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ABSTRACT: 
 

Spatially heterogeneous patterns of land use in urban environments have long posed a challenge to remote sensing. High spatial resolution 
passive sensors provide detailed data of urban regions at sub meter level but are frequently limited by shadows of the built environment. 
Moderate resolution data can provide synoptic perspectives of such landscapes but tend to obscure information of spectrally similar 
objects. Due to its height-above-ground component, which is unaffected by shadows, Light Detection and Ranging (LiDAR) data are 
increasingly being used as an alternative to passive sensors. However, LiDAR’s intensity component is infrequently utilized in urban 
studies presumably because its range of digital number values is similar between urban impervious and tree canopy covers. Previous 
investigations have concentrated on mapping either tree canopy or buildings using local-scale normalization procedures but the use of 
normalized intensity to map multiple land-use types in a heterogeneous urban landscape at a regional scale has received little attention. 
Our approach uniquely utilizes normalized intensity data in combination with structural components derived from LiDAR masspoints 
using maximum likelihood estimation of land use classes. Preliminary results show that our approach accurately distinguishes impervious 
surfaces and tree canopy over broad metropolitan contexts, with an overall accuracy of 96.7% for the ML classification of integrated 
LiDAR. In summary, we found that normalized LiDAR intensity data can be integrated with LiDAR surface models improving our 
ability to map heterogeneous urban geographies.  

 

 
1. INTRODUCTION 

 
Accurate mapping of land-use patterns in urbanized 
landscapes is important for efficient urban planning, 
preserving the aesthetic value of the urban landscape, and for 
monitoring local climate variability. High and moderate 
resolution passive remote sensing datasets are common 
sources for mapping land use; map accuracies, however, have 
been hampered due to the effects of shadow in high-resolution 
data and the inability to distinguish urban land use types in 
moderate resolution data (Dare, 2005). Light Detection and 
Ranging (LiDAR), an airborne laser scanning, active sensor, 
has emerged as a standard tool for collecting very high-
resolution topographic data for describing the Earth’s surface 
(Wang and Glenn, 2009; Kaasalainen et al., 2005; 
Kaasalainen et al., 2009). The height-above-ground 
component of LiDAR data has been used extensively in 
previous  investigations, for example, to create 3D surfaces of 
urban environments, estimate characteristics of forest stands 
(Yu et al., 2004; Popescu, Wynne, and Nelson 2002; Popescu 
and Wynne, 2004; Hudak et al., 2002; Anderson et al. 2008), 
and conduct flood mapping and modeling (Raber et al., 2007). 
However, the radiometric property of LiDAR data (intensity) 
is often overlooked or  underutilized in mapping land use in 
urbanized landscapes (Yoon, Shin, and Lee, 2008). Previous 
studies utilized LiDAR intensity data either through 
integration with other remote sensing data (e.g., elevation, 
hyperspectral) (Wang and Glenn, 2009; Dalponte, Bruzzone, 
and Gianelle, 2008) or to estimate a particular characteristic 
of the urban landscape, such as forest cover (Yoon, Shin, and 

Lee, 2008) or identifying residential properties in an urban 
area (Jutzi, 2009).  
 
Intensity is a radiometric component of LiDAR data that is 
recorded by the sensor as the amount of energy backscattered 
from objects on the Earth’s surface. Intensity measurements 
are affected by several factors including surface reflectance, 
atmospheric transmission, local incidence angle, and the 
distance between the sensor and Earth objects (Wagner et al., 
2006; Wehr and Lohr, 1999; Mazzarini et al., 2007;). Based 
on these factors, theoretical formulas of laser backscattering 
are simplified into three variables: backscattering coefficients 
related to the reflectance of objects and incidence angles, 
atmospheric attenuation, and the range between the sensor 
and objects (Yoon, Shin, and Lee, 2008; Baltsavias, 1999). 
Previous experiments indicate the effect of incidence angle is 
negligible at small angles, which is essential for the sensor 
collecting backscattered energy, and that laser intensity is 
weaker at longer wavelengths than at shorter wavelengths 
(Kaasalainen et al., 2009). Additionally, atmospheric 
absorption has an insignificant effect on  airborne near-
infrared LiDAR intensity data due to the higher wavelength 
laser pulses (Wang and Glenn, 2009). Relative to other 
factors, the distance between the sensor and objects plays the 
most significant role, in determining the amount of energy 
backscattered from objects. Normalizing LiDAR intensity 
data with respect to sensor-to-object distance produces an 8-
bit panchromatic raster data that when integrated with other 
LiDAR derivatives provide a clear distinction between 
impervious surfaces and forest cover.   
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This study demonstrates a novel approach to mapping land 
use patterns in the rapidly urbanizing region of Mecklenburg 
County, NC, by combining normalized LiDAR intensity data 
with canopy height model (CHM) and a surface model, 
generated by subtracting CHM from normalized digital 
surface (nDSM) and applying a maximum likelihood (ML) 
classifier.  Significant improvements in urban land use map 
accuracies are realized, particularly with respect to 
impervious surfaces, forest cover, bare earth, and water 
categories.   
 
