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ABSTRACT: 
The article presents a powerful and automated methodology to extract accurate image correspondences from different kinds of close-
range image blocks for their successive orientation with a bundle adjustment. The actual absence of a commercial solution able to 
automatically orient markerless image blocks confirms the still open research in this field. The developed procedure combines 
different image processing algorithms and robust estimation methods in order to obtain accurate locations and a uniform distribution 
of tie points in the images. We demonstrate the capabilities and effectiveness of this method with several tests on closed or open 
sequences and sparse blocks of images captured by a standard frame (pinhole) camera, but also spherical images. An accuracy 
evaluation of the achieved 3D object coordinates with photogrammetric bundle techniques is also presented. 
 

   
Figure 1. Typical sequence (92 images) automatically oriented extracting the necessary image correspondences (18,500 3D points). 

 
1. INTRODUCTION 

The complexity and diversity of the image network geometry in 
close-range applications, with wide baselines, convergent 
images, illumination changes, moving objects, occlusions, 
variations in resolution and overlap, makes the automated 
identification of tie points more complex than in standard aerial 
photogrammetry. Homologues image points are necessary for 
structure and motion determination, as well as 3D modeling 
purposes or Photosynth-like applications. In close-range 
photogrammetry, commercial solutions for automated image 
orientation and sparse 3D geometry reconstruction of 
markerless sets of images are still pending. Some commercial 
packages are available to automatically orient video sequences 
(e.g. Boujou, 2D3 and MatchMover, RealViz), but they 
generally work only with very short baselines and low 
resolution images. Thus, there is a lack of commercial and 
reliable software to automatically orient a set of unordered and 
markerless images. In the literature there are some approaches 
tailored to work in real-time and on large indoor or outdoor 
environments. These methods, typically named SLAM, can also 
use external information coming from exogenous sensors (e.g. 
GPS or IMU) for better incremental motion estimation and 
absolute geo-referencing (Davison et al., 2007; Agrawal and 
Konolige, 2008; Pollefeys et al., 2008). 
When no assumption or external information are employed, the 
“Structure from Motion” (SfM) concept is the core method used 
for the automated orientation of images and 3D sparse 
reconstruction of scenes (Pollefeys and Van Gool, 2002). Nister 

(2004) matches small subsets of images to one other and then 
merge them for a complete 3D reconstruction in form of sparse 
point clouds. Vergauwen and Van Gool (2006) developed a 
SfM tool for Cultural Heritage applications (hosted now in a 
web-based 3D reconstruction service). Recently the SfM 
concept has made tremendous improvements, notwithstanding 
the achievable 3D reconstructions are useful only for 
visualization, object-based navigation, annotation transfer or 
image browsing purposes. However, the automation of the 
procedure has reached a significant maturity with the capability 
to orient huge numbers of images. Two well-known packages 
are Bundler (or its graphical version Photosynth) (Snavely et 
al., 2008a) and Samantha (Farenzena et al., 2009). The former 
is the implementation of the current state of the art for 
sequential SfM applications, and it was also extended towards a 
hierchical SfM approach based on a set of key-images (Snavely 
et al., 2008b). The latter appears even faster because of the 
introduction of a local bundle adjustment procedure. 
In the photogrammetric community, some research solutions 
capable of automatically orienting a set of markerless images 
acquired with calibrated cameras were presented in Roncella et 
al. (2005), Läbe and Förstner (2006) and Remondino and Ressl 
(2006). A rigorous bundle solution, coupled with the estimation 
of the unknown parameters based on the Gauss-Markov model 
of the Least Squares, provided an efficient, precise and reliable 
solution in a functional and stochastic sense. 
The paper presents a methodology for the automated 
identification of image correspondences in a large variety of 
image datasets (Figure 1). The proposed method, named with 
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the acronym ATiPE (Automatic Tie Point Extraction), is 
distinguished from previous works for its flexibility, 
completeness of the achieved sparse point clouds and capability 
to process different types of images. The robust detection of 
correspondences is achieved by combining the accuracy of 
traditional photogrammetric methods with the automation of 
Computer Vision (CV) approaches. The method has been 
implemented into a software which is capable of interacting and 
transferring data with several commercial photogrammetric 
packages for the successive bundle adjustment. Many tests have 
been performed in order to validate the methodology on 
different datasets acquired with pinhole cameras as well as on 
spherical images. Results obtained from some of them will be 
shown in Section 3. 
 
