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ABSTRACT:

The objective of this work is a robust and highly efficient method for reconstruction and classification of facade parts in 3D point

clouds. The presented top-down method is based on knowledge derived from a database of ground truth parameters. The usage of

prior information is the key feature of our concept. It enables a robust and quick computation that even copes with a high percentage

of outliers. Model knowledge is encoded in probability density functions. Furthermore, we combine random sampling with a novel

scoring function that rates the size of predictions. Decision trees were applied to identify the most evident features that are assessed by

the scoring function. Finally, cluster analysis is employed to estimate those borders of the respective object that cannot be identified

precisely by the parametric model. Since the reconstruction of geometric models from a 3D point cloud is close to its classification,

both problems are linked up by the presented concept. Our method works on non-oriented point clouds and is free of user interaction.

The concept is delineated and demonstrated by the reconstruction of windows and stairs.

1 INTRODUCTION

Terrestrial laser scanning (TLS) rapidly provides highly detailed

3D data. In a few hours, terabytes of 3D point clouds are captured

by static or mobile systems from nearly every perspective. TLS

provides fast, precise and high resolution measurements. Build-

ing facades can be observed with a spatial resolution and devia-

tion less than one centimetre. Mobile, vehicle mounted systems

observe more coarse but geo-referenced data of whole streets by

linking laser scanners and inertial measurement units.

The interpretation of this data, however, consumes much more

time and is, so far, not done automatically. Thus, the construction

of highly detailed virtual 3D city models is mainly done manu-

ally or semi-automatically yet. The reconstruction of geometri-

cal primitives like planes, cubes, spheres or cylinders is almost

solved, but the methods lack semantic interpretation of the recon-

structed objects. Clustering methods classify point clouds with

the aim of data reduction or reconstruction. But most clustering

algorithms also do not consider semantics. On the other hand,

just the semantics of objects is important for a lot of analysis

done in virtual 3D city models, e.g. coordination of rescue teams

or disguising the building interior in TLS because of the right to

privacy.

Due to those limitations mentioned above of established meth-

ods, i.e. low degree of automation and ignorance of semantics,

we present a class of robust model-based classifiers that automat-

ically operate arbitrary 3D point clouds and result in semanti-

cal meaningful objects. The demonstrated method combines the

classification and reconstruction of TLS data and is exemplarily

shown for windows and stairways. In advance, figure 1 shows the

result of the reconstruction of windows, door and stair.

In this article TLS data is exclusively subsumed to 3D point clouds

and no original observation like time, pulse or waveform informa-

tion is taken into consideration.

1.1 Related work

Since our approach aims at the classification and reconstruction

of meaningful facade objects from 3D point clouds some related

Figure 1: Estimated windows, door and stair (green) with point

cloud (purple) and rectified image

topics are reviewed in the following. Clustering and segmentation

methods are considered first followed by an overview of actual

work on the reconstruction of geometric objects and buildings or

building parts.

Reconstruction of geometric objects The random sampling

consensus (RANSAC) paradigm presented by Fischler and Bolles

(1981) is often applied to the robust parameter estimation of geo-

metric objects in point clouds. RANSAC even copes with a high

percentage of outliers but is limited to models that are described

by a fixed set of parameters. The algorithm proceeds as follows

(1) draw a sample of minimal size randomly and instantiate the

model, (2) estimate the size of consensus set by counting inliers,

i.e. points of which the distance to the model is less than a given

threshold �, (3) repeat (1) – (2) until the best model is found.

The abortion criterion is statistically founded and dynamically
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computed after each iteration. Torr and Zisserman (2000) give a

novel scoring function that uses maximum likelihood estimation.

Hence, the modified algorithm is named MLESAC. In contrast

to RANSAC it minimizes the sum of residuals and includes a

penalty for outliers such that the residual of an inlier is its dis-

tance from the model and the residual of an outliers is �.
Vosselman et al. (2004) explore various methods for the seg-

mentation of 3D point clouds received from airborne or terres-

trial laser scanning. They conclude that surface growing and 3D

Hough transform are the important methods for the reconstruc-

tion of buildings and roofs and state that “the most suitable seg-

mentation algorithm may depend on the kind of application”.

