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ABSTRACT: 
 
This paper presents an enhanced robust phase correlation (ERPC) algorithm for sub-pixel feature matching and its application in 
target motion estimation for aerial video surveillance. The ERPC can cope with very large motion measurement on the one hand and 
improve the sub-pixel accuracy by entirely avoiding the ill-posed problem of 2D phase unwrapping in 2D fitting technique of phase 
correlation on the other. The key advantage of EPRC is its robustness and sub-pixel accuracy which are essential for precise target 
speed measurement. Furthermore, EPRC is solely applied to the certain parts (not to the whole scene) of a scene where the moving 
targets are detected, which greatly improves robustness and computing speed of the EPRC based target motion estimation. Finally, 
we introduce our robust camera compensation and moving target detection scheme. With this simple scheme, we are able to 
efficiently estimate the motions of multiple targets at sub-pixel accuracy.  
 
 

1. INTRODUCTION 

An accurate estimation of target motion in an image sequence is 
a crucial step for target tracking in aerial video surveillance. A 
number of methods, such as optical flow based, correspondence 
based and background model based, have been proposed 
[Kumar et al., 2001]. In this paper, we present efficient phase 
correlation based target motion estimation technique. Phase 
correlation feature matching method has been a popular choice 
in estimating the global or local translational motions between 
two similar images due to its remarkable accuracy and its 
robustness to uniform variations of illumination and signal 
noise in images. Several phase correlation methods [Stone et al., 
2001; Foroosh et al., 2002; Hoge, 2003] have been proposed for 
estimating the translational shift with sub-pixel accuracy 
between image pairs. 
 
However, if there are moving objects in a scene, most existing 
phase correlation based technique will fail to estimate the frame 
shift. In this paper, we propose an enhanced robust phase 
correlation (ERPC) technique for sub-pixel feature matching, 
and apply ERPC in target motion estimation for aerial video 
surveillance. We present that the proposed ERPC technique is 
capable of measuring the motion of a moving target in a 
stationary background as long as the target is the dominant 
feature in the image frame. The key advantage of the proposed 
technique is its robustness and its sub-pixel accuracy in target 
motion estimation. In addition, the ERPC algorithm is only 
applied to the certain parts of a scene where the moving targets 
are detected, which greatly improves robustness and computing 
speed of the phase correlation based target motion estimation.  
 

2. ERPC BASED MOVING TARGET SPEED 
MEASUREMENHT 

2.1 Basics of ERPC 

Phase correlation provides straight-forward estimation of rigid 
translational motion between two images, which is based on the 
well-known Fourier shift property: a shift in the spatial domain 

of two images results in a linear phase difference in the 
frequency domain of the Fourier Transforms (FT). Given two 
2D functions g(x,y) and h(x,y) representing two images related 
by a simple translational shift a in horizontal and b in vertical 
directions, and the corresponding Fourier Transforms are 
denoted G(u,v) and H(u,v). Thus, 
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If G(u,v) and H(u,v) are continuous functions, then the inversed 
Fourier Transform (IFT) of Q(u,v) is a delta function. The 
function peak identifies the integer magnitude of the shift 
between the pair of images [Kuglin, and Hines, 1975]. To 
achieve the translation estimation at sub-pixel accuracy based 
on the delta function of the IFT of phase correlation matrix 
Q(u,v), a common approach is to oversample images g(x,y) and 
h(x,y) to sub-pixel level before the FT of phase correlation 
operations. This however will increase the computing load 
dramatically. Recognised the drawback, many researchers 
looked for a direct solution in frequency domain based on the 
phase correlation matrix defined in (2). As the magnitude of 
Q(u,v) is normalised to 1, the only variable in (2) is the phase 
difference defined by au+bv, where a and b are the horizontal 
and vertical magnitudes of the image shift between g(x,y) and 
h(x,y). If we can solve a and b accurately based on the phase 
correlation matrix Q(u,v), then the non-integer translation 
estimation at sub-pixel accuracy can be achieved without 
applying IFT. Such direct frequency domain approaches [Stone 
et al., 2001; Hoge, 2003] has been proved more accurate than 
that based on the delta function method. 
 
