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ABSTRACT: 
 
One aspect of the recent paradigm shift in geospatial information sciences is that data acquisition and processing systems have 
moved away from the single sensor-based model to advanced integrated multisensory systems, which typically include imaging 
and navigation sensors. Active sensors, such as Light Detection and Ranging (LiDAR) and Interferometric Synthetic Aperture 
Radar (IFSAR), are routinely used with conventional optical sensing where a new generation of high-performance digital 
camera systems have been developed in the past few years. The direct georeferencing of the remote sensing platform is usually 
provided by state-of-the-art navigation technology based on the Global Positioning System/Inertial Measurement Unit 
(GPS/IMU). 
 
As the number of sensors has increased, the error budget calculations for derived geospatial products has become more complex; 
the number of contributing terms has shown a multi-fold increase. The focus of calibration has shifted from individual sensor 
calibration to system calibration to consider interrelationships between multiple sensors. At the system calibration level, even 
the error contributions of in-scene objects play an increased role and must be more carefully considered. Research to date has 
been primarily focused on individual sensor calibration or calibration of a pair of sensors. The objective of this investigation is 
to combine the effects of all the sensor and sensor-related errors to obtain the overall error budget of airborne remote sensing 
sensor suites. The error budget should include all navigation errors, imaging sensor modeling errors, inter-sensor calibration 
errors, and object space characteristics. 
 
 

1. INTRODUCTION 

Airborne surveying and remote sensing technology has 
seen significant developments in the past decade, resulting 
in a paradigm shift in mapping (Grejner-Brzezinska et al., 
2004). State-of-the-art airborne multisensory imaging 
systems are extremely powerful tools used to acquire 
highly accurate geospatial data in large volumes. The 
complexity of these systems, however, also presents several 
challenges, including the proper calibration of the 
sophisticated sensor systems and, consequently, reliable 
validation or characterization of the data accuracy. The 
wide-spread use of direct georeferencing of the sensor 
platform makes the system calibration even more crucial, 
as, in general, no provision can be made for incorrect 
sensor models; note that indirect sensor orientation, such as 
AT, can absorb sensor modeling errors. 
 
Modern airborne mapping systems typically include a 
combination of navigation and imaging sensors. The most 
popular combinations are the GPS/IMU-supported large-
format digital camera or LiDAR systems. In most 
installations, the LiDAR systems include a fourth sensor, a 
medium-format digital camera, though in many high-end 
configurations large-format digital cameras are already 

increasingly used. With three or four integrated sensors, the 
error budget calculations for any derived geospatial 
product, such as 3D point positioning accuracy from stereo 
imagery or LiDAR point cloud characterization, has 
become more complex, as the number of contributing terms 
has shown a multi-fold increase. While research has been 
addressing multisensory system calibration for many years, 
typically not all the sensors are simultaneously considered. 
Furthermore, limited or no attention is paid to impact of the 
object space. This study elaborates on a model which 
attempts to incorporate the effects of all the sensor and 
sensor-related errors, as well as object space characteristics, 
to obtain the overall error budget of airborne multisensory 
remote sensing systems. 
 
 

2. STATE-OF-THE-ART IN MULTISENSOR 
ERROR ANALYSIS 

Most of the work on multisensory system calibration and 
performance evaluation is based on the typical 
configuration of GPS/IMU aiding a digital camera system 
(Ip et al., 2007; Blazquez, 2008) and addresses the direct 
georeferencing (DG), also called direct sensor orientation 
(DSO), case (Toth and Brzezinska, 1998). Integrated sensor 
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orientation (ISO) is a combination of DG and indirect 
sensor orientation; note that the latter one had been the 
practice in airborne surveying until GPS was introduced 
(Ackermann and Schade, 1993). The differences between 
indirect sensor orientation and direct sensor orientation 
techniques are typically compared to the behavior of 
interpolation and extrapolation, respectively (Habib and 
Schenk, 2001; Cramer and Stallmann, 2002; Yastikli and 
Jacobsen, 2005). Since ISO is practically limited to frame 
camera sensor models, thus excluding LiDAR, IfSAR, and 
practically most pushbroom camera model-based systems, 
and ISO has better error characteristics. The error analysis 
of the DG method-based multisensory systems is of main 
interest in practice.  
 