 

2. METHOD 
 
LiDAR point cloud data for a sub-region (90km2) of 
Mecklenburg County, NC, were acquired and processed using 
LiDAR Analyst image processing software to generate 
intensity, first return (FR) and last return (LR) raster data. 
Further intensity data were normalized by sensor-to-object 
distance. FR and LR raster data were used to generate CHM 
(FR - LR) (Figure 1), nDSM and then a surface model was 
generated by subtracting CHM from nDSM raster data 
(Figure 2). Intensity of LiDAR data was rasterized into an 8-
bit panchromatic raster data (Figure 3.). These rasters data 
were combined into a 3-band composite image (Figure 4). A 
maximum likelihood (ML) classifier using a supervised 
statistical approach to pattern recognition was applied to the 
integrated dataset.   
 
ML is based on a Bayesian probability function calculated 
from training site data collected for each land use class. A 
total of 47 training sites were selected across four land-use 
classes: 1) impervious surfaces (e.g., asphalt and concrete), 2) 
forest (includes coniferous, deciduous trees and managed 
forest), 3) bare earth (includes farmland, open space, median, 
golf course and transmission line, rock, soil, and other non-
forest pervious surfaces), and 4) water bodies. These training 
sites were used to estimate the parameters of the ML classifier 
and assess the accuracy of the final classification. Integrating 
LiDAR intensity with CHM and nDSM produces a d 
dimensional feature space x, where d is the number of features 
in the feature vector x. Assuming there are C classes, the 
probability of a data sample x belonging to a particular class i 
can be computed as: 
 
 

                                               
(1) 
 
 
where   is the prior 

probability of class i.  
 
With no prior information about P(i), it is usually safe to 
assume that P(i)’s for all the classes are equal (1/C). 
Therefore, in order to determine the posterior probability 
P(i|x), the class conditional densities p(x|i ).  Finally, the data 
sample x is assigned to the class i for which P(i|x) is 
maximized (Tso, 2001; Charaniya, 2004; Bartels, 2006). 
 

Based on the 153 randomly distributed ground truth points, a 
confusion matrix was produced to assess the final 
classification accuracy. Overall accuracy is estimated by the 
ratio of the sum of its main diagonal and the total number of 
classified pixels. In addition, the Kappa coefficient, a measure 
of overall agreement of a matrix, was calculated based on the 
following equations:  
 
 

                                                  
(2) 
 
 

              

(3) 
 
 

                

(4) 
 
Where   = represents observation in row i and column i,  

N = the total number of observation,  
and  = are the sum of row i and column i, 

respectively (Conglton, 1991). 
 
 
 

3. RESULTS AND DISCUSSION 
 

Figure 5 shows the final ML classification derived from the 
integrated LiDAR dataset. Impervious surfaces are clearly 
distinguished from forest canopy, which has historically been 
a challenge. The addition of forest canopy and nDSM with  
 
 

 
 

Figure 1. Canopy Height Model 
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Figure 2. Surface Model 

 
 

Figure 3. LiDAR Intensity 
 
LiDAR intensity data allows for distinguishing these land 
use types with a very high degree of accuracy as shown in 
Table 1. Overall accuracy for the ML classification of 
integrated LiDAR was 96.7%. Producer’s accuracies for 
bare earth, forest, impervious surfaces, and water were 
100%, 92.98%, 96.42%, and 100% respectively. The Kappa 
coefficient for the final land use map was 0.95. 

 

 
 

Figure 4. Composite image of CHM, Surface Model, and 
Intensity 

 

   
 

 
 

Figure 5. Final land use classification map. 
 

 
Table 1. Confusion matrix and Kappa coefficient 

 
 

4. CONCLUSIONS 
 

Using this methodology, forest cover can be classified into 
sub categories, such as managed forest and different aged 
stands. Sub classifying the bare earth category remains a 
challenge; however, using LiDAR data acquired during peak 
growing season for area crops and a proper normalization 
method can provide desirable results. We conclude that the 
integration of normalized LiDAR intensity data with LiDAR 
surface models significantly improves class discrimination 
among impervious surfaces and forest cover, and this 
methodology can be utilized to successfully map land use 
patterns at regional scales in urbanizing landscapes. 
 
 
 
 
 
 
  

Land Use  Bare 
Earth 

Forest Impervi
ous 

Water Sum 

Bare Earth 45 2 0 0 47 
Forest 0 53 0 0 53 
Impervious 0 2 27 0 29 
Water 0 0 1 23 24 
Sum 45 57 28 23 153 
Producer’s 
accuracy 

100 92.98 96.42 100  

Kappa Hat Varia
nce 

Z P 95% CI 
Upper 

95% 
CI 
Lower 

0.95 0.000
3959 

47.981 < 
0.00001 

0.915757 0.9937
58 

Overall Accuracy: (148 / 153) = 0.967320261 

Bare Earth 
Forest 
Impervious Surface 
Water Bodies
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