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ABSTRACT:

Despite the wide usage of standard cost support vector machines in remote sensing, a less common approach of SVM - named one-class
SVM - has found only little attention. This seems surprising to us, as one-class SVM overcomes one important shortcoming of standard
cost SVM: the problems occuring from unassigned classes present in the scene and the difficulties handeling the rejection class. We
present an introduction into one-class SVM for classification in remote sensing and a comparison with standard cost SVM.

1 INTRODUCTION

Within the last decade, classification of remotely sensed data us-
ing support vector machine (SVM) approaches has gained in-
creasing attention in the remote sensing community. The gen-
erally high performance of SVMs (Vapnik and Guyon, 1995) in
terms of overall classification and the high generalization perfor-
mance - due to their strong theoretical basis in statistical learning
theory (Vapnik, 1999) - are the key benefits of this method. Apart
from the usage of the kernel method, SVMs further increase per-
formance by employing strategies for specialized error variables
(called slack-variables). These establish trade-offs between the
training accuracy and the necessity to generalize appropriately.
Various approaches for this trade-off have been proposed. The
most commonly used cost SVM approach with the error penal-
ization factor C, however, has one major shortcoming regarding
the classification of remotely sensed data. In order to find good
separation criteria, one needs to incorporate each and every land-
cover class of the entire scene into the SVM training by assigning
training areas. Thus, even though one might only be interested in
a single landcover class, time consuming SVM training has to be
performed for all classes. By doing so, the risk of confusion be-
tween classes is being raised. This drawback can be overcome
by a new type of slack-variable handling - called ν-SVM - which
was proposed by (Schölkopf et al., 2001). Instead of finding op-
timal hyperplanes which separate two classes from each other,
ν-SVM can be adapted to find optimal hyperspheres that envelop
the training patterns from just one class. Such a framework is
called one-class SVM (Chang and Lin, 2010) and can be consid-
ered an absolute classifier. In our paper, we present a comparative
outline on our first results produced with one-class SVM for the
classification of both pixel-based and segmented data.

2 MATHEMATICAL FOUNDATIONS

In this section, we will give a short introduction into the prin-
ciple ideas behind SVM. We will focus on the foundations of
one-class SVM and its analogy to the well-established cost SVM
(Burges, 1998). One-class SVM was proposed by (Schölkopf
et al., 2001) to estimate the support of unknown distributions in
high-dimensional feature spaces. The general idea behind one-
class SVM - and the most important difference to cost SVM, at
the same time - is, that it is not designed to separate two classes
from each other, but to precisely describe the distribution of one

single class. Given a training set of xi instances without any class
information,

xi ∈ Sτ , i = 1, . . . , l (1)

one-class SVM constructs an enclosing hypersphere of minimum
volume within a space Hψ of higher dimensionality for the given
set (i.e. ψ ≥ τ 1). This is accomplished by introducing a non-
linear feature mapping Φ : Sτ −→ Hψ . Note that just like cost
SVM, one-class SVM solves this task, substituting Φ with kernel
functions. To find this optimal enclosing hypersphere, the origin
is used as the only reference point outside the class (cf. Fig. 1).
In Eq.3, it can be shown that the distance from the origin to the
hypersphere can be maximized by minimizing the norm of vector
w and the parameter ρ ∈ [0, 1]. Once w and ρ are found, the
decision function for new and unlabeled points is given by

f(x) = sgn(w · Φ(xi − ρ)) (2)

Thus, one-class SVM delivers a decision function which takes
the value +1 in a region which includes the majority of train-
ing data and takes the value -1 for only very few data (considered
non-supporting training instances). Introducing a parameter ν de-
livers a trade-off between the fraction of non-supporting patterns
and the size of the positive region. The parameter ν ∈ (0, 1]
serves at the same time as an upper bound on the fraction of non-
supporting patterns and as a lower bound on the number of sup-
port vectors (Chen et al., 2005).

min
w,ξ,ρ

1

2
‖w‖ − ρ+

l

νl

l∑
i=1

ξi (3)

subject to wTΦ(xi) ≥ ρ− ξi
ξi ≥ 0, i = 1, . . . , l

A solution is found by solving a quadratic optimization problem
(see Eq.3). Usually, this problem is solved in its dualized form
(given in Eq.4), derived by the Lagrangian.