Publications on the performance evaluation of multisensory 
systems generally fall into three categories: (1) 
manufacturer’s specification, such as error terms for 
georeferencing and LiDAR systems, or factory camera 
calibration results, (2) independent calibration results and 
performance assessment by major organizations, such as 
the USGS (U.S. Geological Survey) in North America and 
EuroSDR (European Spatial Data Research) in Europe, and 
(3) performance reports and analysis based results obtained 
in various mapping projects, usually provided by geospatial 
data provider companies. All these publications and reports 
provide valuable information about the theoretical 
achievable and empirically realizable point positioning 
accuracy. However, a direct comparison between any two 
categories typically shows a discrepancy, which may not 
mean that one or more of the results are incorrect, rather it 
only indicates that different methodologies were used 
and/or the experiments were performed under different 
circumstances and environments. In the following, a short 
review is provided on the three sensor systems, and then the 
inter-sensor relationship is discussed. 
 
2.1 Direct georeferencing systems 

The performance of DG systems is rarely validated 
independently, as it would require the use of totally 
independent systems that have about an order better 
performance, which is neither practical nor affordable. 
Therefore, the performance terms are derived from the 
specification of the sensor manufacturer, such as IMU drift 
and noise parameters, and/or internally estimated from 
navigation filter solutions (Extended Kalman Filter). Since 
high-resolution digital camera imagery can provide for 
excellent accuracy at large scale, they are frequently used 
for georeferencing performance evaluation. Manufacturers’ 
quoted specifications for their highest performance airborne 
georeferencing systems are listed in Table 1; note all of 
them are based on post-processed solutions. 
 

The listed parameters from the four vendors are quite 
comparable, which is due to two things. First, the very 
same GPS positioning method is used in all cases, and, in 
GPS/IMU integration, the GPS performance defines the 
absolute accuracy; more on GPS accuracy can be found in 
(Raquet, 1998). Second, very similar, tactical grade, IMU’s 
are employed in all systems, so assuming comparable GPS 

solution, the attitude terms should be also close to each 
other. 
  
2.2 Digital camera systems 

Most of the high-performance airborne digital large-format 
camera systems are based on the frame model, though 
pushbroom or three-line camera model-based systems are 
also widely used; for summary of the digital camera 
market, see (Gordon and Walker, 2007). In all cases, these 
systems can be considered multisensory, as they are 
typically built from several sensors, such as multiple 
camera heads with their own lenses or multiple imaging 
sensors sharing one optical system. Because of their design, 
the former collimator based calibration methods, widely 
used for analog cameras, are not always applicable to 
digital cameras, and consequently, manufacturers had to 
implement their own calibration process, which includes 
both the geometrical and radiometric characterization of the 
system. In many respects, these processes go far beyond 
just camera calibration, as in most cases, a synthetic image 
is formed from the individual camera/sensor heads. Lens 
distortion is usually removed and several parameters of the 
resulting pin-hole camera model can be arbitrarily set. 
Table 2 shows the virtual parameters of the camera model 
of the Microsoft UltraCamX (Microsoft, 2008) and the 
Intergraph DMC systems (Intergraph, 2009); similar 
calibration results are available for the Leica ADS80 line 
camera (Leica, 2009). The accuracy of the parameters is 
typically reported in the 1-2µ range. A recent 
comprehensive evaluation of state-of-the-art airborne 
digital camera systems can be found in (Jacobsen et al., 
2010).  
 

Parameter UltraCamX DMC 
Focal length [mm] 100.5 120 
Sensor size [pixel] 14,430 x 9,420 13,824 x 7,680 
Pixel size [µ] 7.2 12 
Principal point [mm] 0 0 
Lens distortion n/a n/a 

 

Table 2. Typical frame camera model parameters (virtual). 
 
In addition to the error contribution of the camera model, 
the actual geospatial data extraction performance of digital 
camera systems depends heavily on the image measurement 
accuracy, which itself depends on the radiometric 
performance of the camera and the image content. 
Obviously, the first component can be calibrated, and, in 
fact, most state-of-the-art cameras come with their 
radiometric calibration protocol. The image measurement 
dependency on object space, however, cannot be generally 
characterized, as the image quality can vary over a larger 
range, based on light conditions, object surface, and 
texture. In addition, there is a difference in image 
measurement accuracy between operator-measured and 
automatically measured points. While manual 
measurements are relatively consistent for both control and 
tie points, the matching performance for tie points depends 
a lot on image texture.  Figure 1 shows manual 
measurement performance for all the high-end frame digital 
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cameras; the results are from a German camera evaluation 
project (Haala et. al., 2010).  Since the experiment was 
performed in a controlled environment in cooperation with 
several research institutes, the results could be considered 
as a lower bound for achievable image measurement 
accuracy. Note, automatically matched points typically 
exhibit a bit higher performance for images with simple 
complexity and good texture, but the performance falls 
below the manually matched for images with difficult 
object content and less favourable texture. 
 

