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ABSTRACT:

This work introduces an efficient classification pipeline, which provides an accurate semantic interpretation of urban environments by
using redundant scene observations. The image-based method integrates both appearance and height data to classify single aerial im-
ages. Given the initial classification of highly overlapping images, a projection to a common orthographic 3D world coordinate system
provides redundant observations from multiple viewpoints and enables a semantic interpretation of large-scale urban environments. In
the experimental evaluation we investigate how the use of redundancy influences the accuracy in terms of correctly classified pixels for
object classes like building, tree, grass, street and water areas. Moreover, we exploit an efficient yet continuous formulation of the Potts
model to obtain a consistent labeling of the pixels in the orthographic view. We present results for the datasets Dallas and Graz.

1 INTRODUCTION

Semantic image interpretation in large-scale aerial imagery, also
referred to as land-use classification, has become very popular
due to an increasing number of applications like urban planning,
navigation support, cartography, automatic 3D city modeling etc.
Recent developments in the aerial imaging technology enable an
efficient mapping of urban environments from multiple viewpoints
by using different modalities, like color, infrared or panchromatic
information. In particular, the Microsoft Ultracam takes multi-
spectral high resolution images in highly overlapping strips. The
high redundancy within the data enables automatic height field
computation (Klaus et al., 2006, Hirschmüller, 2006), but also
methods for orthographic image generation (Strecha et al., 2008)
by using multiple observations of the same scene. In Figure 1 a
scene of Graz is shown from multiple viewpoints. In this work we
focus on fusing semantic interpretation, obtained by efficiently
classifying images taken from different viewpoints, in a common
view.

Although appearance driven classification approaches (Shotton et
al., 2006, Verbeek and Triggs, 2007, Gould et al., 2008) obtain re-
liable results on computer vision benchmark datasets such as the
MSRC (Shotton et al., 2006) or the PASCAL VOC (Everingham
et al., 2007) images, scene interpretation in a real world scale still
poses an unsolved and challenging task due to a huge variability
in images. Recently proposed methods additionally incorporate
3D information to further improve the classification accuracy.
Several approaches, dealing with aerial imagery (Rottensteiner et
al., 2004, Zebedin et al., 2006, Kluckner et al., 2009, Nguyen et
al., 2010), exploit appearance cues together with elevation mea-
surements (resulting from a combination of a surface and a ter-
rain model). As shown in (Brostow et al., 2008, Xiao and Quan,
2009), an integration of color and 3D information, obtained by
Structure from Motion, is essential for an accurate semantic inter-
pretation of street-level images. While Brostow et al. (Brostow
et al., 2008) handled each image in a sequence separately, the au-
thors in (Xiao and Quan, 2009) combined the obtained classifica-
tion from multiple views to improve the final semantic interpreta-
tion. In spirit similar to (Xiao and Quan, 2009), where the authors
proposed to use overlapping street-level images, we introduce an

Figure 1: A scene of Graz: The Kunsthaus is taken from different
viewpoints. The redundancy within the data is used to compute
discriminative height information. We perform classification on
each view in order to obtain an improved semantic interpretation
by fusion in a common (orthographic) view.

image-based approach for aerial data, which takes redundant im-
age information and height fields as input sources for full scene
understanding. In contrast to our previous approach (Kluckner et
al., 2009), where classification is performed on individual aerial
images, this work focuses on the fusion of the computed interpre-
tation in order to obtain a semantic classification of large-scale
urban environments. The fusion of redundant information into a
common view holds the benefit, that e.g. missing data, caused
by occlusions and non-stationary objects like moving cars can be
compensated. More importantly, each point on the ground at the
orthographic view is classified multiple times, which enables an
improved prediction of the real object class label. In this work we
investigate how the redundancy can be exploited to obtain an ac-
curate semantic interpretation in an orthographic view. We show
that the classification accuracy can be improved by collecting re-
dundant probabilities for each object class from multiple view
points. Moreover, we use a continuous formulation of the Potts
model (Pock et al., 2009) to obtain a spatially consistent semantic
labeling. Due to the enormous amount of data, we put emphasis
on multi-core friendly approaches and efficient data structures,
like integral images (Viola and Jones, 2004).

