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ABSTRACT:

We present in this article a new vehicle dedicated to road surveying, equipped with a highly precise positioning system, 2D lidar scans
and high definition color images. We focus at first on the sensors extrinsic calibration process. Once all sensors have been positioned
in the same coordinates system, 3D realistic environments can be computedand interpreted. Moreover, an original algorithm for road
extraction has been developed. This two-step method is based on the localroad shape and does not rely on the presence of curbs or
guardrails. Different uses of the RanSaC algorithm are employed, forroad sides rough estimation in the first place, then for unlikely
candidates elimination. Road boundary and center points are further processed for road width and curvature computation in order to
feed a geographic information system. Finally, a simple extraction of traffic signs and road markings is presented.

1 INTRODUCTION

Road administrators require more and more objective informa-
tions about their network and its surrounding environment for
various purposes : disaster management, urban planning, tourist
guidance or simply road network management are some of the
applications that demand precise city modeling and interpreta-
tion. Industry also needs 3D reconstructions of large areas ; map
providers for navigation systems now include semantic data in
their bases that can be interfaced in warning or driving assistance
systems, mobile communication development needs data for ra-
dio waves coverage analysisetc. These are few examples among
many fields that need augmented digital maps. Many compa-
nies and research labs have then focused in the last decade on
the acquisition of mass data, developing many acquisition plat-
forms. Road network surveying generally implies aerial or satel-
lite multi spectral images processing but these approaches suf-
fer from a lack of precision regarding road geometry, although
they provide a good classified overview of processed areas (Hat-
ger and Brenner, 2003) (Samadzadegan et al., 2009). Some re-
search teams have therefore promoted fusion between terrestrial
and aerial data (Früh and Zakhor, 2004), requiring an existing
digital elevation map of the area to be processed. City modeling
is generally performed by means of vehicle borne lidar and cam-
eras (Zhao and Shibasaki, 2003) (Deng et al., 2004) (Boström et
al., 2006) ; these works however do not apply on road geome-
try or characterization. Some companies, cartographic institutes
and laboratories developed road dedicated vehicles, using inertial
systems and 3D lidar sensors in order to provide interpreted road
environments. StreetMapper (Barber et al., 2008) focus on eleva-
tion models, ICC (Talaya et al., 2004) use stereo and (Ishikawa
et al., 2006) monocular images for automatic processes, finally
(Jaakkola et al., 2008) process lidar data as image for extracted
different kinds of road markings. (Goulette et al., 2006) only
provide automatic lidar data segmentation, performing classifica-
tion of acquired scans in road, trees or obstacles. The acquisition
speed is nevertheless very low and the developed method can not
deal with rural roads, as road extraction implies curbs.

From our point of view, there were no current solution offering a
full comprehension of road environment, gathering road geome-
try, road marking and traffic sign analysis in a single tool. This

is the purpose of our developments, while we focus here on road
extraction and applications from lidar data.

2 VEHICLE DESIGN AND CALIBRATION

We developed an acquisition vehicle for road surveying consist-
ing in a very precise positioning system, a CCD Color camera
and 4 linear scanning sensors. A brief description of these sen-
sors and the calibration methods is provided in this section.

2.1 Vehicle Specification

The positioning system consists in a Trimble Omnistar 8200-Hp
GPS receiver, combined with an Ixsea LandINS inertial measure-
ment unit. This association delivers filtered 200 Hz GPS data and
can support GPS outages up to300s while presenting very small
drifts (0.005◦ for pitch and roll, 0.01◦ for heading, 0.7m in thexy
plane and 0.5m for thez coordinate). Orientation data are given
in a North East Up reference, and GPS positions are translated in
a metric coordinates system using the adequate conic projection.

As an imaging system, we use an AVT Pike F-210C, a CCD
color camera which provides Bayer filtered high definition im-
ages, with a frame rate up to 30 Hz. Instead of a constant rate,
we decided to set the camera such as it takes an image everyn
meters (n is generally set to 5 m, but can be adapted depending
on environment).