The phase difference angle c= au+bv in (2) is simply a planar 
surface through the origin in u-v coordinates defined by 
coefficients a and b. Thus a complicated problem of complex 
numbers in frequency domain becomes a simple issue of 
finding the best 2D fitting of the phase difference angle data in 
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Q(u,v) to a plane of phase difference in the coordinates of u and 
v. The phase shift angle c is 2π wrapped in the direction defined 
by a and b. Any 2D fitting technique for c is not possible 
without a 2D unwrapping. However, 2D unwrapping on the 
phase angle data in the Q(u,v) is often unreliable due to the 
noisier data of Q(u,v) and results in failure of finding a and b 
correctly [Foroosh et al., 2002; Hoge, 2003]. In our previous 
work, we applied a phase fringe filtering technique to reduce 
the noise in the periodic data of phase correlation matrix before 
the 2D phase unwrapping [Liu and Yan 2006]. However, this 
technique may become malfunctioning for dense fringes 
induced from large image shifts due to the restriction of the 
smallest fringe filter size (3×3).  
 
Here, we propose a novel approach namely the Enhanced 
Robust Phase Correlation (ERPC) algorithm for image feature 
matching with sub-pixel accuracy, which entirely avoids the ill-
posed problem of 2D phase unwrapping. The ERPC comprises 
two stages processing. Firstly, the image correspondence is 
estimated at integer pixel level accuracy using a Delta function 
based phase correlation matching method. Thus, the disparity 
estimation error becomes no greater than 1 pixel for every 
corresponding correlation point. Then, the disparity 
measurement is refined to sub-pixel accuracy for corresponding 
points through robust 2D fitting.  
 
In the sub-pixel shift estimation stage, the Quick Maximum 
Density Power Estimator (QMDPE) [Wang and Suter 2004 A] 
is applied to find the best 2D fitting estimates of the phase angle 
data with sub-pixel shift only. As a pair of corresponding 
correlation points have only sub-pixel shift each other after the 
integer shift has already been identified and compensated in the 
first processing stage, the phase difference between them is 
within 2π and thus the phase unwrapping is no longer necessary 
before the robust fitting estimation. The QMPDE is regarded as 
the most robust fitting method. The benefit of using the 
QMDPE robust estimator is that the optimal fitting estimates 
can be obtained from the noisy phase angle dataset. Initial tests 
indicate that in a window based phase correlation scanning 
processing, the ERPC algorithm can achieve better than 1/50th 
pixel feature matching accuracy with small image size.  
 

2.2 Bench Mark Test 

An example in Figure 1 shows the effectiveness and the 
accuracy of motion estimation of a moving target in a stationary 
background using ERPC technique in different image size. We 
inserted a picture of a tank model into different positions in a 
sand desert image (512×512). The tank position change 
between Figure 1(a) and Figure 1(b) is 45 pixels (to left) 
horizontally and 12 pixels (down) vertically. We resample the 
pair of images to generate a set of image pairs with size from 
256×256 to 32×32. ERPC method was applied to the set of 
image pairs with different image size for the translational shift 
estimation of the moving tank in a stationery background. The 
experimental results are shown in Table1, which indicate that 
the ERPC technique is reliable for sub-pixel translational shift 
estimation of the moving target in different image size, even in 
a image size as small as 32× 32. It should mention that the 
accuracy of ERPC motion estimation will drop if the moving 
target is too small compared with the background.  
 

 
Fig. 1: An image pair (a) and (b) show a moving tank in a 

stationary background. 
 

