
MULTI-MODAL BACKGROUND SUBTRACTION
USING GAUSSIAN MIXTURE MODELS

Benjamin Langmann, Seyed E. Ghobadi, Klaus Hartmann, Otmar Loffeld

ZESS - Center for Sensor Systems, University of Siegen, Germany, (langmann, ghobadi, hartmann, loffeld)@zess.uni-siegen.de

Commission III, WG III/5

KEY WORDS: Classification, Detection, Scene, Segmentation, Video

ABSTRACT:

Background subtraction is a common first step in the field of video processing and it is used to reduce the effective image size in
subsequent processing steps by segmenting the mostly static background from the moving or changing foreground. In this paper previ-
ous approaches towards background modeling are extended to handle videos accompanied by information gained from a novel 2D/3D
camera. This camera contains a color and a PMD chip which operates on the Time-of-Flight operating principle. The background is
estimated using the widely spread Gaussian mixture model in color as well as in depth and amplitude modulation. A new matching
function is presented that allows for better treatment of shadows and noise and reduces block artifacts.
Problems and limitations to overcome the problem of fusing high resolution color information with low resolution depth data are ad-
dressed and the approach is tested with different parameters on several scenes and the results are compared to common and widely
accepted methods.

1 INTRODUCTION

For a few years cameras utilizing PMD technology to gain depth
information through the Time-of-Flight principle have been avail-
able. These ToF cameras are often combined with standard color
cameras. Recently, 2D/3D cameras which contain a color and
a PMD chip in a monocular setup have been developed (Mul-
tiCam (Prasad et al., 2006), ZCam), which eliminates the need
for a registration of the produced images. These cameras supply
besides a color and a depth image also an amplitude modulation
image, which indicates how much infrared light was received by
the PMD chip. Apart from their advantages of high frame rates
and their ability to capture the scene all at once, all PMD based
cameras have also the disadvantages of a low resolution, typically
64×48 up to 204×204, high noise and difficulties lighting large
scenes. Nevertheless, the 2D/3D cameras supply additional di-
mensions compared to ordinary video which makes it possible to
overcome ambiguities and distortions in standard image process-
ing tasks.
The focus of this paper lies in the common image processing step
of background subtraction, modeling or segmentation. The goal
is to isolate regions of interest in each image, which are here de-
fined as the the moving foreground opposed to the mostly static
background of the video. Methods to that end can be divided
coarsely into two classes: pixel- and region-based approaches.
The earlier perform the classification of a pixel based only on al-
ready known information about that pixel, whereas the later use
information from neighboring pixels (often grouped in regions or
layers) as well. The most notable of the pixel-based approaches
is the method of Gaussian Mixture Models with is widely spread,
simple and efficient. The background is hereby modeled by a
mixture of Gaussians for each pixel - hence the name. When the
observations are accompanied by a depth value and an amplitude
modulation for each pixel, the problem of how to combine these
different types of dimensions in the classification step has to be
addressed.
In this work the background subtraction method based on Gaus-
sian Mixture Models (GMM) is adapted to videos with color,
depth and amplitude modulation gained through the Time-Of-
Flight principle, which will be referred to as 2D/3D videos (see

figure 1 for an example). Here the significantly lower resolu-
tions of the depth and amplitude modulation images have to be
accounted for additionally. To that end a measure that links the di-
mensions in a statistical manner is presented which also results in
a lower noise level and a better classification of shadows. Previ-
ous methods either use rather simple foreground estimation meth-
ods or are designed to operate on full sized depth images which
were gained by a stereo setup.