min
α

1

2
αTQα (4)

subject to 0 ≤ αi ≤ 1

νl
, i = 1, . . . , l

1ψ = τ for the linear kernel K(xi, xj) = 〈xi, xj〉 i, j ∈ 1, . . . , l
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min
α

1

2
αTQα = 1

Where Qi,j = K(xi, xj) ≡ Φ(xi)
TΦ(xj) i, j ∈ 1, . . . , l

represents a kernel function which performs the transformation
Φ(xi) into the higher dimensional space implicitly (Burges, 1998).
These kernels have proprietary parameters (like γ for the width
of the gaussian bells in the radial basis function kernel, cf. Eq.5)
which need to be adjusted together with ν by performing a grid
search. Computation time for SVM grid search is time-consuming
and prolongates drastically with the amount of training informa-
tion. This explains the numerous intents to reduce necessary
training data to a minimum. As we can see, one-class SVM is

Figure 1: Principle of one-class SVM from (Manevitz and
Yousef, 2001) (the origin is labeled as the only point in class
”-1” while the training samples are labeled ”+1”, a small pro-
portion of the class is considered non-supporting patterns)

an absolute classifier that makes use of the same mathematical
foundations like cost SVM, but is adapted to detect only single
classes employing the ν-strategy for error penalization.

3 RESULTS AND DISCUSSION

In this section, we will present classifications of HyMap, Quick-
Bird, Landsat and LiDAR data, we obtained using the one-class
SVM classifier. As the name suggests, we first used one-class
SVM to detect a single class only in subsection 3.1. Cost SVM
is a relative classifier, it finds separating planes between different
classes. Each class present in the scene needs to be represented in
the training data set in order to achieve meaningful results. This
might be inconvenient if one is only interested in a single class.
One-class SVM can bridge this gap, making it a valuable alterna-
tive to cost SVM for remote sensing. After that, we will give re-
sults with more than one class for Landsat and HyMap in subsec-
tion 3.2. For HyMap, we classified with a pixel-based approach
while we preprocessed the Landsat scene with a mean-shift seg-
mentation (Comaniciu, 2002) to perform a segment-based classi-
fication. We compare our results to classifications using standard
cost SVM.

K(xi, xj) = exp(
−‖xi − xj‖

2γ2
) (5)

We used the LibSVM 2.91 implementation by (Chang and Lin,
2010) for Matlab R2009a to perform our classifications. In or-
der to find a well suited SVM model, for each class in every
classification, we realized a grid search. We used a radial ba-
sis function kernel (cf. Eq.5) with γ ∈ [2−5, 215] and ν ∈ (0, 1].

As ν is a lower bound for the number of free support vectors
(FSV), (Chen et al., 2005) consider the number of FSV needed
as a validation method for the performance of a certain parameter
combination. Unfortunately, we obtained heavily overfitted SVM
training models by doing so. According to (Tran et al., 2005) the
ξαρ-estimate is a good choice for the task, but as LibSVM 2.91
does not deliver all the parameters needed, we refused to imple-
ment it and decided to used the leave-one-out error as described in
(Fukanaga and Hummels, 1989) instead. Leave-one-out worked
well but was computationally very expensive. The LiDAR data
set with a single class (3339 training pixels) took more than 32
hours performing grid search.