Four SICK LMS-291 are installed on the roof of the vehicle (Cf.
figure 1(a)). These Laser range sensors provide180◦ scans (with
0.5◦ angular resolution) up to 60 Hz scan rate. Their sensing
maximum range reaches 80 m with a 10 mm error and they also
can output reflectivity values (Cf. figure 6). Three of them are
looking to the ground with different orientations, the fourth one
being oriented towards the sky, in order to capture building fa-
cades or trees (Cf. figure 1(b)). These sensors are controlled by
the vehicle speed, stopping the acquisition when the vehicle is
stopped.

Every data are acquired and timestamped usingRTMaps software,
on a single on-board computer (Pentium IV, 2GHz) with adequate
disk space. Besides, considering the inertial navigation system
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(a) Lidar and camera (b) “Front” and “Sky” lidar sensors
cones of view

Figure 1: overview of the truck

(and more specifically the GPS antenna position) as the center of
the truck coordinates system, every data have to be replaced in
this specific frame, and will be finally expressed in the world co-
ordinates system. We now present briefly the calibration methods
used for replacing all devices in this coordinates system.

2.2 Camera Calibration

We present in this section a two step camera calibration ; first
the camera is roughly oriented so as to be aligned with the truck
main axis. Then it is finely calibrated, using a dedicated Matlab
toolbox.

2.2.1 Camera Rough Alignment We designed a calibration
site presenting many parallel longitudinal and transversal lines
and marks for positioning the vehicle wheels. A primary camera
orientation is processed in order to align it with the truck main
axis : it consists in a dynamic process allowing a rough setting of
the pitch, the roll and the yaw. Pitch is set in a way that the vehi-
cle’s hood is not seen. Roll is set to zero from the transversal lines
mean orientation. Yaw is set so that the longitudinal lines vanish-
ing point has an u-coordinate equals to the principal point –i.e.
the projection of the camera center in the image – u-coordinate
(Cf. figure 2).

Figure 2: configuration tool output image, instructions are dis-
played at the top left of the image

2.2.2 Fine Calibration We mainly focus here on extrinsic ca-
libration, i.e. the camera position and orientation with respect
to the truck. We used Jean-Yves Bouguet’s Matlab camera ca-
libration toolbox1, which relies on Zhang calibration algorithm
(Zhang, 2000) and returns calibration grid positions in the camera
coordinates system (Cf. figure 3).

Intrinsic parameters, though quite important for any image pro-
cessing algorithm, are not critical in the road description process.
Indeed, this first stage goal is to define camera position and ori-
entation in the GPS antenna coordinates system, which is done
using our calibration site.

1http://www.vision.caltech.edu/bouguetj/calib_doc/

index.html

Figure 3: calibration grid positions

2.3 Lidar Calibration

In order to compute Lidar positions and orientations in the GPS
coordinates system, we decided to determine their positions with
respect to the camera, then to transfer these positions using the
camera extrinsic calibration results.

Different approaches for lidar calibration have been developed.
Antone and Friedman implemented a method where only lidar
range data are required, but which is based on the design of a spe-
cific calibration object (Antone and Friedman, 2007). They claim
that registration to any camera can be further processed by apply-
ing a pattern on this object. (M̈ahlisch et al., 2006) developed a
calibration method of a multi-beam lidar sensor with respect to a
camera which has to be sensitive to the spectral emission band.
Alignment is then performed when viewing a wall from differ-
ent orientations, through a reprojection distance minimization.
Huang presented an algorithm for multi-plane lidar calibration
using geometric constraints on the calibration grid plane (Huang
and Barth, 2008). We chose Zhang and Pless approach (Zhang
and Pless, 2004), a two step algorithm based on a geometric con-
straint relative to the normal of the calibration grid plane. This
method uses a linear determination of the pose parameters, fur-
ther refined by a non linear optimization (generally performed
through a Levenberg-Marquardt algorithm).

In our experiments, we use about 15 images, where the calibra-
tion grid is seen in both lidar and camera views. The poses of the
calibration grid with respect to the camera are previously deter-
mined in the 2.2.2 section and we select manually the grid area in
the lidar scan (Cf. figure 4). Zhang and Pless two-pass algorithm
is then performed with the collected data for the three front lidar
range sensors.

