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ABSTRACT:  
 
Monitoring the behavior of people in complex environments has gained much attention over the past years. Most of the current 
approaches rely on video cameras mounted on buildings or pylons and people are detected and tracked in these video streams. The 
presented approach is intended to complement this work. The monitoring of people is based on aerial image sequences derived with 
camera systems mounted on aircrafts, helicopters or airships. This imagery is characterized by a very large coverage providing the 
opportunity to analyze the distribution of people over a large field of view. The approach shows first results on automatic detection 
and tracking of people from image sequences. In addition, the derived trajectories of the people are automatically interpreted to 
reason about the behavior and to detect exceptional events.  
 
 

1. INTRODUCTION 

Monitoring the behavior of people in crowded scenes and in 
complex environments has gained much attention over the past 
years. The increasing number of big events like concerts, 
festivals, sport events and religious meetings as the pope’s visit 
leads to a growing interest in monitoring crowded areas. In this 
paper, a new approach for detecting and tracking people from 
aerial image sequences is presented. In addition to delineating 
motion trajectories, the behavior of the people is interpreted to 
detect exceptional events such as panic situations or brawls.  
 
A typical feature of current approaches is the utilization of 
video cameras mounted on buildings to detect and track people 
in video streams. Pioneering work on tracking human 
individuals in terrestrial image sequences can be found, e.g., in 
(Rohr, 1994; Moeslund & Granum, 2001). While this work 
focuses on motion capture of an isolated human, first attempts 
to analyze more crowded scenes are described in (Rosales & 
Scarloff, 1999; McKenna et al. 2000). Such relatively early 
tracking systems have been extended by approaches integrating 
the interaction of 3D geometry, 3D trajectories or even 
intentional behavior between individuals (Zhao & Nevatia, 
2004; Yu & Wu, 2004; Nillius et al., 2006; Zhao et al., 2008). 
Advanced approaches, based on so-called sensor networks, are 
able to hand-over tracked objects to adjacent cameras in case 
they leave the current field of view achieving a quite 
comprehensive analysis on the monitored scene. The work of 
(Kang et al., 2003) exemplifies this kind of approaches. Instead 
of networks of cameras, moving platforms like unmanned 
airborne vehicles (UAVs) can be utilized, too, as e.g. presented 
in (Davis et al., 2000). An overview on the research of crowd 
modeling and analysis including all stages of a visual 
surveillance is given in (Hu et al., 2004; Zhan et al., 2008).  
 
An important aspect of tracking a large number of people, as 
e.g. shown in (Rodriguez et al., 2009), includes the potential to 
not only analyze individual trajectories but also to learn typical 
interactions between trajectories (Scovanner & Tappen, 2009). 

Hence, event detection has been an intensely investigated field 
of research in the last decade. A framework using two modular 
blocks to detect and analyze events in airborne video streams is 
presented in the work of (Medioni et al., 2001). The first 
module detects and tracks moving objects in a video stream, 
whereas the second module employs the derived trajectories to 
recognize predefined scenarios. A further event recognition 
system is based on two consecutive modules, namely a tracking 
and an event analysis step, in which complex events are 
recognized using Bayesian and logical methods (Hongeng et al., 
2004). Video streams from close range surveillance cameras are 
used to detect events focusing on interactions between few 
persons. Further methods exemplify the emphasis on research in 
surveillance issues, as the scanning of video streams for unusual 
events (Breitenstein et al., 2009; Mehran et al., 2009). 
Additional related work in the field of people tracking and 
event detection is based on seminal research in crowd analysis 
and simulation (Helbing and Molnar, 1995; Helbing et al., 
2002). Observed collective phenomena in moving crowds, like 
lane formations in corridors, have successfully been simulated 
using a social force model (SFM). The SFM considers 
interactions among pedestrians and between pedestrians and 
obstacles, resulting in a certain moving direction for each 
individual.  
 