2 RELATED WORK

In (Ghobadi et al., 2008) the foreground of 2D/3D videos is ex-
tracted simply by defining a volume of interest and this is used
for hand tracking as well as gesture recognition. Harville et al.
applied the standard approach of background modeling by Gaus-
sian mixtures, see e.g. (Stauffer and Grimson, 1999), to color and
depth videos in (Harville et al., 2001). They are using full sized
depth images so that there is no need to handle the different reso-
lutions.
In (Bianchi et al., 2009) a rather simple approach to foreground
segmentation for 2D/3D videos that is based on region growing
and refrains from modeling the background is evaluated, whereas
in (Leens et al., 2009) a simple pixel-based background model-
ing method called ViBe is used for color and depth dimensions
separately and the resulting foreground masks are fused with the
help of binary image operations such as erosion and dilation.
A more elaborate method of fusing color and depth is bilateral
filtering, which is used e.g. in (Crabb et al., 2008). Here the pre-
liminary foreground is produced by a dividing plane in space and
a bilateral filter is applied to gain the final results. The method
is demonstrated on depth augmented alpha matting, which is also
the focus of the paper (Wang et al., 2007). In (Schuon et al.,
2008) the ability of bilateral filtering to deal with geometric ob-
jects is demonstrated and in (Chan et al., 2008) a variant designed
to handle noise and invalid measurements is presented.
The problem of fusing the depth and color dimensions and han-
dling their different nature is also discussed in the course of depth
upscaling. To that end a cost function or volume is defined in
(Yang et al., 2007), that describes the cost of in theory all possi-
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(a) Input video (b) Depth image (c) GMM on color (d) GMM on color and depth

Figure 1: Results for (a) a challenging input video , (b) a depth image where invalid measurements are black, (c) the foreground mask
using GMM only for color and (d) GMM based on color and depth

ble refinements of the depth for a color pixel. Again a bilateral
filter is applied to this volume and after sub-pixel refinement a
proposed depth is gained. The optimization is performed iter-
atively to achieve the final depth map. The incorporation of a
second view is also discussed. In (Bartczak and Koch, 2009) a
similar method using multiply views was presented.
An approach working with one color image and multiple depth
images is described in (Rajagopalan et al., 2008). Here the data
fusion is formulated in a statistical manner and modeled using
Markov Random Fields on which an energy minimization method
is applied.
Another advanced method to combine depth and color informa-
tion was introduced in (Lindner et al., 2008). It is based on edge
preserving biquadratic upscaling and performs a special treat-
ment of invalid depth measurements.

3 GAUSSIAN MIXTURE MODELS

All observations at each pixel position x = [x, y]T are modeled
with a mixture of Gaussians to estimate the background. The
assumption is that an object in the line of sight associated with
a certain pixel produces a Gaussian formed observation or sev-
eral in the case of a periodically changing appearance (e.g., mov-
ing leaves, monitor flickering). Each observation is then mod-
eled with one Gaussian whose mean and variance is adapted over
time. An observation at time t for a pixel x is given by st(x) =
[st

1(x), st
2(x), . . . , st

n(x)]T . The probability distribution density
of st(x) can now be described by
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is the multivariate Gaussian with mean µ
i

and covariance ma-
trix Σi. Clearly for the mixing coefficients ωi we must have:∑
i

ωi = 1. How many Gaussians should be used to model the

observations, how to adapt the Gaussian efficiently over time and
which Gaussians should be considered background, are questions
that arrive immediately. Most GMM based methods are based on
very simple assumptions for efficiency. They used a fixed num-
ber of Gaussians per pixel and the minimum number of Gaus-
sians with weights which sum up to a given threshold are treated
as background.
The adaptation of the Gaussians over time is a bit more compli-
cated. Instead of using the EM-algorithm or similar methods to

determine the parameters of the mixture, the usual online cluster-
ing approach is used in this work: When a new observation s(x)
arrives it is checked if it is similar to already modeled observa-
tions or if it is originating from a new object. It may also just be
noise. This is done by evaluating the Mahalanobis distance δ(·, ·)
towards the associated Gaussian Nx(µ
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with Tnear being a given constant. If similar observations have
been recorded, their Gaussian is adapted using the observed data.
Otherwise, a new Gaussian is created and added to the mixture.
An exact description of a possible implementation can be found
in (Stauffer and Grimson, 1999) for normal videos and in (Harville
et al., 2001) with additional depth values.
An observation for a pixel is given by s(x) = (y, cb, cr, z, a)T