Schnabel et al. (2007) describe an improvement of the RANSAC

paradigm that prefers local sampling, i.e. limiting the single ele-

ments of the sample set to a close range. Their concept iteratively

estimates several geometric primitives like planes, cylinders or

spheres but lacks any semantic information of the reconstructed

objects.

Schmitt and Vögtle (2009) present a voxel based method for the

extraction of planar surfaces from 3D point clouds. They use

normal vectors determined from the 26 neighbors to differentiate

points on planar surfaces, edges or corners. They demonstrate

their concept by the reconstruction of windows where they as-

sume windows by uninterpreted boundary lines.

Reconstruction of buildings and building parts Boulaassal et

al. (2007) segment the point cloud into planar faces by sequential

application of RANSAC. They conclude that different objects are

fitted by different planes, e.g. main wall, windows or balconies.

Boochs et al. (2009) present an approach that uses RANSAC for

the estimation of building elements. After the reconstruction of

primitive elements they apply an ontology to aggregate elements

to objects that are specified in the ontology. Therefore they con-

sider topological and geometrical neighborhood relations.

Pu and Vosselman (2009) give a method that aims at the recon-

struction of building models and takes model knowledge that is

encoded in vague thresholds into consideration. They claim, for

example, that a wall segment is “large” and “vertical” on one

hand, and a door segment has a “certain range” and is “on the

wall”, on the other. Their method detects windows by search-

ing holes, i.e. longest edges, in the Delaunay triangulation of the

point cloud. After that, rectangles are fitted into the 3D points on

the border of a hole. Moreover their method generates geomet-

rical hypothesis for small occlusions during the estimation of the

outline of the facade.

The concept for the reconstruction of buildings that has been sug-

gested by Becker (2009) starts similar to Pu and Vosselman with

the detection of holes in facade segments. Windows are modeled

as “no data areas” and points on window borders are therefore

characterized by having no points in their top, right, bottom or

left neighborhood. Afterwards, the point cloud is split in irregu-

lar 3D cells defined by the intersection of planes that are given by

border points of windows. The point density of each 3D cell is

calculated and finally only 3D cells with a point density greater

than a given threshold are labeled as window cells.

1.2 Outline of the prediction based approach

In the following we give an overview of the proposed concept

for automatic classification and reconstruction of facade parts

from 3D point clouds. By classification we mean a labeling of

data tuples by their estimated class. Reconstruction subsumes the

derivation of parameters of a given model from a data set, i.e. re-

gression. Since our method estimates location and shape param-

eters during the classification process and, vice versa, classifies

points during the process of parameter estimation, both terms are

sometimes used synonymously in this paper.

In contrast to bottom-up or data-driven approaches the presented

classifier proceeds in a top-down manner. It operates in three

phases: (1) pre-filtering, (2) estimation of the most likely sample

and (3) estimation of the remaining boundaries of the respective

object. Prior information derived from ground truth data is em-

ployed in each phase to reduce computation effort thereby mak-

ing the procedure more efficient. The prior information is given

by probability density functions.

(1) Pre-filtering is applied to single points and reduces the size

of the input point cloud considerably. Since our method aims at

facade parts the filtering includes the estimation of the wall plane.

Dependent on the particular object the filtering is relative to the

wall plane and takes the distributions of the object parameters

into consideration.

(2) Like RANSAC or MLESAC based approaches our classifier

estimates the model that is most likely, however, our method es-

timates the goodness of a sample in a different way. Since the

facade parts like stairs or single windows are considerable small

objects according to the whole facade they constitute a tiny sub-

set of the point cloud. Thus the percentage of outliers is huge and

RANSAC would be inefficient in calculating the consensus set.

Furthermore we keep the size of the sample set small and accept

that only a part of the parameters of the model can be estimated.