3.1 DETECTING URBAN TREES

To show the capabilities of one-class SVM to detect classes of in-
terest without any information on the other classes present in the
dataset, we first used it to classify one single class only. As we
work on urban vegetation, we took urban trees as our first class
of interest. We used three datasets showing the university campus
of KIT2. In each scene, we assigned a different training area for
urban trees. The first was a HyMap scene (see Fig.2), taken 2003,
the second one a QuickBird scene of 2005 (see Fig.4) and the last
one a LiDAR scene (see Fig.6) from 2002. The only information
we used was the first-pulse/last-pulse information. Apart from
their height, the criterion that distinguishes trees from other pix-
els is their significant difference between first- and last-pulse. As
the same applies to roof-edges, confusion between building edges
and trees had to be expected. The classification results are shown
in Fig.5 to Fig.7. The result for QuickBird (cf. Fig.5) seems
most convincing. Visually, we did not find regions of pixels to be
falsely classified as trees or trees left out (false-negatives). In the
HyMap result (cf. Fig.3) one can see that at several places, pixels
belonging to other classes have been classified as forest. For in-
stance lawn in the north of the castle, gravel in front of the castle
and some borders of the park lawn. On the other hand, there is
quite some loss in the dense forest in the north-east. The most
probable explanation that came to our minds is that some train-
ing pixels in the forest might have been a mixture between trees
and other surface cover types (like soil or grass). With a ground
resolution of 4 × 4m, especially in the forest, this is quite pos-
sible. Finally, visual results for the LiDAR scene (cf. Fig.7) are
in general satisfying as well. Unfortunately, the edges of many
roofs have been classified as tree pixels as well (false-positives)
due to the shortcoming of the data mentioned above. As one can
see, tree areas without a significant difference between first- and
last-pulse (like the alley trees in the south of the castle) have been
left out as well. These misclassifications might be the reciprocal
effect of the same shortcoming. After classification, we defined
control areas for urban trees on the screen, using our knowledge
of the scene. We computed quality measures for the class urban
trees (results are given in table 1). As one can see, true-positive
and true-negative rates are considerablly high for all of the scenes.
The only exception is the true-positive rate for LiDAR which is
somewhat lower. We believe that this is due to the confusion
with building edges, mentioned above. On the other hand, it be-
comes clear, that for all three scenes, false-negative rates are quite
high. This indicates, that one-class SVM does not classify pixels
falsely to a high extend, but misses quite many pixels which are
later considered as rejection class. As we have seen, one-class
SVM could successfully be employed the detect one single class
in various datasets without introducing training information for
the other classes. A task that could not have been fulfilled with
cost SVM as it is usually applied.

2Karlsruhe Institute of Technology, Karlsruhe, Germany
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Figure 2: HyMap Scene (Channels: R=126, G=10, B=1)

Figure 3: urban trees classified in HyMap scene

QuickBird HyMap LiDAR
true-positives 100 98.9 87.1
true-negatives 82.7 63.0 66.9
false-positives 0 1.1 12.9
false-negatives 17.3 37.0 33.1

Table 1: True-positive, true-negative, false-positive & false-
negative rates [%] for class urban trees

3.2 DETECTING NEAR-NATURAL SURFACE COVER -
A COMPARISON OF METHODS

After these first results, we performed classifications with more
than one class. The task was to find the coverage of natural and
near-natural surface cover. We refer to surface cover types like
(urban) forests, lawn, agricultural surfaces and open soils. At
first, we classified a HyMap scene on a pixel-based level. After
that, we segmented a Landsat scene, using mean-shift segmenta-

Figure 4: QuickBird Scene (Channels: R=3, G=2, B=1)

Figure 5: urban trees classified in QuickBird scene

tion (Comaniciu, 2002) to present results for segment-based clas-
sification. In the HyMap scene shown in Fig.2, we assigned train-
ing areas for five landcover classes (C1:trees, C2:watered lawn,
C3:dry lawn, C4:uncovered soils, C5:alleys) We trained and clas-
sified for these five classes with one-class SVM (see Fig.9 for
result). For comparison, we also classified using standard cost
SVM. As cost SVM strongly depends on a representation of all
landcover classes in the training data set, we assigned six addi-
tional classes for typical urban surfaces (like roofs, streets etc.).
We trained according to the one-against-all strategy (Rifkin and
Klatau, 2004) and classified with these 11 classes (see table 2).
To ensure a visual comparison with the result of one-class SVM
in Fig.9, we set the color of the additional classes to black in
the classified output (see Fig.8). There are three very obvious

NO. CLASS COLOR

C1 urban trees
C2 lawn (watered)
C3 lawn (dry)
C4 uncovered soils
C5 alleys
C6 *roofs (red)
C7 *roofs (bright)
C8 *roofs (patina)
C9 *roofs (grey)
C10 *streets
C11 *bitumen

Table 2: Landcover classes for (near-)natural classes in HyMap
scene (* additional class for cost SVM, not present in one-class
SVM training data set)

differences between the results in Fig.8 and 9. Firstly, the one-
class result has a higher amount of scattered rejection class pix-
els in areas clearly covered by assigned landcover classes (e.g.
within the forest). This finding confirms the observations given
in table 1 and discussed in section 3.1. The reason for this ef-
fect might be, that these pixels are very similar to the pixels con-
sidered as non-supporting patterns and labeled -1 during training
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Figure 6: LiDAR Scene (Shown : First-Pulse)