(a) Calibration grid is manually
selected in the scan

(b) corresponding image

Figure 4: lidar data and corresponding image used for calibration

As an intermediate result of this stage, we can reproject lidar im-
pacts on the grid, as can be seen in figure 5.

The final step in the calibration scheme consists in replacing all
calibrated lidar in the GPS antenna coordinates system, in order
to have all sensors in the same reference. As these sensors are
2D lidar, the vehicle displacement provides a full scan of the sur-
rounding 3D world. UsingRTMaps acquisition platform, all data
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Figure 5: lidar impacts reprojected on the calibration grid

are timestamped, then can be positioned through a linear inter-
polation of the GPS-INS positions data. Consistent 3D environ-
ments can thus be constructed from the four 2D lidar sensors (Cf.
figure 6) when driving at anormal speed.

Figure 6: 3D world with reflectivity data

Moreover, using lidar camera calibration, it is possible to textu-
rize all lidar points, and thus to render realistic 3D reconstructions
(Cf. figure 7).

Figure 7: same view with texture information

3 ROAD EXTRACTION

To our knowledge, there are few road boundaries detection meth-
ods using only lidar range sensors. A well known paper (Kirchner
and Heinrich, 1998) settles an horizontal lidar in order to detect
guardrails. A third polynomial road boundary model (with no
first order term) is used to approximate clothoid curve and an
extended Kalman filter processes successive scans. The Kalman
prediction is performed using the steering angle and vehicle speed
and the correction stage assumes a radial error model. This ap-
proach inspired many other research teams despite of being lim-
ited to roads presenting guardrails or curbs : another method
uses a lidar oriented towards the road and looks for curbs in suc-
cessive scans (Wijesoma et al., 2004). They assumed that each
scan is ideally composed with different “flat” phases : horizontal
as the sidewalks and the road, vertical as the curbs borders. A
predicted point is computed from the previous two range mea-
surements on a frame, large prediction errors indicating phase
changes. The extracted segments are fitted by lines then further
analyzed to provide potential curbs. Final detections are tracked

using an extended Kalman filter. The “flat road” approach has
also been tested by (Kim et al., 2007), that ensure a robot posi-
tioning through a curb detection. Noticing that, due to the larger
point density in front of the range sensor, the most represented
line is the road, they performed a Hough Transform on the scan
data. Curbs are then extracted as the extrema points surrounding
the road. An apparently faster approach uses histogram thresh-
olding to detect curbs (Aufrere et al., 2003), from a side oriented
lidar sensor, andvia a modular algorithm. A maximum contrast
approach is then used as curbs present a different illumination
than road and sidewalk. Different approaches use a multi-layer
lidar sensor. (Dietmayer et al., 2006) presents two aspects of road
detection with an 6 layers lidar, two of them being dedicated to
lane following; this part is performed by correctly setting the sen-
sor sensitivity, as asphalt present a small reflectivity compared to
road markings. Besides, they present an object detection by seg-
menting each scan with an adaptive threshold, the classification
being performed through the object dynamic analysis (Sparbert
et al., 2001). These obstacles are further eliminated so as not to
disturb the road extraction process. Assuming an equal curvature
for left and right sides and considering several curvature hypothe-
ses, the road is extracted by finding the solution that minimizes
the number of candidates between the road boundaries. The au-
thors finally classify the road type from the estimated width, and
discard unlikely object classifications.

Starting from the observations we made, we developed a two-step
road detection algorithm which processes the front lidar scans.
This algorithm, based on different uses of RanSaC method (Fis-
chler and Bolles, 1981), is described in this section. Extracted
road boarders and centers are then processed and provide use-
ful information about road geometry, such as road width or road
curvature.

3.1 Scan Rough Segmentation

In the first step, each scan is processed individually. Looking at
figures 8(a) and 8(b), where scan points are reprojected in the
world coordinates system, it can be noticed that the road is not
flat, but verifies a curvature which can be approximated quite ac-
curately by a parabola. This is the starting point of our algo-
rithm : it is to find a polynomial expression, up to degree 2 that
best approximates the scan data. Using RanSaC algorithm, only
two thresholds are necessary ; the first one indicates the expected
outliers rate in the points set, which is directly related to the it-
erations number, and the second one specifies the distance above
which a point is considered as an outlier.