 
Figure 1. Standard deviation of manual image point 

measurements (Haala et. al., 2010). 

The ultimate point positioning accuracy of using images of 
a digital camera system depends on the image geometry 
too. In most cases, stereo-imagery and, in growing number 
recently, multiple image coverage (multi-ray imagery) are 
used to extract 3D object coordinates. The geometry in both 
cases, such as image overlap for a stereo image pair or 
point location within the image, impacts the achievable 
accuracy, which is well known from photogrammetry 
(Kraus, 1992). In addition, if multiple images are used, the 
dynamic content of the object space can further cause 
problems, as the established geometry between sensors or 
images taken at different times strictly applies only to the 
static component of the object space. Matching any  
kinematic objects in the scene, such as moving vehicles, 
people, animals or even vegetation in wind, will not satisfy 
the established geometrical model. 
 
2.3 LiDAR systems 

The calibration and performance characterization of LiDAR 
systems are much more complicated or rather challenging 
than that of digital cameras or georeferencing systems. The 
reason is that there are several sources of errors from the 

system, including LiDAR platform georeferencing 
accuracy, the laser ranging accuracy, and the effect of the 
mechanical scanning; and, in addition, the derived LiDAR 
product, the point cloud, significantly depends on object 
space circumstances and the environment. Consequently, 
the calibration process is not straightforward, and both 
physical model-based and data-driven approaches are used. 
In the last comprehensive review of the major LiDAR 
products, published in (GIM, 2009), the “Precision and 
Resolution” group shows the largest variety among all the 
parameters, clearly indicating that the performance 
characterization is not simple, as it depends on so many 
factors. This fact, in turn, emphasizes why LiDAR users 
need good QA/QC procedures, as the point cloud just 
cannot be characterized based only on manufacturers’ 
specification. 
 
In theory, the LiDAR equation can be used to create 
calibration methodologies and then to perform in situ 
calibration of LiDAR systems (Morin, 2002; Skaloud and 
Lichti, 2006; Habib et al., 2007). Since most calibration 
processes would require access to sensor level (raw) data, 
which is not always available (as most systems work as 
black-box for the user), strip adjustment has gained 
popularity among LiDAR users as a tool to support 
QA/QC. Practically, discrepancies observed between 
overlapping strips are identified and then a geometrical 
model is estimated, which is then applied to the point cloud 

to eliminate the difference. Early methods focused only on 
the vertical components (Killian et al., 1996; Crombaghs et 
al., 2000; Kager and Kraus, 2001). Once the quality of 
LiDAR data improved, in terms of point density and 
ranging accuracy, 3D strip adjustment techniques were 
introduced (Maas, 2002). The next step in the evolution of 
strip adjustment was the introduction of the sensor model 
(the LiDAR equation); in other words, instead of using a 
data fitting approach, the observed differences were used to 
adjust some of the sensor parameters to remove the strip 
discrepancies (Behan et al., 2000; Burman, 2002). While 
earlier methods provided very little modeling of the LiDAR 
point cloud, the current trend is to extract features and use 
those for matching and, subsequently, observe 
discrepancies. Using the coplanarity observation equation, 
least squares adjustment can be formed for the sensor 
model using surface patches (Pothou et al., 2008); man-
made objects, such as roofs (Glennie, 2007), or planar 
patches in photogrammetric and LiDAR data (Habib et al., 
2007). In addition, direct techniques, such as surface 
patches matched by ICP, can be used to establish 
correspondence between LiDAR strips. 
 

 Applanix AV 610 AEROControl-III Leica IPAS20 CUS6 Novatel SPAN 
Position (m) 0.05-0.30 0.05 0.05-0.30 0.01-0.02 
Velocity (m/s) 0.0050 0.005 0.0050 0.010 
Roll and pitch () 0.0025 0.003 0.0025 0.005 
True heading () 0.0050 0.007 0.0050 0.008 

 
Table 1. Specification of high-end airborne georeferencing systems parameters. 
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To illustrate the strong dependency of the point cloud on 
object space condition, three error sources of importance 
are briefly mentioned here. Figure 2 shows the consequence 
of the surface orientation, or more precisely, the effect of 
the footprint size of the laser beam, which depending on the 
distance between the sensor and surface, and combined 
with the incident angle, can be significant. 