Figure 7: urban trees classified in LiDAR scene

(cf. Fig.1). However, these misclassifications are similar to those
discussed in subsection 3.1 and might be related to inhomoge-
neous ground coverage in the forests as well. Moreover, areas
covered by C5:alleys come out less clearly in the result for one-
class SVM. Obviously, pixels have been confused with the class
C1:trees due to the inherent similarity of trees in the C5:alleys
and other trees (covered by class C1:trees). For the standard cost
support vector machine, LibSVM 2.91 offers probability outputs
as described in (Wu et al., 2004) that can be used to decide the
class membership in inconclusive cases (i.e. more than one posi-
tive class label for a pixel). Unfortunately, they are not provided
for one-class SVM yet, so we could not use probability outputs as
a tie breaking strategy. Finally, in the result of the one-class SVM
much more pixels have been classified as C1:trees or C5:alleys
in the urbanized area (south of the scene). We believe that e.g.
for the urban trees besides the main street (running from east to
west in the lower part in Fig.2) these are correctly detected. Also
for the vegetated courtyards in the south-east, we agree with that
finding. Apart from visual evaluation, we evaluated our results

Figure 8: Result of cost SVM classification for HyMap scene
(classes marked with ”*” in table 2 set to black)

Figure 9: Result of one-class SVM classification for HyMap
scene

quantitatively. By assigning control areas based on our knowl-
edge of the city on the screen, we computed confusion matrices.
These can be found completely in appendix A. The overall accu-
racy and the κ-statistics for the one-class result were consider-
ably lower than for cost SVM. Except for the producer accuracy
of C3:dry lawn, user- and producer accuracies were all lower for
one-class SVM. User- and producer accuracy are especially lower
for C5:alleys. There are several possible reasons for these find-
ings. First of all, the number of training pixels might have been
too low. Due to fact, that the computational expense of the leave-
one-out error increases significantly with the number of training
pixels, we used very small training areas. This caused that too
many pixels have been cut of as non-supporting patterns during
training. For instance, C5:alleys is a class that consists of two
different materials, vegetation and gravel. Possibly, gravel pixels
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have been considered non-supporting pixels which would explain
why so many alley pixels have been classified as C1:trees (26 of
62 control pixels). Another problem might be that the leave-one-
out error is not the method of choice for one-class SVM (Tran
et al., 2005). Lastly, these finding agree with the general experi-
ence, that absolute classifiers tend to perform worse compared to
relative classifiers. After that, we classified a scene taken from the
Landsat sensor in 1993. We segmented the scene using the mean-
shift, the result of this is shown in Fig.10. Just like for HyMap, we

Figure 10: Landsat Scene after segmentation (Channels: R=3,
G=2, B=1)

defined 10 training areas for all classes present in the scene which
where all used to train the cost SVM. Afterwards we classified the
image and set classes C5 to C10 to black for visualization. For
one-class SVM, only four classes (C1 to C4) where used for train-
ing and classification (see table 3). Classification results for cost

NO. CLASS COLOR

C1 dark forest
C2 light forest
C3 agriculture
C4 pasture
C5 *river
C6 *lake
C7 *city
C8 *industry
C9 *clouds
C10 *shadows

Table 3: Landcover classes for (near-)natural classes in Landsat
scene (* additional class for cost SVM, not present in one-class
SVM training data set)

SVM are given in Fig. 11, whereas the result for one-class SVM
is shown in Fig. 12. As one can see, the discrimination between
C1:dark forest and C2:light forest could be accomplished better
by cost SVM. One-class SVM failed to recognize C2:light forest
in many areas and classified it as C1:dark forest or assigned it to
rejection class. After classification, we again used control areas
(see appendix B) to assess the quality of the results. Again, cost
SVM achieved slightly higher accuracies than one-class SVM.
The reasons for this should be the ones discussed above. How-

Figure 11: Result of cost SVM classification for Landsat scene
(classes marked with ”*” in table 3 set to black)

Figure 12: Result of one-class SVM classification for Landsat
scene

ever, the advantage of cost SVM in terms of accuracy is not so
significant than for the HyMap scene. As one can see, both clas-
sifiers have confused some segments of the classes C1:dark forest
and C2:light forest. The reason for this might be the obvious sim-
ilarity of the both classes, given only seven channels. As could be
shown, one-class SVM can be employed in a row of classification
steps for various classes to produce an output for more than one
class. Accuracy rates are admittedly lower than using cost SVM.
Further research is needed to mitigate this loss of accuracy.