 

2. WORKFLOW OF ATIPE  

2.1 Overview of the methodology 

The developed method (ATiPE) can automatically process a 
large variety of images, in order to derive accurate 
correspondences for the successive estimation of camera poses 
and sparse 3D geometry. ATiPE was designed for 
photogrammetric and detailed 3D modeling applications, 
therefore a real-time elaboration is not an issue of primary 
importance in favour of the final accuracy and uniform 
distribution of the extracted tie points. The implemented feature 
matching strategies, coupled with an initial network geometry 
analysis (called visibility map), allows a computational time of 
few hours for image blocks composed of several tenth of high 
resolution images (> 20 Megapixel) used at their original size. 
The typical output of ATiPE are the pixel coordinates of 
homologues image points, which can be imported and used for 
image orientation and sparse geometry reconstruction in most 
commercial photogrammetric software (e.g. LPS, Australis, 
iWitness, iWitnessPro, PhotoModeler). The innovative aspects 
of ATiPE are: 
- effectiveness on a large variety of unorganized and fairly 

large pinhole camera image datasets; 
- capability of working with high resolution images; 
- accurate image measurements based on the Least Squares 

Matching (LSM); 
- combination of feature-based and area-based operators; 
- strategies to derive a uniform distribution of tie points in the 

images; 
- extension to spherical images. 
A comparison between ATiPE and the state-of-the-art Photo 
Tourism (e.g. Bundler or Photosynth) is given in Table 1. The 
flowchart of the method is shown in Figure 2, while details 
about the implemented procedure will be discussed in next 
paragraphs of this section. The input elements of ATiPE are the 
images, the full set of interior orientation parameters (optional) 
and a visibility map between the images (optional). The images 
are preferably used calibrated in order to avoid self-calibration 
which is generally not appropriate and reliable in practical 3D 
modelling projects due to the weak image network for a 
complete and correct camera calibration. The images can be 
radiometrically enhanced with the Wallis filter (1976), in the 
case of a poor texture. ATiPE follows a coarse-to-fine strategy 
in order (i) to work with the original geometric and radiometric 
resolution at the highest pyramid level and (ii) to speed up the 
processing. The visibility map might contain information about 
the overlap between the images and it can be derived from 
GPS/INS data with an approximate DTM/DSM or with a 
preliminary and very fast orientation procedure performed on 

low resolution images (e.g. 2 Megapixel). The visibility map 
can significantly reduce the running time of ATiPE by limiting 
the combination of images that must be analysed and matched. 
 

 Photo Tourism ATIPE  
Purpose CV 

Applications 
Photogrammetric 

Surveys 
Kind of Images Pinhole Pinhole & Spherical 

Number of images Huge (>10 000) Limited (a few 
hundreds) 

Varying cameras Yes Yes 
Image size Low resolution 

(compression) 
High resolution with a 
coarse-to-fine approach 

Image enhancement None Yes (Wallis filter) 
 

Network geometry 
 

Sparse block 
Ad-hoc procedures for 

sparse blocks and 
sequences 

Visibility information None Yes (images, GPS/INS, 
DTM/DSM) 

 
Accuracy 

 
No guarantee 

Yes – using images for 
photogrammetric 

projects 
Speed Fast Slow 

Camera calibration EXIF EXIF or Interior with 
additional parameters 

Operator for matching SIFT SIFT - SURF - FAST 
Detector Comparison kd-tree Quadratic or kd-tree 

Outlier Rejection F/E  matrix F/E matrix or 
homography 

F/E estimation 8-points 7-points 
Robust method RANSAC LMedS - RANSAC – 

MAPSAC 
Image coordinates 

refining 
None LSM 

Additional image 
points 

None Multi-image corner-
based matching 

Tie point reduction None Yes 
Tie point uniform 

distribution 
None Yes 

 

Table 1. Comparison of the Photo-Tourism approach (Bundler - 
Photosynth) and ATiPE. 
 

