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ABSTRACT: 
 
In this paper the idea is to combine classifiers with different error types based on Fuzzy Majority Voting (FMV). Four study areas 
with different sensors and scene characteristics were used to assess the performance of the model. First, the lidar point clouds were 
filtered to generate a Digital Terrain Model (DTM), and then a Digital Surface Model (DSM) and the Normalized Digital Surface 
Model (nDSM) were generated. A total of 25 uncorrelated feature attributes have been generated from the aerial images, the lidar 
intensity image, DSM and nDSM. Three different classification algorithms were used to classify buildings, trees, roads and ground 
from aerial images, lidar data and the generated attributes. The used classifiers include: Self-Organizing Map (SOM); Classification 
Trees (CTs); and Support Vector Machines (SVMs) with average classification accuracies of 96.8%, 95.9% and 93.7% obtained for 
SVMs, SOM, and CTs respectively. FMV was then applied for combining the class memberships from the three classifiers. The 
main aim is to reduce overlapping regions of different classes for minimizing misclassification errors. The outcomes demonstrate 
that the overall accuracy as well as commission and omission errors have been improved compared to the best single classifier. 
 
 

                                                                 
*  Corresponding author.   

1. INTRODUCTION 

Researchers are continually seeking to improve the performance 
of classifiers in remote sensing. Taking advantage of the 
complementary information about image data provided by 
classifiers based on different mathematical concepts, the next 
natural frontier is the integration of multiple approaches into a 
unified framework. The efficient combination of classifiers, 
should achieve better classification results than any single 
classifier. Kanellopoulos et al. (1997) have demonstrated the 
complementary behaviours of neural and statistical algorithms 
in terms of classification errors. Therefore these classifiers 
result in uncorrelated classification errors and hence higher 
accuracies can then be reached by combining them.  
 
 

2. RELATED WORK 

For remote sensing applications, Benediktsson et al. (2007) 
have presented a brief summary of recent developments of 
multiple classifier systems (MCS) in which the optimal set of 
classifiers is first selected and then they are combined by a 
specific fusion method. The aim is to effectively merge the 
results of the classifiers taking advantage of the benefits of each 
while reducing their weaknesses.  
More recently, researchers have investigated classifier selection 
for MCS design. Giacinto and Roli (2001) clustered the 
candidate classifiers according to interdependency and selected 
one classifier from each cluster. Hao et al. (2003) also used a 
heuristic search for classifier selection. Mountrakis et al. (2009) 
presented a hierarchical, multi-stage adaptive strategy for image 
classification. They iteratively applied various classification 
methods, e.g., decision trees, neural networks, identified regions 

of parametric and geographic space where accuracy is low, and 
tested the application of alternate methods, repeating the 
process until the entire image was classified. 
Applications of majority voting (MV) for pattern recognition 
have already been studied in detail in Lam and Suen (1997). A 
trainable variant of majority voting is weighted majority voting, 
which applies a weight to each vote. The weight applied to each 
classifier can be obtained for example by estimating the 
accuracies of the classifiers on a validation set.  
Yu-Chang and Kun-Shan (2009) introduced a multiple classifier 
system for land cover classification. The Bagging and Boosting 
algorithms were investigated as a weighting policy and then an 
adaptive thresholding criterion was defined to account for the 
ambiguities between classes. 
Recent work has focused on deriving the uncertainty map of the 
land-cover prediction, which based on the uncertainty of land-
cover classification for each pixel. Alimohammadi et al. (2004) 
used maximum likelihood classification algorithm to perform 
the classification and generated uncertainty estimation.  
Another technique which is widely studied in classical classifier 
fusion but less addressed in remote sensing is Fuzzy Majority 
Voting (FMV). FMV theory has already been investigated in 
automatic disambiguation of word senses (Le et al., 2007), but 
this is probably the first attempt to use it for combining 
information derived from different classifiers for improvement 
of land cover mapping. FMV has been proposed in this research 
to further improve the classification performances and 
overcome the shortcomings of the previous approaches of 
combining classifiers, such as sensitivity to noise, 
computational load and the need for parametric statistical 
modeling of each data source. The major motivation of our 
work is to establish a framework to combine classifiers with 
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different error types based on FMV, thus minimizing the 
misclassification errors. After describing the study areas and 
data sources in the following section, this paper is organised as 
follows. Section 4 describes the methods. Section 5 presents 
and evaluates the results and we summarise our results in 
Section 6. 
  