We make use of the spatial character of the underlying models

in such a way that their location and shape parameters are partly

derived from a sample. Since a given sample constraints the loca-

tion precisely and the shape parameters approximately we apply

these parameters to define a range query to a spatial indexing

structure. We call the result set a prediction and use the number

of the predicted points as an estimator for the goodness of the

sample. We maximize the size of the prediction in our algorithm.

(3) Due to general occlusions in the data set, e.g. windowsills, or

the requirement of exclusive constraints of a sample, some of the

borders of an object cannot be precisely estimated from a sample.

Thus, the need for a precise identification of object boundaries,

e.g. left and right border of a stair or the top and bottom of a win-

dow, is obvious. For that task we apply clustering algorithms that

incorporate both, the probabilities of the parameter distributions

as well as the features identified by decision trees.

The rest of the paper is structured as follows: In section 2 we give

an overview of the assumptions our classifier bases on, the data

it operates on, the database of ground truth parameters and the

modeling of parameters by probability density functions. Details

of the three processing steps of our approach are given in section

3. Section 4 shows results of the processing of real world data

of different resolutions and, finally, we draw our conclusion in

section 5.

2 DATA� PARAMETERS AND DISTRIBUTIONS

As outlined in the previous section, the presented classifier op-

erates on 3D point clouds from terrestrial laser scanners. It may

also work on point clouds of any other origin, e.g. stereo images,

as long as they fit the following assumptions. Although, we tested

the classifier solely with various TLS data sets (cf. section 4).

The input data sets are assumed to be 3D point clouds that repre-

sent building facades. Whereas the facades are not necessarily re-

quired to be smooth. The classifier also works well on structured

facades that include ornaments, protrusions (oriels or balconies)

or any kind of L-, T- or U-shaped ground plots. Moreover, it

copes with a high percentage of outliers, e.g. vegetation objects,
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fences or cars on one hand, and points in the interior of the build-

ing that are measured through windows because of transmission

of laser beams in glass, on the other hand. In addition the point

clouds do not have to be georeferenced and are allowed to be arbi-

trarily rotated around the vertical (z) axis, though the z-axis of the

point cloud has to be parallel to real world vertical axis.Our inves-

tigations showed that an exact levelling of the laser scanner meets

this demand. Finally, we assume the point cloud to be taken from

different view points so that the self occlusion of facade parts is

minimized, e.g. there are points observed on both embrasures of

a window. However, some parts of the facade that are above the

laser scanner are unavoidably occluded, e.g. windowsills.

Since our approach is based on prior knowledge of objects we

built up a database of ground truth parameters of facade parts. It

contains measurements of all shape parameters (width, depth and

height) of 170 stairs, 60 doors, and 560 windows so far and is be-

ing extended continuously. Additionally the number of steps of

the stairs and the relative location of the doors, i.e. the left, center

or right part of the building, is documented. All data is manu-

ally taken either from undistorted, rectified and scaled images, or

from high resolution 3D point clouds. The first were taken with

a Canon 350D or Nikon D700 digital single-lens reflex camera

with calibrated lenses. The latter were captured by static scan-

ning with Leica HDS6100 laser scanner which was mounted on

the roof of a van to reduce occlusions by cars, fences, or hedges.

Figure 2 exemplarily shows the histograms of the parameters of

stairs (purple) and windows (green).

Figure 2: Histograms of ground truth parameters, most likely

probability density functions (thick lines) and Gaussian (thin

lines) of stairs (purple) and windows (green).

For each parameter that is documented in the ground truth database

we estimated the parameters of about 40 probability density func-

tions (PDF) and applied a Chi-Squared test to select the most

likely PDF. The distributions of all parameters of windows are op-

timally described by a Generalized Extreme Values (GEV) distri-

bution, the tread depth of stairs matches a Lognormal distribution

and the rise of stairs ties up with a Weibull distribution (cf. figure

2). Apart from rise and depth of windows the Gaussian approxi-

mately fits the data nearly as well as the most likely PDF. How-

ever, our methods apply the slightly better non-Gaussian prob-

ability density functions. The classifier for windows and stairs

that are presented in the next section in detail are based on the

mentioned distributions.