This paper is organized as follows: In Section 2 we briefly out-
line required sources modalities, such as the height information.
Section 3 highlights our semantic interpretation strategy for aerial
images. Section 5 presents the experimental evaluation and Sec-
tion 6 concludes our work and gives directions to future work.
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Figure 2: Overlapping camera positions mapping the same scene
on ground. The derived range information and camera data are
used to compute corresponding pixel locations in the perspective
images.

2 SOURCE MODALITIES

This section briefly describes the required image sources. We
consider highly overlapping color aerial images and two types of
derived height fields as input sources. Figure 2 shows a small
part of Graz observed from overlapping camera views. The high
redundancy within the collected data enables an automatic dense
matching method (Klaus et al., 2006), which provides range in-
formation of mapped scenes at the pixel level. The corresponding
point cloud defines a digital surface model (DSM) in a 3D coor-
dinate system. A digital terrain model (DTM), representing the
bald earth, is directly derived from the DSM.

2.1 Digital Surface Model

The 3D data, representing the DSM, is computed from the high
resolution aerial images provided by the Microsoft Ultracam cam-
era. In order to enable robust and fully automatic processing of
the data, the high inter-image redundancy is ensured by capturing
images at 80% along-track overlap and 60% across-track over-
lap. The exterior orientation of the images is achieved by an au-
tomatic process similar to the method described in (Zebedin et al.,
2006). By using the camera orientation parameters, an area based
matching algorithm produces a dense range image for each input
image. The range images are computed from three input images
(a reference image and its two immediate neighbors) with a plane
sweeping approach. We use such triplets to compute the corre-
sponding range information. The plane sweeping is based on the
normalized cross correlation as similarity measurement and pro-
duces a 3D depth space, which contains the depth hypotheses and
their associated correlation values. The final range image is gen-
erated by applying a semi-global optimization approach (Klaus et
al., 2006).

2.2 Digital Terrain Model

The point cloud, provided by the dense matching process, is an
uninterpreted representation of the surface. In order to estimate
the bald earth, we separate the points into those that describe
the terrain surface and those that represent elevated objects such
as buildings and trees. Taking into account the derived surface
model from neighboring views (we use an approximated median
to efficiently fuse multiple views) and the camera data, a filtering
strategy detects local minimums (defining points on ground) over

different scales in the fused point cloud. Similar to (Unger et al.,
2009), a total variation based in-painting strategy fills areas, for-
merly elevated by buildings and trees. Subtracting the DTM from
the DSM delivers the absolute elevation measurements of the ob-
jects, which are used as a discriminative feature modality for our
semantic classification procedure.

3 SEMANTIC CLASSIFICATION

The first processing step of our pipeline involves a pixel-wise
semantic classification, performed on each image in the aerial
dataset. In our approach we use the Sigma Points feature repre-
sentation (Kluckner et al., 2009) together with efficient random-
ized forest classifiers (Breiman, 2001). A fusion step at the pixel
level (simple matrix-vector multiplications) combines the indi-
vidual results in an orthographic view.

3.1 Sigma Points Feature Representation

Since an aerial imagery usually consists of multiple information
cues, such as color, infrared and elevation measurements there
is a need to reasonably integrate these low-level feature types.
For instance, using a direct combination of color and height data
would successfully separate the street regions from gray-valued
roof tops or would distinguish between grass-covered areas and
trees. We therefore apply a statistical feature representation based
on Sigma Points (Kluckner et al., 2009) to compactly describe
the various cues considering a small local neighborhood defined
around each pixel. Due to a nearly fixed object scale a classifica-
tion at the pixel level is well suited for efficient interpretation of
aerial images.