The approach presented in this paper is aimed to complement 
the above work. The monitoring of people is based on aerial 
camera systems mounted on aircrafts, UAVs, helicopters or 
airships. The provided image sequences cover a large area of 
view allowing for the analysis of density, distribution and 
motion behavior of people. Yet, as the frame rate of such image 
sequences is usually much lower compared to video streams 
(only some Hz), more sophisticated tracking approaches need to 
be employed. Moreover, the interpretation of scenarios in such 
large scale image sequences needs to comprise an exceeding 
number of moving objects compared to existing event detection 
systems. Thus, the intention of the approach is to define a 
broader spectrum of identifiable scenarios instead of simply 
alerting a general abnormal event within a monitored area.  
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The paper is organized as follows: Section 2 sketches the 
concept underlying the new approach. Section 3 outlines 
algorithmic aspects and shows results of people tracking and 
trajectory interpretation including a performance evaluation, 
exemplified by a test scenario of a crowded entrance area of a 
soccer stadium. Section 4 gives concluding remarks and 
discusses possible future investigations.  
 
 

2. APPROACH OF PEOPLE TRACKING AND 
TRAJECTORY INTERPRETATION 

2.1 System 

The underlying concept of the presented approach can be 
logically separated into two parts, as e.g. also (Medioni et al., 
2001; Hongeng et al., 2004) do. The first part detects people 
and delineates their trajectories from a sequence of ortho-
images and external geospatial information (Section 2.2). 
Additionally, macroscopic parameters describing typical 
patterns of a crowd scene like density, activity and systematic 
motion are calculated. The second part utilizes the obtained 
trajectories, the macroscopic parameters and model knowledge 
about the scene to analyze the people's behavior and to detect a 
certain instance of predefined scenarios (Section 2.3). The 
general overview of the system is shown in Figure 1.  
 

 
Figure 1. System overview. 

 
2.2 Tracking of people in aerial image sequences 

The detection and tracking scheme involves three different 
steps. First, macroscopic information about the imaged scene is 
determined. This is followed by detecting single people in each 
image and, finally, these detections are tracked by linking them 
iteratively over three images at the same time.  
 
Often, geospatial information can be expected providing 
additional data about the application scene in advance. The 
combination with the georeferenced ortho-images reduces the 
region of interest in every image of the sequence. Further 
preprocessing is done by decreasing the number of image 
channels. For efficiency reasons, currently only the first 
principal component of every color image is utilized, although 
the additional channels might contain some supplementary 
information. Future investigations will be carried out to 
evaluate the benefit of using color data.  
 
Estimation of macroscopic parameters: As shown in (Hinz, 
2009), aerial image sequences can be used to estimate density, 
activity and motion of people in crowded environments. These 
parameters give coarse information about the behavior of 
people at a macroscopic level. They can also be used to 
improve detection and tracking of individuals and for trajectory 
analysis. The image analysis begins with the computation of a 

general density map for each image. A simple region-growing 
algorithm is applied to detect large homogeneous regions which 
belong to the background. To exclude also small buildings and 
other man-made structures from the foreground, edge directions 
are calculated and analysed. The remaining foreground pixels 
are further denoised morphologically with a circular structure 
element.  
 
The next processing step comprises dot detection in the 
foreground region, which is done by convolving and 
thresholding the image with a filter enhancing dark and light 
circular dots. The residual foreground pixels are likely to 
belong to a person or dot-like clutter. Afterwards the local 
object density is calculated by applying a medium filter to the 
resulting binary image. Finally the density image is divided into 
three regions of high. Medium and low object density. Although 
this measure might still include some clutter, it is nonetheless 
helpful in further processing and to judge the results of 
detection and tracking correctly.  
 
Detection of individuals: At a resolution of few decimeters per 
pixel a single person is hardly visible. The body of one person 
covers a region of about 10 to 20 pixels and has the shape of a 
near circular dot. The proposed detection system is a cascade of 
image processing algorithms that is designed to find the circular 
dots in every image. In contrast to many other object detection 
problems, no search has to be accomplished through the scale 
space because the size of the objects is known and stays fixed 
over time.  
 
