. Assume 

}',{ 111 PPm =  and }',{ 222 PPm = , where 
21, PP  and ',' 21 PP  are 

the points within the images I  and 'I  correspondingly. Then 

the vector 
21

PP  from the image I  corresponds to the vector 

''
21

PP  from 'I  and the rotation angle can be extracted out of 

this correspondence. Each pair of matches votes for its own 

angle, and then the accumulator is smoothed with a Gaussian 

filter. The highest peak in accumulator corresponds to the 

desired rotation angle between the images (see Figure 2). The 

choice of the bin size and the Guassian width will be discussed 

in Section 5. The ratio of the second highest peak to the first 

one can be used as an indicator of solution reliability.  

 

 

Figure 2. An example of a smoothed angle votes accumulator 

 

In order to preserve the accumulator from too much noise that 

comes with outliers we applied a simple metric limitation to 

each pair of putative matches. A pair’s vote is considered only if 

the following condition is met: dPPPP ≤− )','(),( 2121 ρρ , where 

),( yxρ denotes the distance between points x  and y  within 

the image and d  is the threshold. Note that it is not a kind of 

threshold that needs to be accurately tuned. As incorrect 

putative matches in most cases include points that are placed in 

arbitrary way within the image, the metric error is usually large 

enough for outliers. But at the same time, due to perspective 

projection, this difference for some inliers may be considerable. 

Thus, the threshold should not be too strict. The value of 4% of 

image dimensions for this threshold worked fine in all our 

experiments. 

The similar technique can be employed for scale change 

detection if the used descriptor is scale-invariant. In this case, 

first of all, the corresponding pairs of points vote for the scale 

change )','(),( 2121 PPPP ρρ  and then the angle is estimated as 

described above. 

 

It is clear that the complexity of the described procedure is   

)(
2

nO , where n  denotes the number of putative matches. In 

order to speed-up computations when the working time is 

crucial, one can limit the number of pairs to run through. But to 

avoid a significant loss of quality it is necessary to sort the 

matches beforehand. The Euclidian distance between 

descriptors can be used as a metric of reliability of a match. 

Once all the matches are rearranged in the order of decreasing 

reliability then it is reasonably to form pairs only with first 

nk <  matches from the list. 

 

4.2 Shift estimation 

Shift estimation starts only after rotation of the images has been 

compensated. At this stage each putative match votes for its 

own shift along both axes, thus filling the 2D accumulator. The 

accumulator is then smoothed with a Gaussian filter in order to 

achieve some robustness to distortion that is present in voting 

inliers due to perspective effects and non-ideal localization of 

feature points by detector. The element with the maximum value 

in the smoothed accumulator is found and the highest peak is 

localized by approximating the point and it is neighbourhood 

with a 2D Gaussian function. The least squares method is used 

for that approximation. 

 

The second highest peak is also detected (see Figure 3) and the 

ratio of this peak’s height to the height of the largest peak may 

be used as a measure of reliability of the found solution, as at 

the angle estimation stage. If this ratio is not greater than 0.5, 

then the shift has been estimated correctly with high probability. 

 

 

Figure 3. The highest peak (white ellipse) and second highest 

peak (violet ellipse) detected in the 2D accumulator. 

Logarithmic scale is used 
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5. EXPERIMENTS 

To confirm the efficiency of our model estimation algorithm we 

have compared it with another possible overlap detection 

scheme which is based on sample consensus technique. Having 

two overlapping images and a set of putative matches, we apply 

sample consensus to estimate the shift-and-rotation model. We 

have chosen PROSAC among other sample consensus methods 

due to its high convergence speed, ability to cope with high 

outlier’s level and suitability to our task: provided putative 

matches, it is possible to sort them using Euclidean distance 

between descriptors as a quality function. 

 

We conducted our experiments on both synthetic and real data. 

Their detailed description is given below. 

 

5.1 Synthetic tests 

The synthetic test consists of a number of trials (we used 1000), 

with the full process of image pair matching being modeled at 

each trial. First, we randomly choose shift and rotation angle for 

the pre-selected percentage of image overlap, thus defining the 

correct transformation. A number of points are placed in the 

overlap area of the first image and transferred to the second 

image. This forms the correct matches (inliers), which are then 

perturbed by noise. After that, false matches (outliers) are 

added, being placed randomly within the images. The number 

of inliers and outliers is chosen in such a way that the 

percentage of inliers is equal to the percentage of overlap area 

and the total number of matches equals the desired value N . 

 

The important aspect that must be considered in synthetic tests 

is the need of match ordering for PROSAC method. We take 

this into account by using the following procedure. The correct 

matches are assigned random descriptor distances according to 

the distribution provided in (Läbe et al., 2006). We modeled it 

with the Rayleigh distribution with 1=σ  and scaled by a factor 

of 10000. The incorrect matches are assigned uniformly 

distributed distances from the ]103,10[ 65 ⋅  interval. The used 

values for descriptors distances are characteristic for the SIFT 

(Lowe, 2004) descriptor that we use for the real data (see 

Section 5.2). As it was already mentioned in the previous 

section, match ordering can also be employed by the proposed 

method to save computational resources. At the stage of angle 

estimation the number of combinations can become huge if 

there are too many matches, thus it is reasonable to select only 

the first k  matches, which are the most reliable ones, for this 

process. 