3 CLASSIFICATION AND RECONSTRUCTION

This section gives a detailed description of our concepts for the

classification of facade parts. The following three subsections

depict the phases of the classification that have already been out-

lined in the introduction. The classification and reconstruction

of single windows or stairways are delineated. For the detection

of multiple objects of the same type, e.g. all windows within a

facade, an iterative application of the classifier is required.

Generally, we gradually constrain the point cloud by the applica-

tion of prior information. Since the constraints are more and more

expensive to calculate they are applied to the subset received from

the previous step. Therefore, samples are drawn from a subset

that is derived from a point based (pre-)filtering. Furthermore the

goodness of samples is exclusively computed for samples with a

high fitness.

3.1 Pre-filtering

The only restriction on the point cloud that is to be analyzed is the

parallel direction of its z-axis and the real world’s vertical axis.

However, a small amount of uncertainty concerning given direc-

tions or angles is permitted. Due to such general assumptions

an efficient classifier is needed that copes with a high percent-

age of outliers. Our method achieves efficiency by its top-down

approach that incorporates prior knowledge from the very begin-

ning. Therefore we pre-filter the point cloud with regard to the

probability density functions of point distributions to further op-

erate on a subset with a high percentage of inliers.

Our algorithm starts with the estimation of vertical planes by

MLESAC. Each estimation operates on the difference set of the

original point cloud and the union of the so far received consen-

sus sets. Due to the dominance of walls the estimated planes are

assumed to be walls of the building, i.e. (main) parts of facades

of L-, T- or U-shaped ground plots or parts of protrusions like

oriels. Afterwards, the point cloud is transformed in such a way

that the largest plane, i.e. first estimated plane, is identical with

the xz-plane of the coordinate system and such that no negative

x- and z-values exist. Thus, the positive y-axis points towards the

interior of the building. Finally, the reduction of the point cloud

is achieved by selecting points with a high probability of belong-

ing to the given class of objects, e.g. points that belong to stairs

are most likely on the bottom of the ground floor, in front of the

facade and in front of a door. Otherwise points that belong to win-

dows are located on the facade or within a well defined buffer of

about 25 cm behind the facade. We apply the probability density

functions of model parameters directly or as a mixture of multiple

PDFs to the 3D point cloud, and thus receive the filtered subset.

The pre-filtering for windows is solely based on the knowledge

about the relative location of embrasures to walls in y direction.

The PDF of depth (cf. figure 2) is used to filter points by their

y-coordinates relative to the estimated planes.

In contrast to the filtering of windows the filtering of stairs con-

siders three coordinate axis. Hence, the stair filter is a combi-

nation of PDFs for x-, y-, and z-coordinates. Each of the three

individual PDF is sketched in the following: (x) The PDF of the

x value considers the probability of the relative location of the

door within the facade and the likelihood of the width of the door.

Thus, it is given by a mixture density. (y) The y-filtering is de-

rived as a combination from the probability of tread depth, the

PDF of the numbers of steps and the assumption that a stairway

is in front of a door and therefore its origin is located at y = 0.
(z) The PDF of z-location considers the PDF of door heights and
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the fact that stairs are located at the bottom of the ground floor.

The latter is described by a skew-symmetric PDF like Weibull for

z-values. Unlike the mixture PDF of x-values the PDFs for y- and

z-values are uni modal. Figure 3 shows the pre-filtered points for

the estimation of stairs.

Figure 3: Pre-filtering for the estimation of stairs: Mixture den-

sity of x-values and unimodal, skew-symmetric density of y- and

z-values.

3.2 Selection of the most likely sample

The sampling is again split into two phases: First, a random sam-

pling and a subsequent fitness proportional sampling and second,

the selection of the most likely sample. As mentioned above, the

procedure is similar to RANSAC or MLESAC but in contrast to

these algorithms we apply a novel scoring criterion for the es-

timation of the most likely sample. Both, the sampling and the

scoring are optimized in order to make the classification more

efficient and robust and to reduce computation time.