 

3. STUDY AREAS AND DATA SOURCES 

3.1 Test Zones and Input Data 

Four test datasets of different sensor and scene characteristics 
were used in this study as summarized in Table 1 and 2. Test 
area 1 is a part of the region surrounding the University of New 
South Wales campus, Sydney Australia, which is a largely 
urban area that contains residential buildings, large Campus 
buildings, a network of main roads as well as minor roads, 
trees, open areas and green areas. The colour imagery was 
captured by film camera at a scale of 1:6000. The film was 
scanned in three colour bands (red, green and blue) in TIFF 
format, with 15μm pixel size (GSD of 0.09m) and radiometric 
resolution of 16-bit as shown in figure 1(a). Test area 2 is a part 
of Bathurst city, NSW Australia, which is a largely rural area 
that contains small residential buildings, road networks, trees 
and green areas. The colour (red, green and blue) images were 
captured by a Leica ADS40 line scanner sensor and supplied as 
an ortho image as shown in figure 1(b). Test area 3 is over 
suburban Fairfield, NSW Australia covering low density 
development in the southwest half of the scene, and large 
industrial buildings in the northeast part as shown in figure 1(c).  
The image data was acquired by a film camera at a scale of 1:10 
000 which was scan digitized and supplied as an ortho image. 
Test area 4 is over Memmingen Germany, featuring a densely 
developed historic centre in the north of the scene and industrial 
areas in the remainder as shown in figure 1(d). Multispectral 
images (CIR), including an infrared image with the same 
resolution as the colour bands, were acquired by a line scanner 
sensor and supplied as an ortho image. 
 

   
 

   
Figure 1. Orthophotos for: (a) UNSW; (b) Bathurst; (c) 

Fairfield; and (d) Memmingen. 

 

 

Test area Size 
(Km) bands 

pixel 
size 
(cm) 

Camera 

UNSW 0.5 x 0.5 RGB 9 LMK1000 

Bathurst 1 x 1 RGB 50 ADS40 
Line scanner 

Fairfield 2 x 2 RGB 15 LMK1000 

Memmingen 2 x 2 CIR 50 TopoSys Falcon II 
line scanner 

Table 1. Characteristics of image datasets. 

 UNSW Bathurst Fairfield Memmingen 
 Optech 

ALTM 
1225 

Leica 
ALS50 

Optech 
ALTM 
3025 

TopoSys 

Spacing across 
track (m) 

1.15 0.85 1.2 0.15 

Spacing along 
track (m) 

1.15 1.48 1.2 1.5 

Vertical 
accuracy (m) 

0.10 0.10 0.15 0.15 

Horizontal 
accuracy (m) 

0.5 0.5 0.5 0.5 

Density 
(Points/m2) 

1 2.5 1 4 

Sampling 
intensity 
(mHz) 

11 150 167 125 

Wavelength 
(μm) 

1.047 1.064 1.047 1.56 

Laser swath 
width (m) 

800 777.5 700 750 

Recorded 
pulse 

1st and 
last 

1st and 
last 

1st and last 1st and  
last 

Table 2. Characteristics of lidar datasets. 
 

3.2 Training Datasets 

All tests were conducted using identical training sets. Eighty 
polygons of approximately equal areas, twenty for each land 
cover class, buildings, trees, roads and ground, were overlaid 
over each image to generate the training data. The positions of 
the polygons were selected carefully to be representative and to 
capture changes in the spectral variability of each class. The 
training data for each test area consists of 1644, 1264, 1395 and 
1305 training pixels for buildings, trees, roads and ground 
respectively for each band of the input data. Class “ground” 
mainly corresponds to grass, parking lots and bare fields. 
 
3.3 Reference Data 

In order to evaluate the accuracy of the results, reference data 
were captured by digitising buildings, trees, roads and ground 
in the orthophotos. Class “ground” mainly corresponds to grass, 
parking lots and bare fields. We chose to digitize all 
recognisable features independently of their size. Adjacent 
buildings that were joined but obviously separated were 
digitized as individual buildings. Otherwise, they were merged 
as one polygon. In order to overcome the horizontal layover 
problem of tall objects such as buildings, roofs were first 
digitized and then each roof polygon was shifted if possible so 
that at least one point of the polygon coincided with the 
corresponding point on the ground. For Fairfield, the 
orthophoto and the lidar data correspond to different dates. 
Thus, we excluded from the analysis 41 building polygons that 
were only available in one data set. Larger areas covered by 
trees were digitised as one polygon. Information on single trees 
was captured where possible. 