 

Applying the described procedure, two tests have been made, 

both using 1000=N  matches with 200=k  most reliable of 

them employed for angle detection. The two experiments differ 

in the level of noise added to inliers: the first test was held with 

the maximum deviation of 4 pixels, while 8 pixels were used in 

the second one. The threshold for PROSAC was set according 

to this noise level parameter. For both methods, after inlier 

detection, the model was refined using the least-squares fitting. 

If the relative error between the found model )
~

,
~

,
~

( θYX  and the 

true one ),,( θYX  was less than 4%, i.e. 

04.0
2

~~~
2

22

≤














 −−−
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
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




 −
+


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H
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W

XX
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then the match was considered successful. Here W  and H  are 

image width and height respectively. The results for varying 

overlap percentage are shown in Figure 4. 

 

Due to the least-squares refinement of the final result, the 

choice of bin size and smoothing parameter for the proposed 

method does not affect the result in a wide range of values. 

Thus we used 5% of parameter range ( ]2,0[ π  for angle and 

],[],[ HHWW −×−  for shift) for the Gaussian filter width, 

while the bin size was equal to 1 degree for angle and to 1% of 

image dimensions in pixels for shift. 

 

As graphs indicate, the PROSAC method performs quite well in 

both cases if overlap area is not less than 15% of an image size. 

But with the decrease of overlap percentage the performance 

deteriorates quickly, especially in case of stronger noise. In fact, 

this does not necessarily mean that PROSAC is unable to find 

inliers. More often it means that the found model differs too 

much from the real one. PROSAC tends to select a small subset 

of inliers, while the proposed method either does not find them 

at all (quite rarely) or finds almost all of them. This allows our 

method to tolerate greater noise and to achieve much better 

precision. Also, as it was said before, it does not require the 

noise threshold to be set at all. 

  
(a) (b) 

Figure 4. The comparative results of our algorithm and PROSAC on synthetic data. Note that the proposed method is more reliable 

in case of low overlap (less than 15%)
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5.2 Experiments on real data 

In order to compare our algorithm with PROSAC on real data 

we have collected a test set that consists of 28 pairs of 

overlapping aerial images. Those images have been taken with 

different cameras under varying conditions and include both 

digital and analog photos. The set also provides a reasonable 

variety of areas presented in the images as they include forests, 

fields, towns, mountains and rivers. All the images have been 

downsampled to the size of ~0.5 mega pixels. The overlap 

percentage is less than 10% for all the pairs, while the rotation 

angle varies from 0 to 180 degrees. 

 

To provide both our algorithm and PROSAC with putative 

matches we first detected 1000 Harris corners (Harris et al., 

1988) per image which is enough to cover the whole image area 

uniformly. SIFT descriptor with radius 12=r  pixels was then 

applied to those feature points and, finally, a simple nearest 

neighbor matching procedure was carried out. The descriptors 

distance threshold was set to 80000 , as recommended in 

(Läbe et al., 2006). Matches for PROSAC were sorted by the 

nearest neighbor distance ratio. 

 

 
(a) 

  
(b) 

Figure 5. Results of the proposed method on real data. Overlap 

area is 3.5% in (a) and 10% in (b) 

 

Like in synthetic tests, our algorithm showed an advantage over 

the PROSAC-based scheme when applied to real data. Being 

absolutely deterministic, as opposed to SAC-methods, the 

proposed algorithm demonstrated better robustness and 

successfully matched 71% of the challenging test pairs, while 

PROSAC coped with 54%, often having to run through 

thousands of iterations to find a solution. The results are shown 

in Figure 5. 

 

In our experiments we also tried an alternative approach to 

rotation angle detection. As we use SIFT descriptor, the 

dominant direction of each feature is known. Thus, it is possible 

to vote for the difference in directions by each match pair to 

determine the relative orientation of the images. But this 

approach turned out to be less robust than the one described in 

Section 4.1, due to instability of feature direction detection by 

SIFT and much lower total amount of votes. Moreover, this 

approach depends on a specific descriptor, while the proposed 

method is able to work with pure point correspondences. 

 

5.3 Matching a set of images 

The algorithm of shift-rotation model estimation has been used 

in a framework that matches a whole set of aerial images. The 

amount of images in a set is ~100-200. A set is usually divided 

into a number of routes. For each image the route to which it 

belongs is known beforehand and no other additional 

information is used. Note that, while the overlap among images 

belonging to the same route is substantial, typical overlap 

between neighbouring routes is on the order of 20-30% or even 

less in the most complex cases. Moreover, in general case the 

routes may be placed randomly with respect to each other. Thus, 

if no GPS / IMU data is available, pairs of overlapping images 

must be extracted automatically. We used the approach 

proposed in (Brown et al., 2007) for candidates’ selection and 

then applied our method for image matching. The overlapping 

images were successfully detected in most cases which made an 

automatic assembly of image blocks possible. 

 

 

6. CONCLUSIONS 

We have presented a new method of shift-rotation model 

estimation that is based on a voting procedure in parameter 

space. The proposed method improves the stage of model 

estimation within the bounds of the discussed two-level scheme 

of matching aerial images. This allows a more robust and 

qualitative detection of overlap area which results in better 

matching of aerial images with low overlap. Our method has 

been shown to outperform the existing approaches, particularly 

the modern PROSAC algorithm. The results of the synthetic 

tests have been proved by experiments on real data that 

consisted of an exhaustive set of aerial images with small 

overlap. The advantages of the proposed method are 

determinacy and a straightforward set of parameters that do not 

require tuning. 
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