 
Figure 2. The impact of footprint (beam divergence) and 

incident angle on range measurement accuracy. 
 
The microstructure of the surface, such as surface type, 
diffuse or specular, reflectivity, and land cover, impacts the 
laser ranging error. While, in general, it only adds to the 
noise level of the range data for surfaces with extreme 
reflectivity, the bias component could be significant too. In 
fact, there are intensity-based range corrections, mostly 
applied in transportation applications, where retro-
reflective materials are widely used. Figure 3 shows typical 
RMSE values, obtained from several LiDAR mapping 
projects; the range for the five classes varies from 3 to 30 
cm. 
 
In urban areas, where there are many complex man-made 
objects, which are formed by planar surfaces in a structured 
way, multipath can be frequent; note that the specular 
reflection from a glass-covered building surface is 
prevalent in high-rise environment. Figure 4 illustrates the 
potential for multiple laser returns and the possibility to 
obtain an incorrect range measurement. 
 

 
Figure 3. RMSE by land class type (AeroTec, 2007). 

 

 
 

Figure 4. Laser beam multipath in urban area. 

2.4 Integrated sensor performance evaluation 

Research and applications on multisensory system 
calibration have started to increase recently. Typically, 
either a digital camera or a LiDAR system is combined 
with a GPS/IMU-based georeferencing system, and the 
calibration is primarily focused on the inter-sensor 
calibration, while the individual sensor calibration 
parameters are typically only refined, at best. In many 
cases, the objective is to obtain or improve the boresight 
calibration, the orientation of the imaging sensor in the 
navigation frame. This is essential for both imaging 
sensors, as any angular misalignment directly translates to 
errors on the ground, which effect is amplified by flying 
height. Note that any inaccuracy of the sensor position in 
the navigation frame, also called mounting bias or offset, 
has the same effect on the ground regardless of the flying 
height, and these parameters can be relatively easily and 
accurately measured. There are many difficulties of 
performing multisensory calibration and only one is 
mentioned here, the observability of the physical model 
parameters, also called the functional correlation of the 
model parameters. There are several approaches to mitigate 

rr 
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this problem, but, in general, proper planning of the flight 
path and image overlap can usually provide for robust and 
reliable solution. 
 
Representative discussions on system calibration of 
GPS/IMU-based direct georeferencing with digital camera 
and LiDAR systems can be found in (Ip et al., 2007) and 
(Goulden and Hopkinson, 2010), respectively. In both 
cases, little or no attention is paid to the object space 
conditions and environment, which is understandable from 
the point of view that the objective is to obtain the best 
calibration parameter estimates. However, this somewhat 
limits the use of the results, as there is no simple way to 
generalize to a variety of real life conditions, where most of 
the mapping surveys take place. 
 
 

3. CONCEPT OF ERROR ANALYSIS OF 
AIRBORNE MULTISENSORY SYSTEMS 

Research on developing an error budget to characterize 
point positioning performance, based on the individual 
error characterization of all error sources of multisensory 
systems, has been limited so far. The likely reason could be 
the complexity of the analytical model, which is highly 
non-linear and has a large number of error terms. In 
addition, obtaining realistic error terms of the various 
sensors is also a challenge. The first results on 
comprehensive error analysis, based on rigorous error 
propagation, were reported in 2007, when May provided 
both analytical and simulated solutions for both digital 
frame camera and LiDAR systems, and Glennie developed 
the same model for LiDAR and tested it against real data. 
The difference in their models is that Glennie uses 14 error 
terms, while May excludes the mounting offset of the laser 
sensor and uses 11 parameters; note that the excluded 
parameters can be accurately measured in conventional 
way. A very recent publication (Goulden and Hopkinson, 
2010) deals also with the LiDAR sensor, but uses a reduced 
set of error terms. Except for mentioning the impact of the 
footprint, the laser beam divergence, it is not directly 
included in the above models. Similarly, the impact of the 
object space conditions is not considered. We propose a 
further generalization of the rigorous error propagation 
model in two aspects: (1) combine the treatment of digital 
camera and LiDAR sensors, and (2) include corrections for 
object space conditions. 
 