(a) (b) 

(c) (d) 
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4. METHODOLOGY 

The combination process was implemented in several stages as 
follow: 
 
4.1 Filtering of lidar point clouds   

First the original lidar point clouds were filtered to separate on-
terrain points from points falling onto natural and human made 
objects. A filtering technique based on a linear first-order 
equation which describes a tilted plane surface has been used 
(Salah et al., 2009). Data from both the first and the last pulse 
echoes were used in order to obtain denser terrain data and 
hence a more accurate filtering process. After that, the filtered 
lidar points were converted into an image DTM, and the DSM 
was generated from the original lidar point clouds. Then, the 
nDSM was generated by subtracting the DTM from the DSM. 
Finally, a height threshold of 3m was applied to the nDSM to 
eliminating other objects such as cars to ensure that they are not 
included in the final classified image.  
 
4.2 Generation of Attributes  

Our experiments were carried out characterizing each pixel by a 
32-element feature vector which comprises: 25 generated 
attributes, 3 image bands (R, G and B), intensity image, DTM, 
DSM and nDSM.  The 25 attributes include those derived from 
the Grey-Level Co-occurrence Matrix (GLCM), Normalized 
Difference Vegetation Indices (NDVI), slope and the 
polymorphic texture strength based on the Förstner operator 
(Förstner and Gülch, 1987). The NDVI values for the UNSW, 
Bathurst and Fairfield test areas were derived from the red 
image and the lidar reflectance values, since the radiation 
emitted by the lidars is in the IR wavelengths. The resolutions 
of the lidar reflectance data for these study areas are lower than 
that for the images, and this may impact on the ability to detect 
vegetation. Since the images derived for the Memmingen 
dataset include an IR channel, the NDVI was derived from the 
image data only. The attributes were calculated for pixels as 
input data for the three classifiers. Table 3 shows the attributes 
and the images for which they have been derived. These 
attributes have been selected to be uncorrelated based on the 
problem of correlation between feature attributes. All the 
presented attributes were used for every test area. A detailed 
description of the filtering and generation of attributes process 
can be found in Salah et al. (2009). 

 

 

Table 3. The full set of the possible attributes from aerial 
images and lidar data. √ and x indicate whether or not 
the attribute has been generated for the image. PTS 
refers to polymorphic texture strength; HMGT refers 
to GLCM/homogeneity; Mean refers to GLCM/ 
Mean; entropy refers to GLCM/ entropy. 

 
4.3 Land Cover Classification 

In this work, we have used the Self-Organizing Map (SOM), 
Classification Trees (CTs), and Support Vector Machines 

(SVMs) classifiers to estimate the class memberships required 
for the combination process.  
 
Support Vector Machines (SVMs) 
SVMs are based on the principles of statistical learning theory 
(Vapnik, 1979). SVMs delineate two classes by fitting an 
optimal separating hyperplane (OSH) to those training samples 
that describe the edges of the class distribution. As a 
consequence they generalize well and often outperform other 
algorithms in terms of classification accuracies. Furthermore, 
the misclassification errors are minimized by maximizing the 
margin between the data points and the decision boundary.  
Since the One-Against-One (1A1) technique usually results in a 
larger number of binary SVMs and then in subsequently 
intensive computations, the One-Against-All (1AA) technique 
was used to solve for the binary classification problem that 
exists with the SVMs and to handle the multi-class problems in 
aerial and lidar data. The Gaussian radial basis function (RBF) 
kernel has been used, since it has proved to be effective with 
reasonable processing times in remote sensing applications. 
Two parameters should be specified while using RBF kernels: 
  
• C, the penalty parameter that controls the trade-off 

between the maximization of the margin between the 
training data vectors and the decision boundary plus the 
penalization of training errors  

• γ, the width of the kernel function. 
  

In order to estimate these values and to avoid making 
exhaustive parameter searches by approximations or heuristics, 
we used a grid-search on C and γ using a 10-fold cross-
validation. The original output of a SVM represents the 
distances of each pixel to the optimal separating hyperplane, 
referred to as rule images. All positive (+1) and negative (-1) 
votes for a specific class were summed and the final class 
membership of a certain pixel was derived by a simple majority 
voting. 
 
