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ABSTRACT:

Full-waveform lidar systems transmit short laser pulses towards the Earth’s surface and record the complete backscattered echo. This
technique does not only allow for the three-dimensional reconstruction of the terrain, natural and man-made objects, but also for the
derivation of (geo-)physical parameters such as the (differential) backscatter cross-section. To retrieve this quantity, deconvolution is
necessary which is an ill-posed problem. This paper presents a novel technique for the computation of the backscatter cross-section
using B-splines which allow for a well-posed linear approach for deconvolution without regularization. Moreover, it is independent on
symmetry of the temporal shapes of the emitted laser pulse and the recorded echo waveform, respectively. In this study, the algorithm
for deconvolution is described in detail and validated by both synthetic and real full-waveform lidar data.

1 INTRODUCTION

The acquisition of three-dimensional data for topographic pur-
poses has been revolutionized by lidar (Light detection and rang-
ing) in the last 15 years. This technique is also known as laser
scanning and allows for the direct observation of spatial coordi-
nates by recording the round-trip time of the echo of the emitted
laser pulse and the deflection angles. In contrast to this, in pas-
sive imaging only two coordinates can be observed at the same
time. Moreover, since it is an active technique, lidar is not depen-
dent on illumination. Most of the current operating lidar systems
allow for the recording of multiple echoes per laser shot, thus
“seeing through” the foliage is possible to a certain amount, i.e.
in vegetated areas.

There exist both airborne (commonly known as airborne laser
scanners, ALS) and ground-based (terrestrial laser scanners, TLS)
lidar systems. The latest generation of ALS instruments does not
record a discrete number of echoes per laser shot, but the sampled
copy of the emitted laser pulse as well as the echo waveform. The
quantity summarizing the (geo-)physical properties of a target hit
by the laser beam is the backscatter cross-section σ(t). Its calcu-
lation requires deconvolution which is an ill-posed problem.

Section 2 presents the underlying physical model and existing
methods for the retrieval of the backscatter cross-section. Our
approach for this task is presented in Section 3. In the subsequent
section, we illustrate the feasibility of our method by means of
both synthetic examples and real lidar data. The paper concludes
with the discussion of our results in Section 5.

2 RELATED WORK

2.1 Radar Equation and Backscatter Cross-Section

The radar equation which is applicable to signals in the optical
and microwave spectrum equally, relates the emitted power PE
to the received power at the detector PD (Jelalian, 1992):

PD =
PE
β2
ER

2

σ

4πR2

πD2

4
ηATM ηSYS (1)

∗ Corresponding author.

Here βE is the beamwidth of the emitted signal, R is the range
from the sensor to the target, σ is the effective backscatter cross-
section (in m2), D is the aperture diameter, ηATM is the atmo-
spheric transmission factor, and ηSYS the system transmission
factor. The backscatter cross-section is a product of the target
area ( dA[m2]), the target reflectivity (ρ[ ]), and the factor 4π/Ω
describing the scattering angle of the target (Ω[sr]) in relation to
an isotropic scatterer (Jelalian, 1992):

σ =
4π

Ω
ρ dA (2)

If the area upon which the signal is reflected is larger than the
laser’s footprint, the target area becomes proportional to the square
of the range, reducing the 1/R4 relation in Equation (1) to 1/R2.

In the above it is assumed that the target is a flat face orthogo-
nal to the beam. A more detailed analysis, presented by (Wag-
ner et al., 2006) includes the temporal shape of the emitted sig-
nal PE(t) and the spatial distribution of the targets along the
laser beam σi(R), i.e. the differential backscatter cross-section.
The target cross-section is the integral of the target’s backscat-
ter cross-section. With some simplifications and omission of the
transmission factors of Equation (1) this leads to:

PD,i(t) ≈ D2

4πR4
iβ

2
E

Ri+δ∫
Ri−δ

PE

(
t− 2R

vg

)
σi(R) dR (3)

Here, vg is the group velocity of the laser ray, and each differ-
ential backscatter cross-section σi is within the interval [Ri −
δ,Ri + δ]. Equation (3) includes the convolution of the emitted
laser pulse with the differential backscatter cross-section of the
target, leading to the backscattered waveform. In full-waveform
laser scanning, this waveform is recorded by sampling it. Opera-
tional airborne systems typically use a sampling interval of 1 ns
(Wagner et al., 2006).