 

2.2 Feature detection and matching 

A generic block of n images can be considered composed of 
(n2-n)/2 combinations of stereo-pairs, which are firstly analysed 
independently for the identification of the correspondences and 
then progressively combined. For each pair, features are 
extracted with the SIFT (Lowe, 2004) or SURF (Bay et al., 
2008) operators, which demonstrated their high repeatability for 
close-range applications. The user needs to select the operator 
and the method for comparing the descriptors of the image 
points. Two methods are available: a kd-tree search (Arya, 
1988) (fast but approximate) or a quadratic search (slow but 
rigorous). The use of the former is highly suggested in the case 
of high resolution images as it can extremely reduce the 
computational costs. The latter approach analyses all descriptor 
combinations and is surely more precise despite the slower 
performances. Thus, it should be used only in the case of low 
textured objects and highly convergent images. In both 
comparison methods, the ratio test on the L2 norm of the 
descriptors is applied for a preliminary outlier removal. The 
remaining wrong correspondences are removed with the robust 
estimation of the fundamental matrix (or essential matrix if 
interior orientation of the camera is known). Three methods 
have been implemented: LMedS, RANSAC and MAPSAC. 
None of these methods can be successfully applied to all kind 
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of datasets and every method has advantages and drawbacks 
with results depending on the selected thresholds and the 
expected fraction of outliers among the observations. Until 
now, the user has to manually select the outlier rejection 
method but a criterion for automatic switching on the basis of 
the detected characteristics is under development. 
 

 
Figure 2. The flowchart of the implemented method. The “*” 
symbol indicates optional functions or data. 
 
After the image pair matching for all possible combinations, the 
found stereo pairs are concatenated according to the network 
geometry. Different strategies can be followed: 
- ordered image sequences (Figure 4 and 5): as the overlapping 
is guaranteed between consecutives images, the whole sequence 
is divided into n-2 triplets. If I is a generic image, each triplet Ti 
is made up with the images {Ii, Ii+1, Ii+2}. For each triplet Ti a 
pair-wise matching between the couples of images Ci = {Ii, Ii+1} 
and Ci″={Ii+1, Ii+2} is carried out in order to determine a set of 
homologous features. Correspondences of the couple Ci′= {Ii, 
Ii+2} are determined from the points of the images Ii+1 which 
also appear on the images Ii and Ii+2. After the single triplet 
matching, the image coordinates of consecutives triplets are 

compared in order to determine correspondences in the whole 
sequence. The triplet Ti and the next one Ti+1= {Ii+1, Ii+2, Ii+3} 
share two images and their tie points can be transferred with a 
simple comparison based on the value of the image coordinates. 
In addition, for closed sequences an additional triplet Ta={In-1, 
In, I1} is added to match first and last images. This method has a 
linear computational cost O(n) with respect to the number of 
images, with a significant advantage in terms of CPU time. 
- unordered sets of images (Figure 6): this is the general case, 
where it is necessary to check all possible image pair 
combinations to determine the ones sharing sufficient 
correspondences. Therefore each image must be compared with 
all the others, leading to a high computational cost O(n2). For 
this reason, the use of a visibility map (which can be 
automatically estimated) is recommended. 
 