The detection algorithm utilises the results of the previous 
processing step as input. A single person points out as a local 
maxima in the dot-filtered image. Hence a pouring-based 
segmentation algorithm is applyed to find these maxima and to 
generate segments around them. These segments are further 
classified into clutter and possible individuals by examine shape 
features like area, convexity and compactness.  
 
Tracking of people: Tracking of hundreds or thousands of 
people in a crowded environment from an airborne platform is a 
challenging task. If the density of people becomes too high, it is 
hardly possible to visually differentiate individuals. 
Additionally, the spectral signature of a single person in an 
aerial image has not many features to discriminate between 
neighboring persons. The appearance features can change 
significantly in a short period of time due to the movement of 
the airborne platform and the varying influence of shadows, 
clouds, or neighboring persons. For these reasons, a semi-global 
optical-flow tracking algorithm is employed which balances 
local features with global smoothness constraints to link 
detected regions in consecutive images.  
 
Input data for the tracking algorithm are the segments from the 
previous detection phase. These segments are fed into an optical 
flow algorithm to compute the displacement vectors between 
two consecutive images. Typical maximum motion parameters 
of humans are involved to reduce the search space for flow 
calculation. If there is a segment in the second image at the 
predicted position and the estimated movement is realistic 
regarding the local object density, both segments are linked to 
represent the motion of one person. Because the results of the 
optical flow computation are affected not only by object motion 
but also changing lighting conditions, they can only serve as an 
approximate cue for the motion of a person through the 
sequence. Therefore, the same procedure is repeated in the 
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opposite direction and only those links that appear in both ways 
are kept.  
 
The global smoothness constraint of optical flow allows to link 
object regions without an explicit matching of their unstable 
appearance. However the drawback of the proposed method is 
its dependency on a good and complete object detection result 
in each picture. To overcome situations when a single person 
could not be detected in one image of the sequence or when a 
link could not be established, images are processed additionally 
being two frames apart. These links are used to establish 
missing connections between the three consecutive images 
while the person’s location in the bridged image is interpolated.  
 
The introduced procedure is applied to the entire sequence. The 
output of the tracking algorithm consists of trajectories which 
reflect the motion of individuals through the image sequence. 
They are used for further processing in the second module of 
the proposed system.  
 
2.3 Interpretation of trajectories of people 

The derived trajectories of moving people within the observed 
scene are used to initialize the second module analyzing the 
trajectories with regard to motion patterns. The trajectory 
interpretation system aims at bridging the gap between low 
level representation of single trajectories and high level people 
behavior analysis from image sequences. To achieve this goal, 
microscopic motion parameters of single trajectories as well as 
mesoscopic motion parameters of several trajectories have to be 
extracted. A graph is constructed containing microscopic and 
mesoscopic motion parameters to represent a neighborhood of 
trajectories. Additionally, GIS data and macroscopic parameters 
are utilized to recognize predefined scenarios. A hierarchical 
modeling of scenarios is feasible, as the interpretation of 
trajectories is based on the analysis of simple motion 
parameters of one or more trajectories. In the following, the 
module for trajectory analysis is presented in more detail.  
 
Microscopic and mesoscopic parameters: Microscopic 
motion parameters concern the motion characteristics of one 
single moving person. Hence, the most important microscopic 
motion parameters to exploit are speed and motion direction. In 
addition, further parameters can be calculated from these two 
basic microscopic motion parameters. Figure 2 shows a single 
trajectory depicting some features which are used to calculate 
the following parameters.  
 
The average speed v of a moving object is calculated using the 
relative distance drel of a trajectory which is given as the 
Euclidian distance between the points x_1 and x_n. Using this 
approach, v is the speed for the effectively covered distance for 
this object within the observed time frame, disregarding any 
multi-directional movements. In contrast, the absolute distance 
dabs is derived from adding the segments d_i of one trajectory 
over all time steps i. The acceleration a of a moving object is 
computed by differencing the speeds of two consecutive line 
segments. A further microscopic parameter is straightness, 
calculated from the two different distances mentioned before by 
s = drel/dabs. As dabs always receives a bigger number than drel, s 
takes a value near 1 when the trajectory is very straight and a 
much smaller value towards 0 when the trajectory is very 
twisting or even self-overlapping.  
 