RANSAC and MLESAC lack efficiency if there is a high per-

centage of outliers, e.g. a stair that may only come to 0.1� of the

whole point cloud. This disadvantage is caused by their sampling

strategy: Each sample is supposed to be a valid one (a) and the

consensus set is calculated expensively due to a high number of

distance calculations (b). We improve the sampling by (a) the re-

jection of weak samples before calculating the consensus set and

(b) introducing a more efficient criterion for the scoring of the

goodness of a sample.

More precisely, the rating of a sample means the rating of a sub-

set of its features. The features of a sample may be directly cal-

culable, e.g. the distance of two points, or implicitly given by

the neighborhood of the sampled points. The neighborhood of a

point is characterized, for example, by the mean of the x-, y- or z-

coordinates. Thus, features are properties inherent to the abstract

model that describes an object of interest in a parametric way. To

find the most evident feature of a model, we calculated the infor­

mation gain (Mitchell, 1997) of each feature. For example, the

features of the embrasure model of windows considers the top,

right, bottom and left neighborhood of each point. Therefore, the

euclidean distance, mean, median, and standard deviation values

of the coordinate axis of the four neighborhoods are calculated

and ranked by their information gain.

Random and fitness-proportionate sampling Since the knowl-

edge about a model includes its most evident features and the

PDFs of its parameter we fit up the sampler with this information

and reject poor samples directly after sampling. However, we

apply stochastic universal sampling (SUS, Baker (1987)) during

the rating of the samples. SUS is typically used in genetic al-

gorithms and is a sampling technique similar to roulette wheel

selection, but in contrast, it guarantees the expected frequency of

the selection of a special individual. The probability that a sample

is drawn is proportional to its fitness value. Hence, poor samples

are accepted with a low probability and the classification becomes

more robust since unlikely hypothesis are also verified to a cer-

tain extent. Practically, a number of samples is randomly drawn

from the pre-filtered points and their fitness concerning the most

evident features is calculated. Afterwards, a smaller subset of the

samples is re-sampled proportionally to their fitness by stochastic

universal sampling.

In the following we will explain the sampling strategy for stairs.

The estimation of stairs subsumes the estimation of treads, i.e.

horizontal parts of the stair, and the estimation of risers, i.e. verti-

cal parts of the stair. Here we illustrate the classification of treads.

The classification of risers is handled analogously.

Our model of treads considers their width, depth and vertical dis-

tance called rise. Thus, one sample consists of two points of

which one point is supposed to lie on a tread j and the other one

is assumed to lie on the tread after the next tread j + 2. Treads j
and j+2 are sampled instead of j and j+1 to avoid extrapolation
that might be poorly supported, e.g. j + 1 is the last step of the

stair. The hight difference is therefore two times the rise. Here it

is obvious that the classification comes along with the reconstruc-

tion: The estimation of the stair parameter rise is directly derived

from the most likely sample. The sampling for the classifica-

tion of treads starts with a random sampling ofm pairs of points.

The i = 1 . . .m probabilities pi(width), pi(treadDepth) and
pi(rise) of the coordinate differences Δx�i, Δy�i and Δz�i are

calculated using the probability density functions. After that, the

fitness value of each sample is calculated as the product of the

respective probabilities:

fi = pi(width) ∗ pi(treadDepth) ∗ pi(rise).

Finally, a subset of k� of pairs of points is re-sampled by SUS.

In the end m ∗ k pairs of points are sampled.

The samples used to estimate windows also consist of two points;

one of them is assumed to lie on the right embrasure. The other

one is supposed to be on the left embrasure. The fitness of the re-

spective samples considers the horizontal distance in x-direction

and the vertical distance of the two points. The “horizontal fit-

ness” ties up with the PDF of the width of windows, whereas the

vertical distance is assumed to be small in order to avoid samples

of points in different floors of the building.

Scoring by prediction size Since the prior information which

is applied within the pre-filtering process is more general we ad-

ditionally verify the remaining samples with regard to the high-

level features identified by decision trees before the calculation

of their goodness. If a verification fails the sample is rejected

afterwards. Otherwise the goodness of the sample is calculated.