4 CONCLUSIONS AND FUTURE WORK

We present our first results for an initial comparison between one-
class SVM to standard cost SVM. We compared the two classi-
fiers for a variety of data from different sensors and classification
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approaches. One-class SVM can in general be applied to all data
types used with reasonably accurate results. However, for HyMap
and Landsat, classification accuracy of one-class SVM was lower
than for cost SVM when used to detect multiple classes. Fur-
thermore, classes that should be separable could not be separated
properly. One hindering for the enhancement of classification ac-
curacy was the lack of probability outputs for one-class SVM. In
case of ambigious decisions, we had to leave pixels in the rejec-
tion class, thus lowering accuracy. Another shortcoming was the
lack of a utile and precise validation method. Of course, it should
not be forgotten that absolute classifiers generally achieve a lower
accuracy than relative classifiers. Hence, in our future work, we
will compare one-class SVM to other one class methods like sup-
port vector domain description (SVDD) (Tax and Duin, 1999)
or neural networks. We will also implement the ξαρ-estimate
to improve performance. Despite the fact, that one-class SVM
yielded lower accuracies, it appears to us, that it is a promising
approach for remote sensing as it shares the conveniences of stan-
dard cost SVM without some of its shortcomings. We will con-
centrate further research efforts onto mitigating the drawbacks
described and the application of one-class SVM to remote sens-
ing tasks.
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APPENDIX

A CONFUSION MATRICES FOR CLASSIFICATIONS
OF HYMAP

C1 C2 C3 C4 C5 U.A.
C1 191 0 0 0 0 100
C2 0 88 1 2 0 96.7
C3 0 20 118 0 2 84.2
C4 0 0 0 90 0 100
C5 0 0 0 0 67 100
P.A. 100 81.4 99.1 97.8 97.1
O.A. 95.6
κ 0.94

Table 4: Confusion matrix for cost SVM classification of HyMap
scene (C1-C5: classes (see table 2) U.A.: user accuracy [%],
P.A.: producer accuracy [%], O.A.: overall accuracy [%] κ:
cappa coefficient)

C1 C2 C3 C4 C5 U.A.
C1 177 5 0 0 0 97.2
C2 5 89 0 1 3 90.8
C3 3 21 104 2 1 79.3
C4 3 0 0 55 12 78.5
C5 26 0 0 0 36 58.0
P.A. 82.7 77.3 100 94.8 69.2
O.A. 84.9
κ 0.8

Table 5: Confusion matrix for one-class SVM classification of
HyMap scene (C1-C5: classes (see table 2) U.A.: user accuracy
[%], P.A.: producer accuracy [%], O.A.: overall accuracy [%]
κ: cappa coefficient)

B CONFUSION MATRICES FOR CLASSIFICATIONS
OF LANDSAT

C1 C2 C3 C4 U.A.
C1 138 5 0 0 96.5
C2 0 157 0 0 100
C3 0 0 205 0 100
C4 2 0 0 130 98.4
P.A. 98.5 96.9 100 100
O.A. 98.9
κ 0.9

Table 6: Confusion matrix for cost SVM classification of Landsat
scene (C1-C4: classes (see table 2) U.A.: user accuracy [%],
P.A.: producer accuracy [%], O.A.: overall accuracy [%] κ:
cappa coefficient)

C1 C2 C3 C4 U.A.
C1 138 0 0 0 100
C2 12 54 0 0 81.8
C3 0 0 205 0 100
C4 2 0 0 130 98.4
P.A. 90.7 100 100 100
O.A. 97.4
κ 0.9

Table 7: Confusion matrix for one-class SVM classification of
Landsat scene (C1-C4: classes (see table 2) U.A.: user accuracy
[%], P.A.: producer accuracy [%], O.A.: overall accuracy [%]
κ: cappa coefficient)
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