The transmitted waveform might be unknown, whereas the output
of the detector when receiving the transmitted waveform can be
recorded. This waveform is called the system waveform and may
be used instead of PE(t) in Equation (3).
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2.2 Existing Approaches

A number of methods has been published for analysing recorded
waveforms, e.g for decomposing the waveform into Gaussian
(Duong et al., 2008; Wagner et al., 2006; Hofton et al., 2000)
or more complex (Mallet et al., 2009) components. The parame-
ters of these components can then be compared from one epoch to
another or related to other observations, e.g. land cover (Duong
et al., 2009) or forest parameters (Lefsky et al., 2002). These
methods do not extract parameters of the scattering surface, but
quantities that are also influenced by mission parameters. Thus,
the values are not comparable for laser scanners operating with,
e.g., different lengths of the emitted pulses.

In (Wagner et al., 2006) the backscatter cross-section is deter-
mined. In this approach it is assumed that the the temporal shape
of the emitted pulse is Gaussian as well as the scatterers’ dif-
ferential backscatter cross-section Since the convolution of two
Gaussians again yields a Gaussian, the recorded echo results in
a Gaussian, too. The variance of the backscattered waveform is
the sum of the variances of the emitted pulse and the differential
backscatter cross-section of the target. The last sentence com-
prises the deconvolution implicitly.

The algorithm presented in (Jutzi and Stilla, 2006) comprises the
transformation of the emitted pulse and the received waveform to
the frequency domain. Thus, the differential backscatter cross-
section is retrieved as the result of division of the spectrum of
the received waveform by the spectrum of the emitted pulse. In
this approach, a Wiener Filter is applied for noise reduction in the
frequency domain.

In (Wang et al., 2009), an approach for discrete deconvolution
in the time domain is proposed. The emitted pulse, the received
echo, and the differential backscatter cross-sections are treated
as continuous, piecewise linear functions. Rewriting the decon-
volution as a system of linear equations becomes thus possible.
Regularization is used to gain numerical stability in the solution
and to handle noise.

3 METHOD

3.1 Uniform B-Spline Curves

A uniform B-SplineBnl (u) is a piecewise continuous function of
degree n (Cn−1 continuity). It is recursively defined by repeated
convolution (Zorin and Schröder, 2000):

Bnl (u) = Bn−1
l (u)⊗B0

1(u) =

∞∫
−∞

Bn−1
1 (τ)B0

1(u−τ) dτ (4)

starting with

B0
l (u) =

{
1 . . . (l − 1)∆u ≤ u < l∆u

0 . . . elsewhere

where ∆u = const. TheBnl (u) are positive within the interval((l−
1)∆u, (l+ n)∆u) and strictly zero outside (Zorin and Schröder,
2000; Farin, 2002). Without loss of generality, we can set ∆u =
1. Equation (4) may be rewritten as

Bnl (u) = Bmk (u)⊗Bn−m+1
l−k+1 (u) (5)

Figure 1 illustrates the construction of uniform B-splines of de-
gree 0 to 2.
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Figure 1: Uniform B-splines of degree 0 (a) and 1 (b). Image
(c) illustrates the construction of the uniform B-spline of degree
2, B2

1(u), as the result of the convolution B0
1(u) ⊗ B1

1(u); the
gray-hatched area is equal to the integral

∫
B0

1(τ)B0
1(0.8−τ) dτ

and therefore to B2
1(0.8). B2

1(u) itself is shown in (d), B2
1(0.8)

is indicated by the gray circle.

A uniform B-spline curve γ(u) = (γ1(u), . . . , γm(u))> ⊂ Rm
of degree n is defined as a linear combination of uniform B-
splines

γ(u) =

imax∑
i=1

biB
n
i (u) (6)

with the bi forming the control polygon. Fitting a B-spline curve
to observations is a linear least-squares problem

jmax∑
j=1

(
y(uj)−

imax∑
i=1

biB
n
i (uj)

)2

→ min. (7)

In the case of full-waveform lidar, the y(uj) denote the observed
amplitude values of the recorded waveform at time uj and the bi
denote the unknown control points which are one-dimensional in
our case, i.e. bi = bi.