Motion direction is the second basic microscopic motion 
parameter: the direction z(x_i) at a point x_i is the direction of 

the tangent at this point defined by the points x_(i-1) and 
x_(i+1). The motion direction is specified counterclockwise 
with reference to a horizontal line. Similar to straightness, the 
standard deviation σz of the motion directions indicates the 
degree of the twists and turnarounds within one trajectory.  
 

 
Figure 2. Features of a trajectory to calculate microscopic 
motion parameters: points x_i and line segments d_i (black), 
direction at point with reference to horizontal line z(x_i) (blue). 
 
Mesoscopic motion parameters represent the interaction 
between several individuals. Therefore, it is necessary to 
evaluate the proximity of a trajectory with respect to the 
number of neighboring trajectories, their motion directions and 
potential interferences. Figure 3 shows an example of two 
neighboring trajectories. The detection of neighbors is 
accomplished by scanning the surrounding area of existing 
trajectory points at every time step i. For each detected 
neighbor, the offset o_i of each pair of points x_i und y_i is 
stored. Comparing length and direction of these offsets during 
the entire image sequence, robust information can be derived if 
neighbors come closer or even touch each other. In addition, the 
motion direction at each point is inspected to detect 
intersections of trajectories.  
 

 
Figure 3. Two neighboring trajectories with offsets o_i (green) 
between pairs of points x_i and y_i (black). 
 
Scenario modeling and scenario recognition: Scenarios are 
modeled hierarchically to recognize complex motion patterns 
based on the extraction of simple microscopic and mesoscopic 
motion parameters, similar to the event detection systems 
mentioned in Section 1. Hence, predefined scenarios consist of 
trajectories and local GIS information in the lower level which 
represent simple image features by coordinates (Figure 4). 
Microscopic motion parameters follow in the next level of 
motion parameters which give a more abstract representation of 
the trajectories. Additionally, mesoscopic motion parameters 
are embedded in this level because they are closely linked to 
microscopic motion parameters and directly derived from the 
trajectories. In the subsequent level, simple events are modeled 
resulting from beforehand defined parameters. These events 
concern single trajectories or try to model information from 
mesoscopic motion parameters. In the highest level of the 
hierarchical scenario modeling, simple events are combined 
with GIS data to complex scenarios representing complex 
motion patterns within the observed scene.  
 
The goal of the proposed system is to recognize scenarios 
which are predefined as described before. Based on the tracking 
in the first module of the system, motion parameters are 
extracted. These parameters are evaluated to compute 
probabilities of simple occurring events. The combination of 
several simple events leads to the recognition of a predefined 
scenario.  
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Figure 4. Example for the scenario “waiting for another 
person” consisting of four hierarchical layers. 
 
 

3. EXPERIMENTAL RESULTS 

3.1 Test scenario 

For developing and testing the presented new approach, aerial 
image sequences provided by DLR’s 3K multi-head camera 
system are used (Kurz et al., 2007). This system consists of 
three non-metric off-the-shelf cameras, with one camera 
pointing in nadir direction and two in oblique direction. The 
basis for near-realtime mapping is provided with a coupled 
realtime GPS/IMU navigation system which enables accurate 
direct georeferencing.  
 
The aerial image sequence used in the experiments was 
captured at a soccer match with a few thousand people heading 
for the gates of the stadium. The height of flight was 1500m 
resulting in a ground sampling distance of about 20cm. In spite 
of the low resolution, people can be recognized clearly by their 
long shadow. The camera system has been operating in 
continuous mode which resulted in image sequences with a 
length of 40 frames at a sampling rate of 2 Hz. Every image 
covers an area of approximately 1000m × 600m and with an in-
track overlap of about 90%. For the evaluation a smaller area 
has been selected, completely visible in 16 consecutive frames. 
Figure 6 shows the test area in every third frame of the image 
sequence.  
 