in this work and contains the color value in YCbCr format, a
depth value z and an amplitude modulation value a. The 2D/3D
camera produces a full size color image and low resolution depth
and amplitude modulation images which are resized to match to
color images by the nearest neighbor method. The variances of
all Gaussians are limited to be diagonal to simplify computations.
When working with ToF data, invalid depth measurements due to
low reflectance, have to be handled cautiously. A depth measure-
ment is considered invalid if the corresponding amplitude is lower
that a given threshold. In (Harville et al., 2001) an elaborate log-
ical condition is used to classify a new observation. Experiments
show that this can be simplified by using the measure
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and checking the condition
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where λz ∈ {0, 1} depending on whether current and previ-
ous depth measurements are both valid. The mechanism from
(Harville et al., 2001) works well to that end. Similarly, λc ∈
{0, 1} indicates whether the chromaticity channels of the current
observation as well as the recorded information provide trustwor-
thy values. This can be estimated simply by checking if both
luminance values or their means respectively are above a certain
threshold. Finally, λa ∈ {0, 1} determines if the amplitude mod-
ulation should be used for the classification and it is specified a
priori.
This matching function pays respect to the fact that observations
in the color, depth and amplitude modulation dimensions are in
practice not independent. A foreground object has most likely not
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Figure 2: Average recall and precision values for different background subtraction methods using different parameters. Left: values for
the 2D/3D video shown in table 1, right: for the video shown in table 2

only a different depth but also at least a slightly different color
and infrared reflectance properties. Other reasons are limitations
of video and ToF cameras, e.g., the infrared reflectance of an ob-
ject has an influence on the depth measurement (or its noise level)
and low luminance impairs chromaticity measurements. There-
fore, a linkage between the dimensions reduces the noise level
in the foreground mask, the amount of misclassification due to
shadows and block artifacts which occur when only depth mea-
surements are inappropriate.
More elaborate variants such as learning modulation and special
treatment of deeper observations when determining what obser-
vations are considered background are described in (Harville et
al., 2001) but do not seem to be necessary for simple scenarios.

4 EXPERIMENTS

The approach described in this work can be evaluated by exam-
ining if it obeys the following principles:

• When the ordinary background subtraction based on color
works, the results should not be harmed, e.g., through block
artifacts at the border of the foreground mask.

• When the foreground is not classified correctly only with
color, this should be compensated by depth.

• The shadow treatment of the color based background sub-
traction is still far from perfect and should be improved through
depth information.

The following methods were compared in the course of this work.
’GMM’ is the standard color based GMM approach (Stauffer and
Grimson, 1999) and ’Original GMMD’ is the original color and
depth based method from (Harville et al., 2001). ’GMMD with-
out depth’ is the method described in this work without depth
measurements (always λz = 0) and with λa = 0, whereas
in ’GMMD’ λz is determined based on the amplitude modula-
tion for each pixel similar as in (Harville et al., 2001) and in
’MMGMM’ λa = 1 is set additionally. The values for the OpenCV
GMM method are given for reference only, since it contains post-
processing steps and is therefore not directly comparable.
In table 1 the results for a 2D/3D video with difficult lighting
conditions using these methods are shown. The same parameters