(a) urban road with curb

(b) rural road

Figure 8: two typical road scans where road local
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The scan segmentation results are presented on figures 9(a) and
9(b). It can be seen that the road is well extracted, although some
points could be wrongly classified, as they fortuitously belong to
the best parabola. A simple morphological erosion is then per-
formed on the inliers indices vector in order to discard isolated
positive points.

(a) rough urban road segmentation

(b) rural road segmentation

Figure 9: scan rough segmentation : Inliers are displayed in green

We believe that this approach is quite efficient as it does not rely
on the presence of curbs, guard rails or concrete steps, but simply
assumes that there exists a main polynomial corresponding to the
road. As can be seen on image 10, this first step classifies quite
well road to non road points. Nevertheless, two remarks could be
formulated :

• This approach will fail when the sidewalks are larger than
the road, more precisely when they represent more points
than the road. In this very case, sidewalks will be detected as
the main polynomial, then classified as road. This limitation
will be addressed in the section 3.2.

• The results look very noisy. Indeed, no global consistency
has been used yet.

3.2 Slope Break Points

We saw in the previous section that large sidewalks could lead to
wrong road extraction. This eventuality is quite rare as the front
lidar points density is higher in front of the truck (i.e. on the
road), but can sometimes occur when riding on a narrow road or
on rural roads. The lidar scan can thus be pre-segmented in order
to decrease these cases frequency, using slope break points.

A very interesting approach of city and road modeling is de-
scribed in (Goulette et al., 2006), where the authors present a
geometric adaptive decimation. This process greatly reduces the
lidar data by keeping geometrically meaningful points only. Fol-
lowing the same way, we decided to segment each lidar by de-
tecting slope break points,i.e. points where slope change sig-
nificantly (the significance threshold being around30◦). These
points generally occur at curbs boundaries, in vegetation areas,
butnot on the road surface. Once these break points have been de-
tected, the RanSaC parabola algorithm is successively performed
on each segment defined between two such points (if the segment
in question has enough points) ; the segment presenting the great-
est inliers numbers is finally kept. This process presents two main
advantages :

• It separates large sidewalks in two parts

• It decreases the number of points number for each RanSaC
application. This speeds up the process as a large number of
points is very time consuming.

The output of this step is a first road/non-road classification of
lidar points (Cf. figure 10). At that point, road boundaries are
simply defined as the extreme positive points. Road mid points
are also computed, as they constitute an interesting information,
from the middle of left and right boundaries.

Figure 10: first stage result : road points are displayed in red

3.3 Global Consistency

We showed in the previous section how to discard false positives
in road classification, using a simple geometric constraint. But
even after this process, the road extraction is not precise enough,
curvature and width would be very noisy if determined at this
point. We propose here a more global approach, that provides
“confidence” scores to the left road side, right road side and mid-
dle points extracted in the first stage.

This algorithm uses the RanSaC method combined to an accu-
mulation scheme and can be resumed as follows for a particular
side :

1. At the beginning of the algorithm, each point has a zero con-
fidence score.

2. For standard acquisition conditions (around 90 km.h-1 with
a 60 Hz lidar), the linear resolution is about 50 cm. The
starting point of our algorithm is to pickN consecutive po-
ints and discard theirz coordinate. We choose generally
N = 100, that corresponds to 50 m, as the road can not
change that fast.

3. These points are oriented in order to be fitted by a third order
polynomialy = f(x), as this type of function is able to
correctly approximate a clothoid.

4. We apply RanSaC algorithm, but we are more interested in
the inliers indices than by the polynomial. Indeed, the con-
fidence score of each inlier is increased.

5. Go forward byS points and iterate from (2).

After all processes, each candidate point has a confidence score
from 0 to N

S
, depending of the number of times it has been con-

sidered as an inlier. Finally, a road side candidate is kept if its
score is above a threshold. The result of this step can be seen on
figure 11, where score color goes from dark blue (0) to red (10).