 
Image Size True (x, y) ERPC (x, y) 

512×512 -45 
12 

-45.002 
11.9957 

256×256 -22.5 
6 

 -22.5238 
5.9521 

128×128 -11.25 
3 

-11.2845 
2.9626 

64×64 -5.625 
1.5 

-5.6709 
1.5411 

32×32 -2.8125 
0.75 

-2.8053 
 0.7315 

 
Table 1:  Motion estimates of tank through ERPC method in 

different image size. 
 

3. MOVING TARGET DETECTION 

3.1 Robust Camera Motion Estimation 

In aerial video surveillance, moving target detection and speed 
estimation are the fundamental research topics. Due to the 
camera motion, the background of a scene appears moving 
besides the target motion. The motion of actual targets must be 
distinguished from the global motion of the scene. 
  
In our approach, the camera motion is compensated based on 
the robust feature based sparse optical flow estimation. The 
Kanade-Lucas-Tomasi (KLT) feature tracker [Shi and Tomasi 
1994] is used to match corner features between adjacent pairs of 
video frames to obtain a sparse estimate of the optical flow field. 
The tracked features are simply used as control points to which 
a frame-to-frame parametric registration model is fitted by the 
highly robust QMDPE method [Wang and Suter 2004 A]. Most 
of existing methods use another robust estimator RANSAC for 
robustly fitting camera motion model. However, RANSAC 
requires the user to have priori-knowledge of the scale of inliers, 
which is not easy to set correctly in most cases. Furthermore 
RANSAC is less robust than the QMDPE as indicated in [Wang 
and Suter 2004 B]. The highly robust estimator QMDPE can 
tolerate more than 80% of outliers and it is thus used to estimate 
background motion from the selected sparse motion vectors. 
  
This robust estimator employs the mean shift procedure 
[Comaniciu and Meer 2002] to find the local maximum density 
power [Wang and Suter 2004 A] maxψ , i.e., J

J
ψmax , where J 

is the index of sub-samples. We use affine model to fit the 
sparse optical flow field. Let ( ii vu , ) be the velocity vector at 
feature point ( ii yx , ). The fitted affine model residuals of the 
point ( ii yx , ) can be written as 
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Let uψ and vψ  be the density power functions of ur  and vr  
respectively, so the overall density power function can be 
defined as vu ψψψ ⋅= . The maximum overall density power 

maxψ  is found through the robust mean shift regression, and its 
corresponding fitted affine motion parameters are regarded as 
the background motion model induced from the moving camera. 
 

3.2 Simple Differencing and Blob extraction 

This algorithm first simply differences a pair of consecutive 
camera-motion-compensated frames in a video sequence, and 
then adaptively thresholds the difference image to obtain a 
binary image, which only consists of the information of moving 
targets with background removed. A rigid threshold is not 
sufficient to cope with problems of illumination variation such 
as glints, shadows, which is very common in real image 
sequences.  
 
An adaptive thresholding approach to the difference image is 
necessary for effective detection of the moving target. In our 
algorithm, the mean of the local intensity distribution is simply 
used as local thresholding levels. This technique achieves 
effective segmentation of moving targets from the static 
background ground in our UAV video surveillance test. The 
blob extraction algorithm [Synder and Cowart 1983] is then 
applied to the binary image for extracting the detective moving 
targets with different labels. Finally, the essential information 
of each target blob such as the centre location, size and shape of 
the target is obtained. 
 

4. EXPERIMENTAL RESULTS 

We have developed a standalone C++ software package for 
moving target detection and target speed measurement from 
video sequences. Three examples of the experimental results for 
moving target detection and speed measurement are presented 
in Figure 2, Figure 3 and Figure 4 respectively.  
 