The Sigma Points1 representation can be seen as an efficient ap-
proximation of first and second order statistics in Euclidean vec-
tor space and is directly derived from covariance matrix descrip-
tors (Tuzel et al., 2006), which can be quickly computed for each
pixel using integral image structures (Viola and Jones, 2004).
The diagonal elements of the covariance matrix are the variances
of the feature attributes in one channel, whereas the off diago-
nal elements capture the correlation values between the involved
modalities. Compared to constructed feature vectors over multi-
spectral data (Zebedin et al., 2006), Sigma Points descriptors are
low-dimensional and enable a tight integration of appearance and
height information in Euclidean vector space. Note that there is
no need to quantize the height information into a given number
of histogram bins by considering an estimation of the expected
height values for each dataset. Moreover, this representation can
be simply extended to integrate additional feature cues like more
sophisticated filter responses or infrared channels. Then a result-
ing feature vector consists of d(2d+ 1) elements, if d modalities
are combined. For details we refer to (Kluckner et al., 2009).

3.2 Randomized Forest Classifier

Randomized forests (Breiman, 2001) offer a powerful method to
classify collected feature vectors by using simple attribute com-
parisons (Shotton et al., 2008, Lepetit et al., 2005). Forests are
inherently multi-class and can handle errors and noise in the la-
beled training data. We train the classifier in a supervised manner.
A feature instance of the training set consists of a region descrip-
tion, represented by the Sigma Points and an assigned target class
label.

A randomized forest consists of several binary decision trees,
where each tree is composed of split and leaf nodes. The split

1Code available at http://www.icg.tugraz.at/Members/kluckner
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Figure 3: Overlapping aerial images: We exploit color (first row)
and dense matching results (second row) to derive a highly re-
dundant semantic classification (third row). Each image has a
dimension of 11500 × 7500 pixels and can be processed within
four minutes.

nodes are learned from a random subset of the training data (which
speeds up the training process) by using a greedy strategy. Each
split criterion then minimizes the weighted information gain (Shot-
ton et al., 2008), considering the class distributions estimated
from target labels falling into left and right children nodes. After
construction by using the subset of training samples, each tree is
refined with the complete set of feature vectors in order to gener-
ate the final leaf node class distributions. This technique enables
a sophisticated handling of a large amount of data and improves
the generalization capability (Shotton et al., 2008).

At runtime, the classifier is evaluated by parsing down a test vec-
tor in the forest and accumulating the label histograms in the
reached leaf nodes, yielding an averaged class distribution for
the corresponding feature representation. Note that the training
and evaluation procedure can be accelerated by using multi-core
systems as shown in (Sharp, 2008).

3.3 Fusion of Redundant Classification

Since we are interested in large-scale semantic interpretation, we
introduce virtual orthographic cameras with a specified pixel res-
olution (we use a similar sampling distance as provided by the
original images) in order to collect the information, provided in
the overlapping perspective images in a common 3D coordinate
system. Taking into account the available camera data and com-
puted depth information, a simple projection of corresponding
pixels (defined by pixel location and depth value) yields multi-
ple observations for the semantic classification, but also for color
and height in a common view. In order to estimate a class spe-

cific likelihood for each pixel in the orthographic view, class dis-
tributions from different views are accumulated and normalized.
Figure 4 depicts the pixel-wise accumulation result obtained by
our classification pipeline. Due to classification and projection at
the pixel level, the result shows a high granularity with respect to
the dominant class confidences. We therefore introduce an opti-
mization step to obtain a consistent semantic labeling.

4 REFINED LABELING

Although our feature representation includes some local context
information, collected within a small spatial neighborhood, each
pixel in the fused image is treated almost independently. The
problem of obtaining a smooth and spatially consistent labeling
of the whole image scene can also be seen as a task of multi-class
image segmentation, where each pixel value is selected from a
predefined pool of class labels. In our case the labeling procedure
is supported by fused class distributions.

In general, a segmentation problem into multiple object classes
can be defined as a minimization of the Potts model (Potts, 1952)

min
l

{
λ
∑
p,q

V (lp, lq) +
∑
p

D(lp)

}
, (1)

where V (lp, lq) denotes the pairwise interaction potential and
D(lp) is the data term. We aim for finding a final labeling l that
assigns each pixel p a class label lp ∈ L, where the labeling is
both piecewise smooth and consistent with the observed data.