Self-Organizing Map Classifier (SOM) 
The SOM undertakes both unsupervised and supervised 
classification of imagery using Kohonen’s SOM neural network 
(Kohonen, 2001). SOM requires no assumption regarding the 
statistical distribution of the input pattern classes and has two 
important properties: the ability to learn from input data; and to 
generalize and predict unseen patterns based on the data source, 
rather than on any particular a priori model. In this work (Salah 
et al., 2009), the SOM has 32 input neurons which are: 25 
generated attributes, 3 image bands (R, G and B), intensity 
image, DTM, DSM and nDSM. The output layer of an SOM 
was organized as a 15 x 15 array of neurons as an output for the 
SOM (255 neurons). This number was selected because, as 
recommended by Hugo et al. (2006), small networks result in 
some unrepresented classes in the final labelled network, while 
large networks lead to an improvement in the overall 
classification accuracy. Initial synaptic weights between the 
output and input neurons were randomly assigned (0-1). In the 
output of the SOM, each pixel is associated with a degree of 
membership for a certain class. 
  
Classification Trees (CTs) 
The theory of Classification trees (CTs) (also called decision 
trees) was developed by Breiman et al. (1984). A CT is a non-
parametric univariate technique built through a process known 
as binary recursive partitioning. This is an iterative procedure in 
which a heterogeneous set of training data consisting of 

attribute Red  
Band 

Green   
Band 

Blue  
Band Intensity DSM nDSM 

PTS √ √ √ √ √ √ 
HMGT √ √ √ √ √ √ 
Mean √ √ √ √ √ √ 
entropy √ √ √ √ √ √ 
Slope x x x x x √ 
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multiple classes is hierarchically subdivided progressively into 
more homogeneous clusters using a binary splitting rule to form 
the tree, which is then used to classify other similar datasets. 
CTs have the advantage that they also work when the 
classification variables are a mixture of categorical and 
continuous. In the final classification not all but only the most 
prominent attributes are used. This makes the classification 
method highly automatic and different from most other 
approaches in which the input data must remain fixed. The 
Entropy model was used as the splitting criteria in our study. 
Also, the trees were pruned through a 10-fold cross validation 
process, which has been demonstrated to produce highly 
accurate results without requiring an independent dataset for 
assessing the accuracy of the model. In the original output of 
the CTs, each pixel is associated with a degree of membership 
for the class at which particular leaf it was classified. If a pixel 
is not associated with that class, it will be assigned a zero. 
 
4.4 Fuzzy Majority Voting Based Combination 

The idea is to give some semantics or meaning to the weights. 
Therefore, based on these semantics the values for the weights 
can be provided directly. In the following the semantics based 
on fuzzy linguistic quantifiers for the weights are used. The 
fuzzy linguistic quantifiers were introduced by Zadeh (1983), 
who defined two basic types of quantifiers: absolute, and 
relative. Here the focus is on relative quantifiers typified by 
terms such as ‘most’, ‘at least half’, or ‘as many as possible’. 
The membership function of relative quantifiers for a given 
pixel as given by the ith classifier can be defined as (Herrera and 
Verdegay, 1996): 
 

                         
0

1

i

i
i

PP i

i

if pp a
pp aQ if a pp b
b a

if pp b

⎧ <⎪ −⎪= ≤ ≤⎨ −⎪ >⎪⎩

              (1)  

 
With parameters ,a b ∈ [0, 1], and ppi is the class membership 
of the pixel as obtained for the ith classifier. Then, Yager (1988) 
proposed to compute the weights based on the linguistic 
quantifier represented as follows: 
 

                            1
i i i

i i
PP PP PP

j jw Q Q
N N

−⎛ ⎞ ⎛ ⎞= −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

               (2)                     

 
iPPQ  is the membership functions of relative quantifiers for the 

pixel as obtained for the ith classifier. Ji is the order of the ith 
classifier after ranking 

iPPQ  values of the pixel, for all 
classifiers, in a descending order. N is the total number of 
classifiers.  
The relative quantifier ‘at least half’ with the parameter pair (0, 
0.5) for the membership function QPP in equation 1 as 
graphically depicted in figure 2 was used. Depending on a 
particular number of classifiers N, 3 in our case, and by using 
equation 2, the corresponding weighting vector of the given 
pixel, WPP = [wPP1, ….., wPPN] can be obtained. Finally, the 
probability based on FMV (PFMV) can be calculated as follows: 

                              
1

arg max
i

N

FMV pp i
k i

P w pp
=

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
∑                 (3) 

with k is the number of classes. 

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
 

 

Figure 2. Linguistic Quantifier at least half with the parameter 
pair (0, 0.5). 