2.3 Image coordinates refinement 

After the concatenation step, the precision of the image 
coordinates can be improved with a Least Squares Matching 
refining (LSM; Grün, 1985). Although an orientation with SIFT 
or SURF features can produce sub-pixel results, the refinement 
with LSM gives better results (Table 2). The use of LSM allows 
the analysis of low resolution images with SIFT and SURF (by 
using a coarse-to-fine approach). This limits the number of 
extracted features and speeds up the comparison of the 
descriptors. These features are then projected onto the original 
images by considering the applied compression factor and 
become good approximations for the LSM refining. In the case 
of widely separated and convergent images, the descriptor 
values can be used as initial approximation of the LSM 
parameters (Remondino and Ressl, 2006). 
 

 Case1 
(1936×1296 px) 

Case 2 
(2816×2112 px) 

 σ0 RMS # σ0 RMS # 
SIFT alone 0.54 0.36 87 1.21 0.86 793 
SIFT+LSM 0.33 0.22 68 0.86 0.61 784 
SURF alone 0.86 0.58 137 0.47 0.33 104 
SURF+LSM 0.51 0.34 104 0.35 0.24 95 

 

Table 2. Orientation results in terms of σ0, RMS (both in pixels) 
and number of final 3D points with the SIFT and SURF 
operators, coupled with an image location improvement (LSM). 
 

6 images - 2816×2112 (px)      
Object size: 1.2×1×1 (m)  

SIFT+LSM FAST+LSM 
#3D points 1181 541 
σ0 (px) 0.42 0.28 
RMS (px) 0.43 0.32 
σx (mm) 0.27 0.13 
σy (mm) 0.39 0.24 
σz (mm) 0.65 0.33  

 

Table 3. Comparison between feature- and corner-based 
orientation procedures with a LSM refining.  
 
As the precision of the computed object coordinates improves 
with the number of images where the same point is visible, an 
additional matching procedure based on the FAST operator 
(Rosten and Drummond, 2006) was added. FAST demonstrated 
to quickly extract a large number of corners under a higher 
repeatability compared to SIFT and SURF, with also a better 
distribution in the images and a higher accuracy of the final 
sparse geometry (Jazayeri and Fraser, 2008). According to these 
considerations, the FAST operator was included in the pipeline 

COMPRESSION* & RGB2GRAY CONVERTION 

CREATION OF “M” IMAGE PAIRS 
sequence – sparse block – block with visibility map 

Image pair i = 1 

KEYPOINT DETECTION (SIFT/SURF) 

KEYPOINT MATCHING (quadratic/kd-tree) 

OUTLIER DETECTION 
robust  

estimation 
of F/E 

robust estimation 
of a homography 

robust estimation 
with spherical 

unwarping

IMAGE PAIR CONCATENATION 

i = M 

IMAGE ENHANCEMENT* 

LSM REFINING* 

CORNER-BASED MATCHING* 

False 

True 

INPUT DATA 
images – camera parameters* – visibility map* 

POINT REDUCTION AND  
UNIFORM DISTRIBUTION* 

IMAGE COORDINATES & ADJUSTMENT
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(as optional choice). Its interest points are matched with a 
multi-image geometrically constrained LSM (Grün and 
Baltsavias, 1988) based on the collinearity principle and the 
orientation parameters previously computed with SIFT or 
SURF features. Table 3 shows the accuracy improvement using 
the developed approach. 
 
2.4 Correspondence reduction and uniform distribution 

High resolution images picturing objects with a good texture 
could generate a huge number of image correspondences, which 
are very often not uniformly distributed in the images. 
Therefore, each image can be divided into rectangular cells 
where only the features with the largest multiplicity are held. 
This method demonstrated a significant reduction of the 
correspondences (even more than 100 times), preserving the 
accuracy of the final product. Secondly, as the features are 
generally random-distributed in the images without a uniform 
distribution (Figure 3), the method improves the geometric 
distribution of tie points. The quality of the final results is 
increased in terms of geometric distribution of tie points and in 
a drop of the processing time and computational cost. 
 