Although the problem of multi-class image segmentation is NP-
hard (a two class problem can be solved exactly), there exist sev-
eral algorithms to compute a solution approximately (Boykov et
al., 2001, Komodakis and Tziritas, 2007, Pock et al., 2009, Ols-
son et al., 2009).

Originally, the Potts model was introduced to model phenomena
of solid state physics. The continuous formulation of the Potts
model for an image domain Ω ∈ R2 can be written as

min
si

{
λ

N∑
i=1

Per(si; Ω) +
N∑
i=1

∫
si

li(p)dp

}
,

s.t.
N⋃
i=1

si = Ω, si ∩ sj = ∅ ∀i 6= j ,

(2)

where li ∈ R2 are the computed confidence maps for each object
class and si is the resulting image partition, which corresponds
to the object class i. The scalar value λ defines the fidelity be-
tween data term and regularization. The first term incorporates
the length of the boundary of the segmentation si, while the sec-
ond term considers the data at each point p ∈ si in the segment
si. In our case the confidence maps li with i = 1, . . . , N are
directly obtained by accumulation and normalization of corre-
sponding multiple observations of the semantic intepretation for
N = 5 object classes.

In this work we use a convex relaxation, based on a primal dual
formulation to minimize the energy defined in Equation 2 similar
as proposed by Pock et al. (Pock et al., 2009). The minimiza-
tion scheme exploits an efficient primal dual projected gradient
algorithm, which can be accelerated with multi-core systems like
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GPUs. According to (Pock et al., 2009), the minimization prob-
lem can be rewritten as a total variation functional

min
ui

{
λ

N∑
i=1

∫
Ω

√
∇ui(p)T g(p)∇ui(p) dp+

+
N∑
i=1

∫
Ω

ui(p)li(p) dp

}
, (3)

where ui : Ω→ {0, 1} is a binary labeling function with ui(p) =
1, if p ∈ si and ui(p) = 0 else.

The first term denotes the total variation of the functions ui and
describes the corresponding anisotropic length of the segment si.
The term g ∈ R2 denotes an edge penalty function, which en-
ables a smooth labeling by taking into account strong edges, ex-
tracted from e.g. available color or height information.

The second term defines the data term, provided by the class con-
fidence maps. Since the space of binary functions ui forms a
non-convex set, the functional cannot be directly minimized us-
ing a convex optimization strategy such as the efficient primal
dual algorithm. Pock et al. (Pock et al., 2009) proposed to relax
the set of binary functions to a set of functions ui : Ω → [0, 1],
which can take values between zero and one. They showed that
this relaxation scheme yields globally optimal solutions in most
practical problems. For details we refer to (Pock et al., 2009).
In the experimental evaluation we show that the proposed refine-
ment step significantly improves the classification accuracy.

5 EXPERIMENTS

This section describes experiments, which demonstrate the bene-
fit of exploiting redundancy for semantic classification. We per-
form experiments on two aerial imageries with different charac-
teristics. The dataset Graz (155 images) shows a colorful appear-
ance with challenging building structures and many junctions be-
tween trees and rooftops. The second dataset shows part of Dal-
las (79 images) and contains mainly gray valued regions with
large buildings. Each image in the datasets has a resolution of
11500× 7500 pixels with a ground sampling distance of approx-
imately 10 cm.

In our classification procedure we exploit the color images and
elevations measurements, resulting from the combination of the
DSM and the DTM. In addition, we apply Sobel filter masks to
gray value converted color images in order to compute texture
information. The feature vector then consists of 78 attributes,
if RGB color, texture and elevation measurements are combined
using the Sigma Points representation. The size of the spatial
neighborhood is set to 7× 7 pixels.

For each dataset we separately train a randomized forest with 8
trees, each with a depth of 12. The size of the forest has given
a good trade-off between evaluation time and classification accu-
racy. For the training process we manually label parts of six non-
overlapping perspective images, where we consider a partition
into five object classes (building, tree, water, grass and street).
Figure 4 shows the color coding of the object classes (last row).
Note that the feature representation is extracted at the pixel level,
therefore the training maps can be generated quickly by annotat-
ing objects with simple strokes. Figure 4 depicts an example of a
labeled ground truth map. For one dataset feature extraction and
training take about 20 minutes on a dual-core computer.