3.2 Detection and tracking of people 

The detection and tracking algorithms are evaluated comparing 
the achieved results with reference trajectories, collected 
manually using the same image sequence. This reference data is 
not complete in regions where the density of people is too high 
to differentiate between individuals. Therefore, the evaluation is 
limited to a region of about 40m × 50m south of the entrance  
 

Figure 5. Comparison of manually tracked persons with the 
results of the algorithm over a sequence of 15 aerial images 
with about 130 persons visible. 
 
which is not too crowded. Here, 130 persons could be marked 
manually in average through a sequence of 15 frames. It is 
important to know for a correct interpretation of the evaluation 
that the reference data might not be free of errors. Occasionally, 
manually tracked persons merged with others so that their 
position had to be estimated for some frames. In other 
situations, the contrast became too low to define the accurate 
position of a person due to clouds passing by.  
 
The evaluation results of the detection and tracking algorithms 
are shown in Figure 5. An automatically generated segment is 
considered as a correct detection if the distance between its 
center and the next reference position is within a tolerance 
radius of 3 pixels corresponding to 45cm on the ground. The 
same criterion is applied to evaluate the tracking results. 
Though, in this case every point of a generated trajectory has to 
be close enough to one of the reference trajectories. For the 
evaluation of the tracking results all possible links between two 
up to 15 consecutive frames are compared. Figure 7 visualizes a 
result of detection and tracking in comparison to the reference.  
 
Averaging the results over all 15 images, the detection module 
has achieved a completeness of 61% and a correctness of 66% 
(cf. Figure 5, length 1). The completeness of the generated 
trajectories increases almost linearly with growing length while 
the completeness drops down quickly. Several reasons are 
possible: one effect still to investigate is the influence of the 
tolerance radius during evaluation. The center of the detected 
segments could be more than 3 pixels away from the manually 
marked position of the head of a person. This can happen when 
the body of one person merges with its shadow to a uniform dot 
due to low contrast, cf. Figure 7 (left). Another effect stems 

Figure 6. Test area in the aerial image sequence used for evaluation of the tracking and interpretation system; frames no. 1, 4, 7, 10, 
13 and 16 out of 16 consecutive images are shown [3K-images are provided by the German Aerospace Center (DLR)]. 
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Figure 7. Detection results (left): black circles show the position 
of manually marked persons, white regions were generated by 
the algorithm; tracking result (right): reference trajectories are 
black, automatically generated trajectories are white. 
 
from the optical flow which can occasionally lead to a wrong 
displacement vector. Although the limitations of the reference 
data and the low contrast of the image sequence corrupt the 
results to a certain amount, the numerical evaluation shows 
clearly the potential for further improvements of the detection 
and tracking system. A more sophisticated detection algorithm 
based on a machine learning approach will certainly reduce the 
effect of clutter and improve the results significantly.  
 
3.3 Interpretation of trajectories 

Experimental results for the computation of microscopic motion 
parameters in the trajectory analysis module are presented in 
this section. The computation is performed on manual reference 
data used in the image analysis module to focus at this point to 
the new approach of trajectory interpretation. Two example 
scenes of the image sequence are used for event detection, both 
with eight trajectories visualized on the last image of the 
sequence, respectively (Figure 8, Figure 9).  
 
Figure 8 shows a scene nearby the queue. Table 1 lists the 
related microscopic parameters of the eight trajectories. The 
microscopic parameters are meaningful with regard to the 
characterization of the trajectories. Trajectories 1 and 2 turn out 
to cover the longest distance and to have the smoothest and the 
least twisting path. This facts are clearly depicted by the 
parameters drel and dabs , which result in a high value for 
s ≈ 0,98, as well as by the small deviation σz ≈ 10°. Caused by 
the turn, trajectories 3 and 4 receive a smaller s ≈ 0,75 and a 
higher deviation σz ≈ 50°. The shorter trajectories 7 and 8 are 
characterized by small values for s as the paths are very 
twisting. Modeling the motion patterns of trajectories 1-4 result 
in a complex event called “waiting for other person”, because 
the persons 3 and 4 obviously accelerate their motion when 
persons 1 and 2 are next to them, afterwards walking alongside 
each other. Additionally to the shown microscopic parameters, 
evidence for parallelism can be given by mesoscopic 
parameters and, thus, result in the complex event similar 
described in Figure 4. Parallelism is visualized by the 
chronologically colored crosses of frames no. 1, 4, 7, 10, 13 and 
16 in Figure 8.  
 