Figure 2(a) and 2(b) are two consecutive frames of an aerial 
video sequence with oblique view. Figure 2(c) shows the 
selected feature points for tracking, and the corresponding 
translation feature points are detected in Figure 2(d) through the 
KLT sparse optical flow method. Figure 2(e) is the registered 
image through our robust camera motion compensation 
technique. Figure 2(f) shows that the moving car are detected 
and marked as red, which indicates that the location and the size 
of the target blob is obtained. The small windows (g) and (h) 
with the detected moving target are extracted from Figure (a) 
and (e) respectively. The compound phase correlation technique 
is then applied to measure the translational motion of the car 
between the small window Figure 2(g) and (h). Figure 2(i) is 
the registered image from (h) to (g) by the shift of the moving 
car. The estimated horizontal and vertical velocities of the 
moving car between the two consecutive frames Figure (a) and 
(b) are xv =-7.012 and yv =3.548 respectively. This is well 
approved by the cancellation of the car feature in Figure 2(j) 
that is the difference between the small window images Figure 
2 (g) and (i). 
 
Similarly, Figure 3(a) and 3(b) are two consecutive frames of a 
video sequence, in which three cars were tracked by a moving 
camera on a helicopter. Figure 3(c) shows the selected feature 

points for tracking, and the corresponding translation feature 
points are detected in Figure 3(d). Figure 3(e) is the adaptive 
thresholding difference between the reference frame and the 
corresponding registered image through our robust camera 
motion compensation technique. Figure 3(f) shows that the 
three moving cars are detected and marked as red, green and 
blue respectively. The corresponding locations and speed 
estimates of the three moving cars are shown in Table 2. 
 
 

 Location  Speed (pixel)
Red 

target 
x=119.11, 
y=259.06 

xv =7.25,  

yv =-0.96 

Green 
target 

x=134.92, 
y=110.86 

xv =-7.82, 

yv =1.55 

Blue 
target 

x=361.94, 
y=227.36 

xv =7.78,  

yv =-0.92 

  
Table 3. Location and speed estimates of the three detected 

targets. 
 
Figure 4 presents an example of moving target detection and 
motion estimation, and its application in the target resolution 
enhancement from a thermal image sequence of a Land Rover 
travelling on road. The camera is fixed at a position but panning 
to track the fast moving vehicle. In this case, the background is 
moving while the vehicle is more or less in the same position 
within the image frame shifting in a very limited range. Figure 
4(a) shows the frame 1 and Figure 4(b) shows the frame 30 of 
the image sequence respectively. The moving Land Rover 
shown in Figure 4(c) was successfully detected and extracted 
between the consecutive frames of the image sequence using 
our phase correlation image analysis system (PCIAS) software 
package. According to EPRC analysis between frames (from 
frame 0 to frame 30) in different time interval, the random shift 
of the extracted vehicle sub-scene is from less than 1/10th pixel 
to two pixels, which is sufficient for super resolution image 
reconstruction (SRR). Figure 4(d) shows the SRR images of the 
moving Land Rover reconstructed from 30 consecutive scenes, 
which shows well-improved target resolution with the sharper 
edges. This SSR example test indicates that the proposed ERPC 
based target motion estimation technique is able to be applied in 
target resolution enhancement for video surveillance. 
 

5. CONCLUSIONS 

The analyses and experimental results presented in this paper 
have demonstrated that our moving target detection and motion 
estimation scheme, which combines the robust camera motion 
compensation, simple differencing with adaptive threshold and 
ERPC technique, is able to achieve sub-pixel accuracy for 
moving target speed measurement in aerial video sequence. In 
particular, the proposed ERPC method is capable of 
measuring the motion of a moving target in a stationary 
background as long as the target is the dominant feature 
in the image frame. In addition, the moving target speed 
measurement technique presented here can be applied in target 
resolution enhancement for video surveillance. 
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Figure 2: Moving target detection and speed measurement from 
two consecutive frames of an aerial video sequence with one 
moving car. 

 

 
 

Figure 3: Moving target detection and speed measurement from 
two consecutive frames of an aerial video sequence with three 
moving car.  

 
Figure 4: SRR of a thermal video image sequence of a moving 
vehicle. (a-b) Frame 1 and frame 30 extracted from the video 
with 314×233 pixels. (c) The image (76×49 pixels) of the 
moving vehicle extracted from frame 1. (d) The SRR result 
produced from 30 frames. 
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