Figure 4: Semantic classification results for the Kunsthaus scene:
The first two rows show redundant semantic classifications pro-
jected to a common orthographic view. Note that these images in-
clude many undefined regions caused by occlusions and varying
viewpoints. The third row shows a fused color image and height
information. The fourth row shows extracted edge information,
which is used as penalty function within the Potts model based
refinement step and the hand-labeled ground truth map. The raw
accumulation over redundant image patches and the final refined
classification result are given in the fifth row. The color coding
of the object classes is depicted in the last row. Best viewed in
color.
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Figure 5: Fusion of redundant semantic classifications: The first
plot shows the percentage of undefined pixels as a function of
involved observations. The second plot depicts the obtained ac-
curacy in terms of correctly classified pixels for an increasing
quantity of involved semantic classifications. Due to varying oc-
clusion, we average the rates over twenty runs.

At runtime we apply the trained classifier to single aerial images,
yielding a highly redundant semantic interpretation from differ-
ent viewpoints. In Figure 3 overlapping classification results are
shown. For the purpose of visualization we only depict domi-
nant object classes, evaluated at the pixel level. By taking into
account camera data and range information we perform a pixel-
wise fusion of the highly redundant images into a common 3D
coordinate system. For each pixel on ground, the fusion step pro-
vides up to ten observations for color, height and assigned class
probabilities. Figure 4 depicts redundant classification results for
a scene of Graz (first and second row). Black pixels denote un-
defined areas caused by occlusions.

In our first experiment we investigate how the redundancy influ-
ences the classification accuracy in terms of undefined pixels and
correctly classified pixels. In order to determine the classification
accuracy in the orthographic view, we additionally label ground
truth maps (25 image patches for each dataset), covering an area
of approximately 500× 500 meters. Figure 5 shows the obtained
results for Graz. Due to a varying number of occluded pixels,
we repeat the fusion step twenty times (shown as blue dots) with
random sets of selected observations. It is obvious that the per-
centage of undefined pixel significantly decreases with the num-
ber of involved observations. This experiment also shows that
the challenging task of distinguishing between water and street
regions, covered with shadows, benefits from aggregating multi-
ple redundant classifications. In addition, the classification rate of
small grass-covered areas can be improved by using multi-view
observations.

In the second experiment we apply the continuous formulation
of the Potts model, described in Section 4, to obtain a consistent
labeling. In order to delineate the boundaries of elevated object
classes like buildings and trees accurately, we derive the edge

Figure 6: Obtained confusion matrices for Graz. The pixel-wise
classification rates for all object classes and the accuracy after
refined labeling using the continuous formulation of the Potts
model. For the evaluation we use ten classified scene observa-
tions.

penalty term g by computing the normalized magnitude of the
DSM gradient responses according to g = exp(−α√dx2 + dy2).
Figure 1 depicts a corresponding penalty term image. For both
datasets we set α = 0.2. The smoothness term is determined
empirically with λ = 0.1. Obtained confusion matrices for Graz,
before and after applying the refined labeling, are shown in Fig-
ure 6. Note that the classification rates can be significantly im-
proved for all objects classes. An evaluation on the dataset Dallas
shows that the refinement yields an averaged improvement of ap-
proximately 6% (from 87.2% to 93.3%). A classification result
for a strip of Dallas is depicted in Figure 7.

6 CONCLUSION

This work has proposed an efficient approach for semantic inter-
pretation of urban environments. Our approach integrates multi-
ple types of low-level feature cues, such as appearance, texture
and elevation measurements and exploits the high redundancy in
the data. In this work we have investigated how an overlapping
redundant semantic classification into five object classes can be
exploited to obtain an accurate large-scale interpretation in an
orthographic view. Our approach can be easily extended to ad-
ditional classes like different types of agriculturally used areas.
Future work will concentrate on deriving exact GIS information
and on detecting individual trees.
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