Figure 9 shows another more crowded scene 2 representing a 
different event. Table 2 lists the microscopic parameters of 
eight trajectories. This scene is located at the right boundary of 
the queue, depicted by a macroscopic border of high density 

(red), next to a wall derived from GIS data (blue), cf. Figure 9. 
Resulting from the trajectory’s characteristics, microscopic 
motion parameters again receive values as expected. In this 
scene, the motion pattern shows a possibly dangerous 
“bottleneck” event, because the faster walking persons are 
pushed aside by the queue. These faster persons have to 
sidestep to a small gap between the queue and the wall. 
 

 
Figure 8. Results of the trajectory analysis module of scene 1: 
high density borders depicted in red; the color bar shows the 
time steps within the sequence. 
 

ID dabs 
(m) 

drel 
(m) 

v 
(km/h) 

s zmean 
(°) 

σz 
(°) 

1 11,22 10,91 5,24 0,972 13,27 10,95 
2 11,17 10,94 5,25 0,980 13,95 9,97 
3 7,05 5,05 2,42 0,715 51,30 57,31 
4 6,55 5,05 2,42 0,771 42,88 44,67 
5 2,50 1,60 0,76 0,641 29,66 92,03 
6 2,14 1,52 0,72 0,710 67,99 50,63 
7 1,71 0,78 0,37 0,454 56,72 35,34 
8 1,67 0,43 0,21 0,257 31,47 84,53 

Table 1. Microscopic parameters for trajectories in Figure 8. 
Results of the trajectory analysis module of scene 1. 
 

 
Figure 9. Results of the trajectory analysis module of scene 2: 
high density border depicted in red, GIS data depicted in blue; 
the color bar shows the time steps within the sequence. 
 

ID dabs 
(m) 

drel 
(m) 

v 
(km/h) 

s zmean 
(°) 

σz 
(°) 

1 8,73 8,17 3,92 0,936 72,99 18,31 
2 8,27 7,78 3,74 0,941 81,11 20,75 
3 3,29 2,86 1,38 0,871 82,03 60,34 
4 9,77 9,72 4,66 0,994 72,19 3,84 
5 2,31 1,15 0,55 0,500 67,68 85,22 
6 1,78 0,56 0,27 0,315 34,84  112,24 
7 2,01 1,10 0,52 0,549 89,24 86,78 
8 1,66 0,54 0,26 0,324 36,12  102,24 

Table 2. Microscopic parameters for trajectories in Figure 9. 
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4. CONCLUSIONS 

The presented new approach for detecting and tracking people 
from aerial image sequences shows very promising first results. 
In addition, the achievements interpreting the trajectories 
demonstrate the potential of event detection. Several further 
developments and investigations are of interest: Haar-like 
features and AdaBoost classification (Smal et al., 2010) is 
planned to be used in the future to improve the object detection 
component. Besides detection also tracking can be improved: 
although the algorithm can handle situations of a person being 
missed in a single frame, it fails completely when it happens in 
two or more consecutive frames. This drawback cannot be 
dissolved with the proposed optical-flow algorithm. Bridging 
more than one image would allow to construct longer 
trajectories, whose completeness increases significantly as the 
currently derived results. The trajectory interpretation module is 
exemplarily shown by two different events: obviously, the 
modeling of further scenarios is aimed to get a more overall 
monitoring of possible occurring events. The automatic 
detection of predefined events using statistical methods, similar 
to (Hongeng et al., 2004), is intended to be accomplished in the 
near future. In addition, a backward-loop is strived to be 
integrated in the system: results derived from the interpretation 
of the trajectories could be integrated in the strategies to 
improve the tracking model. Obviously, the dependent 
interpretation module will benefit afterwards from more reliable 
tracking results.  
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