 
Figure 3. Random and non-uniform distribution of the features 
extracted with SIFT (above) and derived uniform distribution 
with the proposed approach (below). 
 

2.5 Extension to spherical images 

ATiPE can be also used to extract reliable correspondences 
from spherical images (or panoramas), i.e. a mosaic of 
separated images acquired with a rotating head and stitched 
together. The derivation of metric information from spherical 
images for interactive exploration and realistic 3D modeling is 
indeed receiving great attention due to their high-resolution 
contents, large image field of view, low cost, easiness, rapidity, 
and completeness (Fangi, 2007). But spherical images, if 
unwrapped on a plane, feature different resolutions (width and 
height), scale changes and the impossibility to use a classical 
bundle solution in Cartesian coordinates. In fact, while a 
pinhole image is described by its camera calibration parameters, 
a generic spherical image is only described with its 
circumference C, which corresponds to the image width (in 
pixels) under an angle of 2π. In fact, a spherical image can be 
intended as a unitary sphere S around the perspective centre and 
3D point coordinates x can be expressed in terms of longitude λ 
and co-latitude ψ as: 
 

[ ] [ ]TTzyx ψλψλψ cossinsincossin==x         (1) 
 
The relation between a point onto the sphere and its 
corresponding 3D coordinates is x = X / || X ||. Homogenous 

image coordinates m can be mapped onto the sphere by using 
the equi-rectangular projection:  
 

[ ] [ ]TT RRmm 1121 ψλ==m      (2) 
 
where R=C/(2π) is the radius of the sphere.  
Given a spherical image, we developed a matching strategy to 
unwrap the sphere onto a local plane. First of all, the median of 
the longitudes μ(λ) is subtracted from λ, obtaining new 
longitudes λ* =λ - μ(λ). This allows the projection of the points 
of the sphere onto the plane x = 1 as: 
 

[ ] [ ]TT tgpp *cos/cot*11 32 λψλ==p     (3) 
 

Here, p2 and p3 can be intended as the inhomogeneous image 
coordinates of a new pinhole image. Moreover, the centre of the 
spherical images is also the projection centre of the new pinhole 
image, with the advantage that given two spherical images S 
and S′, an outlier can be removed by robustly estimating a 
fundamental matrix. Obviously, this procedure cannot cope 
with large longitude variations. However, the partitioning of the 
spherical images into 4 zones (kπ/2 ≤ λ < (k+1)π/2, k = 0,…, 3) 
produces 4 local pinhole images that can be independently 
processed. In addition, this method allows the combined 
matching of spherical and pinhole images.  
The extracted image correspondences are then processed with a 
bundle solution in spherical coordinates to derive the camera 
poses and a sparse 3D geometry of the analyzed scene. 
 
 

3. EXPERIMENTS 

3.1 Ordered image sequences 

Figure 4a shows the recovered poses for a sequence matched 
with the SIFT operator and the kd-tree search for comparing its 
descriptors. It took roughly 30’ to orient 33 images (used at 
their original size) acquired with a 10 Megapixel calibrated 
camera. The robust estimation of the epipolar geometry was 
necessary to remove mismatches (e.g. moving objects such as 
people and pigeons). The orientation procedure was carried out 
starting with a relative orientation between the first image pair, 
then progressive resections alternated to triangulations have 
been used to provide approximations for the final and robust 
photogrammetric bundle adjustment. Figure 4b shows the poses 
of 28 images recovered with the SURF operator in 15’, deriving 
a final sparse point cloud of ca 12,000 3D tie points. 
Figure 5 shows the results from the ISPRS Comm. 3 dataset 
“Fountain-K6”. The 25 images have been automatically 
oriented with the SIFT operator in approximately 20’. The 
adjustment with all the extracted features (more than 96,000 
image points) gave a final RMS of 3.6 μm, while the 
application of the point reduction described in subsection 2.4 
(ca 6,000 image points) ended with a RMS of 3.3 μm.  
 