were used for all methods: a maximum number of 4 Gaussians
per pixel, a learning rate of α = 0.0005, an initial σ = 5 and a
threshold Tnear = 3.5. Due to the fact that all methods operate
based on the same principle the results should be comparable for
a given set of parameters. This was also confirmed by several pa-
rameter variations.
The results demonstrate the ability of this method to achieve the
mentioned objectives. The misclassification of shadows is re-
duced and the natural borders of the foreground are harmed less.
When the classification based on color fails, these areas are filled
at least partly. The compensation is unfortunately often done in
a blockwise fashion (see figure 1). This drawback is further dis-
cussed the next section.
Image sequences from another experiment are shown in table 2
using the same parameter set. Here the lighting conditions are
far better so that the standard GMM algorithm can in theory dis-
tinguish between foreground and background. On the other hand
shadows and the similarity between foreground (jacket) and back-
ground cause large problems in this video. The method proposed
in this work does not affect the good classification based on color
but allows for better shadow treatment due to the available depth
values.
In figure 2 quantitative results for both 2D/3D videos are shown.
A ground truth was created per hand for every 5th frame starting
with the last empty frame before the person enters the scene and
ending with with first empty frame after the person has left the
scene. Then the number of true positives tp, false positives fp
and false negatives fn was counted in each frame for the differ-
ent methods using thresholds Tnear = 2, 2.5, . . . , 8 to calculate
the recall tp/(tp+fn) and the precision tp/(tp+fp) values and
their average over all frames was plotted. Here all variants of the
proposed methods perform superior to the classic approach and to
the original GMMD method with the exception of the MMGMM
method in the first video which on the other hand achieves the
best results for the second video. This behavior is due to the fact
that the scene in video 1 is much more difficult to light than the
scene from video 2, which results in higher noise levels in the am-
plitude modulation images in video 1. The very different values
for the OpenCV GMM method for the second video are caused
by the fact that this method classifies the TV correctly, whereas
all other methods fail in that respect. The comparably low recall
values, i.e., a largely incomplete true foreground possibly due
to the foreground background similarity, for the OpenCV GMM
method are worth mentioning.
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5 LIMITATIONS

The ordinary color based GMM background subtraction cannot
distinguish between foreground and background when the color
difference is small due to its pixel based nature. The depth values
gained from a ToF camera provide the ability for a correct clas-
sification of all image blocks with depth values different from
those of the background as long as there are valid depth measure-
ments for the background. As illustrated in figure 3 classifica-
tion based only on low resolution depth values will result in an
unnatural foreground contour due to block artifacts. Practically,
this drawback cannot be resolved in typical situations, because in
such areas the background usually continues with the same color
so that there is no edge that would allow gradient based methods
to smooth the contour of the foreground mask correctly. Other-
wise, bilateral filtering, see (Tomasi and Manduchi, 1998), which
is often used in the context of 2D/3D videos to enhance the res-
olution in depth, would be able to reconstruct the true contour of
the object.
To resolve the general case contour estimation methods that in-
corporate knowledge of the object given a priori or learned through
time are necessary, but it does not seem to be possible to achieve
good results in a not strictly defined setting. Only in the opposite
case, when inappropriate depth measurements result in a wrong
classification, gradient based methods can be applied to smooth
the contour.
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Figure 3: Illustration of a foreground mask. Dark yellow: fore-
ground object, light yellow: background with similar color, red:
detected object contour

6 CONCLUSION

In this paper the standard method for background subtraction
based on Gaussian Mixture Models is adapted to operate on videos
acquired with a 2D/3D camera. The proposed method was com-
pared to standard and previous methods using simple 2D/3D video
sequences. Qualitative as well as quantitative results were pre-
sented and it was found that the proposed method is able to com-
pensate for misclassification of pixels due to color similarities be-
tween foreground objects and the background by utilizing depth
and modulation amplitude information without harming the high
resolution contour of foreground objects. Furthermore, this method
provides a clearly improved treatment of shadows and noise com-
pared to previous methods.
The additional burden compared with standard background sub-
traction methods based on GMM to process and maintain the
depth values is small, i.e., on current PCs real-time processing
is easily possible.
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Table 1: Walk-by video with difficult lighting conditions
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Table 2: Simple video with good lighting conditions but difficult foreground
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