The direct georeferencing equation for point positioning 
can be formulated as: 
 

        )(, INSpi
INS
Ip

M
INSpINSMpM btrRtRtrtr   (1) 

 
 
 
 
 
 
 
 
 
 
 

Mr (tp) ― 3D coordinates of the point in the 
mapping frame 

INSMr ,
(tp) ― 

3D INS coordinates (origin) in the 
mapping frame, provided by GPS/INS 
(the navigation solution typically refers to 
the origin of the INS body frame) 

M
INSR (tp) ― Rotation matrix between the INS body 

and mapping frame 

INS
IR  ― Boresight matrix between the image 

sensor frame and INS body frame  

ir (tp) ― Range measurement (distance from laser 
sensor reference point to object point) 

INSb  ― 

Boresight offset vector (vector between 
iamge sensor reference point and the 
origin of INS) defined in the INS body 
frame 

 
Where the imaging sensor coordinates could be obtained as 
shown in (2) and (3), for LiDAR and digital camera, 
respectively: 
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(3) 

Ld (tp) ― 
Range measurement (distance from 
laser sensor reference point to object 
point) 

(tp) ― 
Scan angle defined in the laser sensor 
frame (xL is flight direction, yL to the 
right, and zL goes down) 

xi, yi ― Image coordinates 

f, s ― Scale, focal length 

 
Note that time is included in the above model, though it can 
be ignored in most applications. In addition, quantization 
error terms are excluded. 
 
To compute the error budget of the mapped point, the non-
linear equation (1) must be linearized by truncating a 
Taylor series expansion after the first term. Applying the 
law of error propagation to the covariance matrix of the 
error sources listed, the covariance matrix of the 3D point 
position is described by the following equation: 
 

T
i ACAC   (4) 

 

where, Ci is the covariance matrix of the point coordinates 
(3 x 3), C is the covariance matrix of all the contributing 
error terms (n x n), and A is the Jacobian matrix containing 
the partial derivatives of the X,Y, Z point coordinates with 
respect to the different random variables in the 
georeferencing equation (3 x n). Since the error terms are 
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usually independent, C is simplified to the diagonal 
elements. Depending on the number of error terms 
considered in (1), the analytical derivation may be quite 
complex, though using symbolic processing it can be easily 
obtained by several software packages, such as Matlab. 
Another possibility to deal with the problem is if a Monte 
Carlo simulation is performed, so Ci is empirically 
estimated. 
The inclusion of object space conditions into the above 
error propagation-based model is not straightforward in the 
general case. The problem can be divided into two parts: 
(1) identification of object space conditions to be 
considered, and (2) modeling of the selected phenomenon 
to integrate it into the error budget discussed above. To 
illustrate the concept, the impact of the surface orientation, 
αn, and scan angle, βs, on LiDAR point positioning 
accuracy is considered; this is a simplified approach but can 
be easily generalized. The rigorous error budget provides 
the error terms for Ci in the nominal case of assuming 
horizontal object surface; note that the impact of the scan 
angle is already in the error budget. Based on the LiDAR 
sensor attitude and scan angle, a rotation matrix, Ri, can be 
computed that rotates from the mapping frame to a frame in 
which the Z axis is in the laser beam direction. Applying 
this rotation to Ci will result in: 
 

T
iiii RCRC '  (5) 

 

Since the footprint is affected by the incidence angle, δi 
which can be computed from the known surface normal, 
attitude and scan angles, the Z variance term of Ci’can be 
modified as: 

)cos(

'
'

i

z
z 

   (6) 

 

Then applying the inverse of the rotation, the updated 
covariance matrix of the point can be computed as: 
 

ii
T

ii RCRC '  (7) 
 

For a general case, if the impact of the object space 
condition can be modeled with a covariance matrix, then it 
can be directly combined with original covariance matrix of 
the point. If bias exists, then it can be considered in the 
model. Note that bias was not considered in (1), as the 
assumption was that all systematic errors have been 
removed during the individual sensor calibration. 
 
 

4. SUMMARY 

The concept of introducing object space conditions into the 
error propagation-derived error budget of airborne 
multisensory imaging systems offers the potential for better 
geospatial product characterization. More importantly, it 
allows for individual point error characterization and 
factors in the object space conditions. The model is based 
on the direct georeferencing equation and able to handle 
different imaging sensors. In the analytical derivations only 
random errors were considered, if the system is known to 
have a bias with known magnitude, its effect can also be 

considered; this bias (squared) can then be added to the 
derived variance from the random error propagation, and 
the MSE of point positioning can be determined. Research 
on the inclusion of the object space parameters is an 
ongoing effort, and results will be reported in the future 
publications. 
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