3.2 Sparse image block 

ATiPE has been also tested on large image blocks acquired with 
an UAV system. Figure 6 shows the orientation results for a 
block of 70 images taken with a calibrated 12 Megapixel 
camera. The global number of image combination is 2,415, 
while the pre- analysis with the visibility map found 507 image 
combinations.
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(a)  (b)  
Figure 4. Orientation results for closed and ordered image sequences acquired with a 10 Megapixel calibrated camera. a) 33 images; 
b) 28 images. 

  
Figure 5: The dataset “Fountain-K6” (from ISPRS Comm. 3) automatically oriented with ATiPE. The results of the procedure to 
reduce and obtain a more uniform distribution of the tie points are also shown on the right side. 

  

Figure 6. Recovered camera poses and sparse 3D geometry for a block of 70 UAV images over the archaeological area of Copan, 
Honduras. A mosaic of the images and the visibility map (red points represent image locations and blue lines connections among 
them) are also shown. 
 
At the end of the feature-based matching, more than 57,000 
image points have been found (only correspondences in at least 
three images have been kept). The final photogrammetric 
bundle adjustment provided a RMS of 3.4 μm (pixel size is 5.5 
μm). After the strategy for point reduction and uniform 
distribution, only 6,498 correspondences have been used to 
derive the camera poses with a final RMS of 3.1 μm. 
 
3.3 Spherical images 

ATIPE has been also used to register very large panoramas 
obtained by stitching together frame images with panoramic 
software (e.g. PTGui). Figure 7 shows the matched features 
between 3 panoramas in Petra (ca 80-90 Megapixel per image). 
The façade is approximately 70x40 m and the camera-to-object 
distance was about 70 m. Around 1,600 correspondences have 
been found and then used to retrieve the camera poses with a 
bundle adjustment in spherical coordinates (Fangi, 2007). The 
final standard deviations of the computed camera poses are 4-5 
cm, in agreement with the values derived from manual 
measurements.  
Figure 8 shows the tie points extracted between two widely 
separated panoramas (covering an horizontal angle of 270°), 
employed for the successive image orientation and 3D scene 

restitution of a block of 16 panoramas. It is clearly visible how 
the method can work even with large topological changes. 
 

 
Figure 7. A triplet of spherical images with the extracted 
correspondences for the successive bundle adjustment. 
 

4. CONCLUSIONS 

This paper presented an accurate and powerful methodology to 
extract precise and reliable image correspondences for camera 
pose estimation and 3D sparse geometry derivation. The 
method was tested on pinhole and spherical images, large and 
small blocks, low and high resolution images. 
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The implemented tool was created for photogrammetric 
applications, in which accuracy plays a fundamental role. It 
uses several CV techniques, which are mixed with the 
photogrammetric ones to bring accuracy into automation. In 
addition, some new methods were developed and implemented 
to overcome some issues related to the distribution and number 
of the image correspondences: (i) a coarse-to-fine approach 
allows the elaboration of high resolution images; (ii) an 
implementation of strategies to reduce the number of the images 
to be pair-wise matched; (iii) according to the block structure, a 

kd-tree or a quadratic search and the preliminary creation of a 
visibility map are applied; (iv) a method for tie points reduction 
to avoid too large datasets of observations for the successive 
bundle adjustment. These solutions demonstrated to reduce both 
processing time and computational costs without loosing 
accuracy.  
The final results are accurate tie points between different 
categories of images that can be used for the camera estimation 
phase within a robust Gauss-Markov bundle adjustment. 

 

 
Figure 8. Two panoramas (out of 16, ca 120 Megapixel per image) of the interior of S.Maria della Carità church in Italy and the 
extracted tie points. Some lines are drawn to indicate the correct correspondences extracted despite the large disparities in the images. 
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