Our scoring function is based on the prediction of the respective

instance of the model. The prediction matches the result set of a

range query that is defined by the location and shape parameters

derived from the sample. Due to the axis parallel transformation

of the whole point cloud the spatial query is realized by only one

search operation in a kd-tree (Bentley (1975)). Thus, the good-

ness of a sample with a prediction size a within a point cloud of

n points is calculated in O(n
�

3 + a).

For example, the query for the prediction of the tread model is

specified by the following cuboid of the size (lx� ly� lz) with

lx = median(widthstair)

ly = median(depthtread)

lz = σsensor.
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The cuboid is characterized as “broad and thin”. Parallelism of

the parameters and the coordinate axis is given by the model as-

sumption of straight stairs that are perpendicular to the facade.

Furthermore, the centroid of the range query is located in the

mean of the two samples. Figure 4 illustrates the sampling for

the classification of stairs.

Figure 4: 2D projection: Two sampled points (dark green

spheres) and predicted points (dark purple) with centroid (light

green sphere) in between.

For windows the constraints of the pre-filtering are not sufficient

to ensure that most filtered samples are valid. Therefore, addi-

tional verifications are applied to the sample before the predic-

tion of supporters. The following feature was identified by its

information gain as the most evident one (out of 40 features) for

embrasures: The difference of y-coordinates of the median of two

point sets � and L is greater than 31cm. If one of the sampled

points is on the left embrasure it defines the centroid of � . The
centroid of L is of the same y- and z-coordinate but translated

by −50cm in x-direction, i.e. to the left. � and L are received

from the kd-tree by a range query with the centroid given by the

sampled point and the cuboid.

lx = σsensor

ly = 2 ∗max(depthwindow)

lz = 0.3 ∗median(heightwindow).

The factor 0.3 was determined empirically. Thus, � contains

points on embrasures and L contains points on the facade next

to the embrasure. If the sample is accepted � is the prediction

of the left embrasure. The same process is applied to the second

sample point, i.e. the right embrasure, analogously.

3.3 Estimation of boundaries

The most likely sample that has been selected during the pre-

vious phase of classification only gives a precise description of

some parameters of the object. Therefore the boundaries of the

object are partly estimated. Windows, for instance, are so far

given by one point on each embrasure. Thus, their width is given

accurately, however, their height is unknown yet. Since their sur-

face is given by vertical half-planes we have to estimate the top

and bottom of the objects. Analogously the width of stairs is un-

known so far. Due to the regular shape of man-made objects the

boundaries are defined by one reference point and a set of shape

parameters. To estimate faces given by rectangular polygons we

apply clustering algorithms to the most evident features inferred

from the decision trees.

The two sample points of the window model and the prediction

of each embrasure, for example, suffice to define thresholds for

the x- and y-coordinates. On one hand, the x-coordinate of the

median point of the predictions defines the right or left border of

the window, whereas the front and the back boundary is approxi-

mately given by the minimum and maximum y-coordinate of the

predictions. Since no points are observed on windowsills due to

occlusion, the estimation of the top and bottom boundary cannot

be done analogously to the estimation of left and right embrasure.

Therefore it is deduced from the clustering of another evident

feature, namely the standard deviation of y-coordinates σy along

the embrasure in upwards and downwards direction. Similar to

the lines in sweep line algorithm (Shamos and Hoey (1976)) we

sweep the cuboids of spatial queries iteratively along the vertical

line through the points pj (j ∈ {1� 2}) of the sample. The starting

point and the end are given by

zbottom�j = zj −median(heightwindow)

ztop�j = zj +median(heightwindow).

For each result set rij the standard deviation of the y-value σy�ij

is calculated. The σy of cuboids that totally cover the embrasure

is much higher than the σy of cuboids that cover facades even if

they are structured with ornaments. Thus, clustering of σy de-

termines the top and bottom of windows. Figure 5 illustrates the

sweeping of range queries and the resulting standard deviation of

y-coordinates.

Figure 5: Clustering for the estimation of the boundaries: σy of

vertically aligned spatial queries of left (purple) and right (green)

embrasure. The bright area in the centre indicates the estimated

z-range of the window.