3.2 Convolution and Deconvolution of B-Spline Curves

Suppose we have already determined the uniform B-spline curve
representation for reference pulse (ρ(u)) and differential backscat-
ter cross-section (κ(u)) of degree nrp and ncs, respectively:

ρ(u) :=

imax∑
i=1

bi,rpB
nrp
i (u), κ(u) :=

jmax∑
j=1

bj,csB
ncs
j (u) (8)

We can now write the uniform B-spline curve representing the
echo waveform, ω(u) as the result of the convolution of the two
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curves given above, making use of Equation (5):

ω(u) :=
∑kmax =imax +jmax−1
k=1 bk,wfB

nwf
k (u)

=
∑imax
i=1

∑jmax
j=1

(
bi,rpB

nrp
i (u)

)⊗ (bj,csBncs
j (u)

)
=

∑imax
i=1

∑jmax
j=1 (bi,rpbj,cs)

(
B
nrp
i (u)⊗Bncs

j (u)
)︸ ︷︷ ︸

B
nrp+ncs+1
i+j−1 =B

nwf
i+j−1

(9)
The control points of ω(u) are therefore

bk,wf =
∑

i,j:i+j−1=k

bi,rpbj,cs

In the case of full-waveform lidar, the bi,rp and bk,wf can be eas-
ily determined by least-squares curve fitting (see Equation (7))
whereas the bj,cs remain preliminarily unknown. Thus, the equa-
tion given above may be taken as an observation equation in a
least-squares approach for deconvolution. Its set-up is linear in
the parameters bj,cs and can therefore be solved in one iteration
without knowing approximate values.

4 EXAMPLES

In this section, we deliver empirical evidence for the success of
our deconvolution approach on behalf of synthetic waveform data
(Section 4.1) and real data of an ALS campaign (Section 4.2).

4.1 Synthetic Example

First, a synthetic example is given, comprising the reference pulse
and the differential backscatter cross-section. Both of them are of
degree 3, leading to the backscattered waveform by convolution
with degree 7. For our examples, the amplitudes were normalized
in the form that the value of the respectively greatest bi,rp and
bj,cs was set to 1. The reference pulse has a slightly asymmetri-
cal temporal shape (see Figure 2(a)). Its control polygon consists
of three significant (i.e. non-zero) vertices so that the whole refer-
ence pulse has a duration of 7 ns. The full width at half maximum
(FWHM) of this pulse is 1.8 ns.

For the reconstruction of the differential backscatter cross-section,
both the synthetic reference pulse and the synthetic waveform
were sampled in 1 ns intervals. To test the stability of our algo-
rithm in the presence of noise, we applied four sampling variants:

• noise-free (“×” markers in Figure 2)

• added Gaussian noise with σ = 0.01 (“+” markers)

• added Gaussian noise with σ = 0.02 (“·” markers)

• added Gaussian noise with σ = 0.05 (“◦” markers)

To assess the performance of our approach, we analysed the square
root of the variance a posteriori of the deconvolution, s0. Further-
more, the root mean square error, r.m.s. and on the normalized
root mean square error, r.m.s.norm of both the curve fits and the
deconvolution were investigated, too (see Table 1). The definition
of the last two is given as follows:

r.m.s.(f(u), g(u)) :=

√√√√√ 1

umax − umin

umax∫
umin

(f(u)− g(u))2 du

and

r.m.s.norm(f(u), g(u)) :=
r.m.s.(f(u), g(u))

r.m.s.(g(u), 0)
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(b) Differential backscatter cross-section representing three
symmetric scatterers κ(u)
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(c) Synthetic waveform as result of the convolution of 2(a) and
2(b)

Figure 2: Construction of a synthetic example for B-spline con-
volution. B-splines are shown as solid lines, while their indi-
vidual components are dashed curves. Images (a) and (b) show
the emitted pulse and the differential backscatter cross-section of
three symmetric scatterers, resp. In (c), the echo waveform corre-
sponding to these data is shown. “×”, “+”, “·” and “◦” markers
indicate sampled values without and with added Gaussian noise
of different intensity.

In: Paparoditis N., Pierrot-Deseilligny M., Mallet C., Tournaire O. (Eds), IAPRS, Vol. XXXVIII, Part 3B – Saint-Mandé, France, September 1-3, 2010

139



0 5 10 15
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

am
pl

itu
de

 [D
N

]

 

 
κ
κ̂

0 5 10 15
−0.1

−0.05

0

0.05

0.1

κ
−
κ̂

timestamp [ns]

Figure 3: Top: Synthetic (κ(u), solid line) vs. reconstructed dif-
ferential backscatter cross-section (κ̂(u), dashed line), noise level
σ = 0.01. Bottom: Difference κ(u)− κ̂(u) of the two curves.

resp. In the examples treated here, umin is always equal to 0 and
umax is equal to ∆u imax, ∆u jmax or ∆u kmax, resp.