 
4.5 Evaluation of the Proposed Method 

The overall classification accuracies of individual classifiers, 
based on the reference data, were evaluated first and the overall 
accuracy of the best classifier served as a reference. Two of the 
most widely used probability combination strategies were also 
tested and compared to the proposed method. These strategies 
include: Maximum Rule (MR); and Weighted Sum (WS). A 
detailed description of these combination methods can be found 
in Yager (1998). Since the overall accuracy is just a global 
measure for the performance of the combination process, two 
additional measures were used to evaluate the performance of 
the proposed combination method, namely: commission and 
omission errors. Unlike overall classification accuracy, 
commission and omission errors clearly show how the 
performance of the proposed method improves or deteriorates 
for each individual class in the combined classifiers. 
Commission errors are the percent of incorrectly identified 
pixels associated with a class, and omission errors are the 
percent of unrecognized pixels that should have identified as 
belonging to a particular class. All the methods proposed in this 
research were implemented in Matlab (R2008b) environment. 
 
 

5. RESULTS AND ANALYSIS 

5.1 Comparison with Existing Fusion Algorithms 

The overall classification accuracies of individual classifiers, 
based on the reference data, are given in Table 4. SVMs 
perform the best with 96.8% average overall classification 
accuracy, followed by SOM and CTs with average overall 
classification accuracies of 95.5% and 93.7% respectively. The 
overall accuracy of the best classifier served as a reference in 
the following. 
 

 Classification accuracy 
(%) 

Test area SOM CT SVMs 
UNSW 96.8 95.05 96.9 
Bathurst 95 92.85 96.5 
Fairfield 96.8 96.15 97 
Memmingen 95 90.75 96.6 
Mean 95.9 93.7 96.75 
SD 1.04 2.40 0.24 

Table 4. Performance evaluation of single classifiers for the 
four test areas. 

The improvement in overall classification accuracies achieved 
by the combination method compared with the best individual 
classifier, SVMs, was determined as shown in Figure 3. For the 
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four test areas, it is clear that the overall performances of FMV 
are better than those of the other combination methods. FMV 
performs better than WS, and both outperform MR. It is worth 
mentioning that even though the MR resulted in the worst 
performance, it still performed better than the best single 
classifier. Taking into account, the limited room for 
improvement beyond 96.9% accuracy due to other errors in 
image acquisition and image to lidar geographic registration, 
the best average improvement in classification accuracy of 
1.1% is obtained from FMV algorithm, followed by 0.82% 
average improvement from WS algorithm. MR resulted in the 
worst performance and only improved the results by 0.66%. 
The question still remains as to whether these improvements are 
statistically significant. In order to answer this question, first, 
the standard deviation (SD) of the classification accuracies 
produced by each classifier for the four test areas is determined 
to express the variability in classification accuracies from the 
mean as shown in table 4.  With only four test areas the 
estimate of the SD is limited.  However, the low standard 
deviation of 0.24% for the SVM results indicates that the spread 
of the accuracies for the four tests areas is small and hence 
accuracies tend to be very close to the mean. In the case of 
SOM and CTs, the higher SD values, 1.04% and 2.40% 
respectively, indicate that the accuracies are spread over a 
larger range of values for the four test areas. The SD was then 
used as a confidence measure  in the conclusions on the quality 
of the accuracies derived by the three classifiers and the 
combined classifiers. We can assume that the reported margin 
of error (MOE) is typically about plus/minus twice the standard 
deviation (a range for an approximately 95% confidence 
interval). For this work we used a margin of accuracy of 0.72%,  
which is three times the standard deviation of the SVM results, 
to define the improvements in accuracy that are considered 
statistically significant, as shown by the dashed line in figure 3.  
Any improvements in classification accuracy more than the 
dashed horizontal line are deemed to be significant. It can be 
concluded that the application of FMV results in the most 
significant improvement in classification accuracy. The 
improvements achieved by other techniques are either 
extremely close to the significance value, and therefore 
considered to be marginally significant, or below the value of 
significance.  
 

0

0.5

1

1.5

Algorithm

Im
pr

ov
em

en
t (

%
)

UNSW Bathurst Fairfield Memmingen

UNSW 0.29 0.37 1.02

Bathurst 1.04 1.15 1.26

Fairfield 0.48 0.71 0.73

Memmingen 0.83 1.04 1.25

MOE 0.72 0.72 0.72

MR WS FMV

 
Figure 3. Performance comparison of the FMV based 

combination with existing algorithms, compared 
with the performance of the best individual 
classifier, SVMs. Improvements exceeding the 
dashed horizontal line are considered to be 
significant. 