4 RESULTS

We implemented the presented methods for straight stairs and

windows in MATLAB and applied them to nine 3D point clouds

of buildings of the district “Südstadt” in Bonn, Germany. This

particular district has been chosen due to its challenging Wil-

helmian style buildings of which the facades show sophisticated

structures. The data sets that were used for testing were not part

of the ground truth database and were not used for the estimation

of probability density functions. However, the data sets of which

the ground truth database was constructed are also located in the

same district. The results are based on the independent estima-

tion of single windows. The estimation was iterated until no more

windows were found, i.e. the remaining set of points was smaller

than the average number of points of the windows classified so far

or a maximum number of iterations was reached. Due to this iter-

ative process the resulting windows have slightly different shape,

particularly for the depth.

To optimize the computing time and to show the robustness of our

method, we operated on subsets of 100.000 points of the original

point clouds. The accuracy of the classification and reconstruc-

tion is given in table 1. Three of the 13 not detected windows

were subsumed by a too large reconstruction that covered two

small windows that are close together (“2in1”, cf. figure 6 top

left and top right windows). Therefore, one of them was counted

as not detected, and the other one had a large deviation of width.

The reason for the six erroneously detected windows was the re-

construction of one ground truth window by two reconstructed

windows on top of each other (see figure 6 bottom right win-

dow). This typically happened at thick window crosses that were
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average point density [pts/m�] 1135

correctly detected 95

not detected 13

erroneously detected 6

average deviation of x [cm] 1.7

average deviation of y [cm] 2.0

average deviation of z [cm] 19.1

average deviation of width [cm] 5.1

average deviation of depth [cm] 9.8

average deviation of height [cm] 35.5

Table 1: Accuracy of the classification and reconstruction of win-

dows

falsely classified as windowsills or lintels (cf. figure 6). Due to

such “2in1” reconstructions, oblique views and occlusions caused

by window sills, the average deviation of z­coordinates of the ref-

erence point of each window, i.e. lower, left, front corner, is ca.

ten times worse than its x- and y-values. The high average devi­

ation of height is mainly caused by the inaccurate estimation of

the reference point. Our method even works for windows with

closed shutters (see figure 1).

Figure 6: Iteratively and automatically reconstructed windows

(green) and manually reconstructed ground truth (purple).

Although the point clouds were taken from the roof of a van, only

four of the nine datasets contained non occluded stairs. Their

rise and tread depth were estimated with an average deviation of

0.6cm and 2.4cm.

5 CONCLUSION

We introduced a novel concept for the model-based and robust

classification of facade parts from 3D point clouds. Prior knowl-

edge was derived from ground truth data and modelled by prob-

ability density functions that were applied in many parts of the

classification process. The three main steps of the classification

algorithm were explained in detail: the pre-sampling, the selec-

tion of the most likely sample and the estimation of boundaries.

We also presented an efficient scoring criterion for the rating of

samples. Therefore the size of the set predicted by a sample was

used to estimate the goodness of the sample. The prediction was

directly accessible by a spatial indexing structure, namely a kd-

tree. Furthermore we applied predictions for a high-level verifi-

cation of samples. The features underlying this verification were

derived from decision trees. We implemented the classifier in

MATLAB and applied it to nine non adjusted point clouds of

facades observed by terrestrial laser scanning. The convincing

accuracy of the automatic estimation of location and shape pa-

rameters of the 108 ground truth windows was presented.

We conclude that the application of model-knowledge to top-

down classification is feasible and manifold. The representa-

tion of prior knowledge by probability density functions and its

derivation from ground truth data is sensible. The usage of prior

knowledge makes the classification and reconstruction more ro-

bust. Furthermore, the rating of samples by their prediction size

is highly efficient. The rate of detected objects and the accuracy

of the estimation of parameters are satisfactory even for point

clouds of low resolution. However, the “2in1 problem” and the

lower accuracy of vertical parameters has to be tackled, e.g. by

the estimation of window matrices instead of single windows.
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