Three independent polynomialsy = f(x) are instanced, for left,
right and center points, so as to handle unsymmetrical road sides.
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Figure 11: scores for mid points candidates

The output points will be further fitted by a Non Uniform Rational
Bézier Spline (called NURBS hereafter). Using scores as weights
in NURBS computations seemed at first a good idea, but as even
a small weight influences the final curve, the threshold approach
has been preferred.

3.4 NURBS Fitting

Due to the algorithm architecture, road boundary candidates are
generally quite sparse and irregularly spaced, so a simple lin-
ear interpolation between them would not be satisfying. Resul-
tant points are thus approximated by 3D NURBS, parametric
curves whose resolution is directly related to the distances be-
tween successive knots (Cf. figure 12(a)). Applying algorithm
described in (Peterson, 1992), we output 3D curves with a con-
stant arc-length spacing (Cf. figure 12(b)). This method is based
on spline arc-length estimation, using Gauss-Legendre quadra-
ture and Newton’s root finding method.

(a) original NURBS (b) arc-length NURBS

Figure 12: after reparametrization, curve points are equally
spaced

4 APPLICATIONS

4.1 Road curvature estimation

Using the NURBS computed in section 3.4, it is almost straight-
forward to determine road curvature with any desired resolution.
We chose a 50 cm resolution on the central NURBS, and com-
puted the circle from three successive points. Two results can be
seen on figures 13(a) and 13(b), where point color changes from
green to red when the curvature increases. Hazardous areas can
thus be detected and precisely reported on a geographic informa-
tion system.

4.2 Road width estimation

In the same manner as in section 4.1, we chose a 50 cm reso-
lution on the central NURBS, and computed at each point the
curve normal plane, reminding that we deal with 3D curves. It is
then to find the intersections between this plane and the left and

Figure 13: road curvature estimation for two different areas

right splines to obtain the left and right boundaries. Following the
same path than in section 3.4, we applied the Newton’s method, in
order to minimize the distance between the plane and the bound-
ary splines. The minimization starting point is here crucial and
has to be carefully computed.

Figure 14: two examples of road width

4.3 Road signs extraction

Road signs are designed to present a high reflectivity ; on im-
age 6, where the points reflectivity is displayed as a gray level,
we can observe white areas, corresponding to license plates or
road signs. Using a simple threshold on reflectivity value then on
the size of the resulted areas, we can easily extract road signs in
the virtualized environments (Cf. figure 15). The sign areas can
further be reprojected on image in order to perform optical fine
extraction and recognition.

Figure 15: road signs are displayed in blue

4.4 Road markings extraction

With a correctly extracted road and using the reflectivity data, we
can also extract road markings trough a simple thresholding. As
claimed (Dietmayer et al., 2006), asphalt presents a much lower
reflectivity than road markings so that threshold determination
is quite easy. Nevertheless, this approach can in some cases be
less robust than image processing methods, as it highly depends
on marking reflectivity, which is faster deteriorated than white
painting.

5 CONCLUSION AND FUTURE WORK

We presented here a new acquisition platform dedicated to road
environment reconstruction, surveying and interpretation. Real-
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Figure 16: top view of the interpreted 3D environment

istic reconstructions are achieved using multiple 2D lidar sensors
and texturized thanks to a lidar / camera cross calibration, when
driving at a normal speed.

New algorithm have been developed which can cope with various
situations. Road boundaries are detected using a two-step method
based on local road shape, which proves to be very precise even
on rural roads, where there are no curb. Road sides and main axis
are then fitted by arc-length parametrized NURBS, which allow
us to compute road width and curvature at the desired resolution.
Besides, road markings and traffic signs are extracted using the
reflectivity information provided by the lidar sensors ; image pro-
cessing allow us to interpret these informations. These results are
gathered into a geographic information system that can be con-
sulted trough our internal software.

Future works will concern world interpretation, providing infor-
mation such as road furniture classification, traffic sign aging –
using a patented system – or bridge characterization.
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