5.2 Class-Specific Accuracies 

An assessment of the produced commission and omission errors 
confirms that the FMV fusion performed the best in most cases 
as shown in table 5. Most of the class-commission and omission 
errors are reduced by the FMV fusion. Whereas the application 
of SVMs resulted in average of 4.45 % and 5.13 % for 
commission and omission errors respectively, the application of 
FMV fusion resulted in average of 3.39 % and 2.15 % for 
commission and omission errors respectively. Contrary, there 
was an increase in commission and/or omission errors for a few 
classes as shown in the shaded cells of table 5. However, those 
classes are still classified with relatively low commission and 
omission errors. Another advantage of the FMV fusion over 
SVMs is that the achieved errors are less variable as shown in 
table 5. Whereas the application of SVMs resulted in standard 
deviation of 3.22 % and 5.25 % for commission and omission 
errors respectively, the application of FMV fusion resulted in a 
comparable SD for commission errors, 4.43%, and significantly 
reduced the SD for omission errors to 1.88 %. The visual 
assessment interpretation (Figure 4) clearly shows a relatively 
high degree of noise in the SVMs-based classification results. 
In contrast to this, the classification that is based on the FMV 
appears more homogenous. 
    

Best Classifier FMV Fusion  
Com. (%) Om. (%) Com. (%) Om. (%) 

B 4.65 2.77 1.31 0.82 
T 3.18 1.97 1.36 2.87 
R 4.81 0.06 0.02 3.99 U

N
SW

 G 0.06 5.10 6.17 0.03 
B 9.79 7.80 16.72 0.36 
T 0.35 6.12 0.02 3.82 
R 4.36 0.98 1.15 1.69 

B
at

hu
rs

t
 G 10.30 4.06 9.34 1.01 

B 8.23 11.11 3.35 1.37 
T 0.89 3.36 2.04 4.96 
R 4.08 0.76 3.41 0.01 

Fa
irf

ie
ld

 G 3.69 7.04 0.01 3.67 
B 4.04 21.28 2.56 0.56 
T 0.63 3.94 0.85 5.36 
R 4.10 0.42   0.05 3.78 M

im
 

G 7.96 5.30 5.87 0.06 
Mean 4.45 5.13 3.39 2.15 
SD 3.22 5.25 4.43 1.88 

 

Table 5. Comparison of errors using the best classifier, SVMs, 
with the classification resulting from FMV, for the 
four test areas. B, T, R and G refer to buildings, trees, 
roads and grass respectively. Com. and Om. Refer to 
commission and omission errors respectively. 

 

  

Figure 4. (a) Classification results of the best classifier (SVMs); 
(b) Error correction after applying the FMV fusion 
algorithm. Black: buildings; dark grey: trees; light 
grey: roads; white: ground. 

(b) (a) 
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6. CONCLUSION 

In this paper, we have applied a powerful MCS to combine 
statistical and neural classifiers based on the FMV. To test the 
algorithm, three different classifiers based on four datasets of 
different sensor and scene characteristics were applied. The 
results showed an improvement in terms of overall 
classification accuracy and omission and commission errors of 
individual classes. Average overall accuracies of individual 
algorithms were 96.75%, 95.9% and 93.7% for SVMs, SOM 
and CTs respectively whereas the proposed fusion algorithm 
gives an accuracy of 97.85% which is an improvement of 
around 1.1%. This is an enhancement considering the limited 
room for improvement beyond 96.9% accuracy achieved with 
the SVMs, and that the data are most likely subject to other 
errors in image acquisition and image to lidar geographic 
registration, as well as errors in filtering of lidar point clouds. 
On the other hand, the average commission and omission errors 
have been reduced compared to the best single classifier. A 
comparison of the results with some of the existing fusion rules 
such as Maximum Rule (MR) and Weighted Sum (WS), 
demonstrates that the proposed fusion algorithm gives the best 
results. The computational cost involved in implementing the 
combined classifiers based on the FMV method is much higher 
than that of MR and WS methods. However, the processing 
time could be reduced by splitting large test areas into smaller 
parts, processing each part separately and combining the results 
later. For example, dividing the Fairfield test area, which is 
4km2 in area, into four equal parts can saved more than 85 % of 
processing time (from 390 s to 58 s). The results in this paper 
demonstrate the overall advantages of the proposed fusion 
algorithm for combining multiple classifiers. 
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