In the case of error-free sampling, the reconstruction of the syn-
thetic waveform was possible without any noticeable error. This
is valid for the deconvolution, too. With increasing noise, the
s0 got higher according to the noise level, as well as the r.m.s.
errors.

noise level (σ), r.m.s. r.m.s.norm

symbol s0 (κ̄(u), κ(u)) (κ̄(u), κ(u))

0 (×) 0.0000 0.0000 0.0000
0.01 (+) 0.0543 0.0306 0.1270
0.02 (·) 0.0978 0.0463 0.1919
0.05 (◦) 0.1035 0.0980 0.4066

Table 1: Deconvolution error analysis of of the synthetic example

4.2 Examples of Real Lidar Waveforms

The lidar waveforms shown in Figure 4 were acquired during a
flight mission in early 2007 in the Leithagebirge (Burgenland,
Eastern Austria (Doneus et al., 2008)). The example comprises
16 subsequent laser pulses and their echo waveforms which were
sampled by the instrument, a Riegl LMS-Q560 airborne lidar
system (Riegl, 2010), in 1 ns intervals each. As visible in Fig-
ure 4(b), our sample contains single narrow echoes with high am-
plitudes (e.g. laser pulse 2740371 and 2740372) as well as multi-
modal waveforms with overlapping scatterers (e.g. laser pulses
2740370 and 2740377). Analogously to the synthetic examples,
the reference pulses were approximated as B-spline curves of de-
gree 3 and a control point spacing of 2 ns. The echo waveforms
were modeled as B-Spline curves of degree 7 and the same con-
trol point spacing. Thus, the differential backscatter cross-section
results in B-spline curves of degree 3 with the same distance of
the control points.

Figure 4(c) shows the results of our deconvolution approach. For
the whole sample, both B-spline curve fitting and deconvolution
yield sensible results. However, the s0 a posteriori of the decon-
volution varies significantly (see Figure 5). One possible reason
for this might be the that the vertices of the reference pulse’s con-
trol polygon bi,rp are treated as constants in the adjustment and
their stochastic properties are therefore neglected.
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(b) Sampled echo waveforms (black) and their B-Spline approxima-
tions (blue)
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(c) Differential backscatter cross-sections retrieved by B-Spline-based
deconvolution

Figure 4: Examples for B-Spline approximation and deconvolu-
tion of 16 subsequent laser pulses and their echo waveforms
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(b) r.m.s. values for curve fitting of Echo Waveforms
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Figure 5: Error analysis of B-spline curve fitting ((a) and (b)) and
deconvolution (c)

This bias could be overcome by setting up a overall model fol-
lowing the general case for adjustment (Mikhail, 1976) with the
already determined parameters serving as initial values for the
unknowns. This model contains the recorded sampled values of
reference pulse and echo waveform as observations and the con-
volution equations in the scheme of Equation (9) as constraints.

5 DISCUSSION AND OUTLOOK

In this study, we presented a novel approach for the derivation
of the differential backscatter cross-section in full-waveform li-
dar data. The technique is based on the use of uniform B-splines
for modeling the curves representing the emitted laser pulse and
the recorded echo waveform as well as for performing the actual
computation of the differential cross-section. This implies decon-
volution which is an ill-posed problem itself. However, uniform
B-splines enable for solving the deconvolution in a linear least-
squares approach.

The feasibility of our approach was tested on behalf of both syn-
thetic and real waveform data. The algorithm performed well
in all investigated cases. The actual deconvolution is indeed bi-
ased by introducing already determined parameters as constants
and neglecting their stochastic properties. This drawback can be
overcome by the set-up of an overall adjustment following the
general case for adjustment.

Another important issue is the occurrence of negative amplitudes
in the deconvolved differential backscatter cross-section. These
negative values may appear when the signal strength of the back-
scattered echo is low in comparison to the noise level (Mücke,
2008). In this case, the echo waveforms may be narrower than
the emitted laser pulse, causing negative amplitudes in B-spline
deconvolution or imaginary results in Gaussian decomposition.
However, both are physically meaningless and ought therefore to
be ruled out. The determination of the next-best solution compli-
ant with the physical model is currently under investigation.
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