
A special joint symposium of ISPRS Technical Commission IV & AutoCarto 
i n  c o n j u n c t i o n  w i t h  

ASPRS/CaGIS 2010 Fall Specialty Conference 
November 15-19, 2010 Orlando, Florida 

STATISTICAL AND STRUCTURAL DESCRIPTIONS FOR IMAGE TO MAP 
REGISTRATION 

 
 

Caixia Wang3       Peggy Agouris1,3       Anthony Stefanidis2,3 

 
Center for Earth Observing and Space Research1 

Center for Geospatial Intelligence2 
Department of Geography and Geoinformation Science3 – {cwangg, pagouris, astefani}@ gmu.edu 

George Mason University, Fairfax, VA 22030, USA 
 

Commission IV, WG IV/2, ICWC IV/VIII 
 

 
KEY WORDS:  Matching, Registration, Imagery, GIS, Feature, Transformation 
 
 
ABSTRACT: 
 
The registration of imagery to maps is becoming increasingly important for a large number of applications. Today, this task still relies 
mostly on an operator, manually identifying corresponding points from the image and the GIS dataset for registration. The challenges for 
automating the process arise mainly from their dissimilar data structures (raster vs. vector), orientation variations, as well as occlusion-
introduced extraction errors due to shadows, buildings or objects on the roads. In this paper, we present a robust automated approach that 
models road networks extracted from the two datasets as graphs, using statistical and structural descriptions of these road networks. The 
proposed approach starts by statistically analyzing local geometrical and topological properties of road networks such as orientation and 
number of connections. Such statistical similarity measures can be used to thin the number of potential matches when comparing a target 
road structure to a spatial database, resulting in computational efficiency. Subsequently, by considering the spatial distribution and 
structure similarity in a neighbourhood, we formulate a global compatibility function to measure the overall goodness of correspondence. 
We achieve an optimal matching by finding an optimal morphism that maximizes this compatibility function. The experimental results 
demonstrate the robustness of our approach.  
 
 

1. INTRODUCTION 

The registration of imagery to maps is becoming increasingly 
important for a large number of applications. Yet, this task still 
relies considerably on an operator, manually identifying 
corresponding points from the image and the GIS dataset for 
registration. One major challenge arises from their dissimilar 
data structures (raster vs. vector). In this context, objects from 
maps (vector data) contain no intensity information, which 
typically consists of the vital component in current promising 
algorithms in image-to-image registration. Such problem 
becomes further complicated when concerns include orientation 
variations, as well as occlusion-introduced extraction errors due 
to shadows, buildings or objects on the roads. 
 
Feature-based approaches, where features represent information 
on higher level such as points and lines, are developed for such 
registration problem as the involved data have different data 
structure. Recent advances in collection capability of high-
resolution imagery and sophisticated road extraction evoked a 
renewed research focus on using road networks for matching. 
For instance, Chen et al., (2004) developed a specialized point 
pattern matching algorithm using road intersections. The proper 
transformation between the two datasets is determined from a 
fraction of the detected road intersections using a brute-force 
point pattern algorithm. The direction and relative distance 

from the two datasets are assumed available and used as prior 
knowledge to prune the search space of possible mapping. Wu 
et al., (2007) proposed an automatic matching by breaking the 
global alignment problem into a set of localized domains (tiles). 
Within each tile, a least square optimization is applied to 
estimate the best translation locally. This group of work (Chen 
et al., 2004; Doytsher et al., 2001; Filin and Doytsher, 2000; 
Walter and Fritsch, 1999; Yu et al., 2004; Zhu et al., 2009) 
gives some promising results but they require the datasets are 
georeferenced and based on approximate transformation. Their 
misalignments are assumed only due to projection errors, 
inaccurate camera models, absence of precise terrain models, 
etc. These assumptions may not be satisfied in general scenarios. 
Importantly, selection of control points by operators for 
approximate transformation is usually required. 
 
In this work, we developed an optimal and robust approach to 
automatically establish the matching between imagery and 
vector data invariant to their differences in scale, orientation, 
area of coverage, physical changes and extraction errors. Our 
automated approach models extracted road networks as 
attributed graphs and the matching is based on the relaxation 
labelling introduced by Hummel and Zucker (1983). There has 
been a great deal of effort in computer vision community 
devoted to graph matching. Matching techniques developed rely 
substantially on structure pattern, like the graph and sub-graph 
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isomorphism approaches (Bruns and Egenhofer, 1996; Bunke, 
1999; Jain and Wysotzki, 2002; Pelillo, 1999; Shaprio and 
Haralick, 1985). The major drawbacks in these graph-
theoretical methods are their computational complexity and 
inability to handle inexact matching due to noise or corruptions 
in the graph. In our approach, the utilization of point networks 
and revised relaxation labelling provides the ability to utilize 
structures and geometric attributes derived from the network to 
improve the matching algorithm. A statistical analysis on local 
geometrical and topological properties of road networks is used 
to thin the number of potential matches when comparing a 
target road structure to a spatial database, thus achieving 
relatively efficient computation. These unique advantages serve 
both as the motivation for our work and constitute the main 
contributions of this paper. 
 
The remainder of the paper is organized as follows: Section 2 
describes the modelling of road networks with some definitions. 
The invariant attributes developed for relaxation matching are 
described and analyzed in Section 3. In Section 4, our revised 
relaxation labelling algorithm for matching is described in 
detail. Experimental results are presented in Section 5. Finally, 
Section 6 presents conclusion and outlines our future work. 
 
 

2. NETWORK MODELLING  

Spatial entities (road networks) from both data sets are first 
transformed into graph structure as input to our approach. In the 
graph, a vertex (also termed nodes) models each road 
intersection, edges of the graph represent the fact that there 
exist road segments joining two intersections, and an attributes 
set contains unary attribute attaching to each node, binary 
attribute attaching to each edge, ternary attribute attaching to 
every three related nodes, and if necessary, n-ary (n ≥ 3) 
attribute associating to every related n nodes.  
 
The extraction of road networks is not a topic addressed by this 
paper, as automatic road extraction from remote sensor data is a 
well-researched topic in computer vision, photogrammetry and 
remote sensing. In this work, we assumes that the data has been 
preprocessed using digital image processing and analysis 
techniques, e.g., Poullis and You (2010), and road networks 
have been detected in both datasets being registered. Figure 1 
provides a graphic view of the graph over an image, where the 
road network is extracted. It is noted there is no edge joining 
the two green-colored vertices as the two road intersections 
represented by these vertices have no road segments joining 
them. The advantages of such modelling include that it models 
not only the topological structure of the road network (e.g. 
connectivity) but also its non-structural properties with the use 
of attributes. In addition, the important information for the edge 
set is whether or not there is a road joining two intersections. 
We do not need to know how many road segments connect 
them, which is significantly affected due to gap problems since 
one road segment between intersections may be extracted as 
several ones. 

 

vertex 

edge

 
 

Figure 1. Graph representation of the extracted road network 
over the image where it is extracted 

 
Let’s denote the graph from the image as Gim= (Vim, Eim, Rim). In 
this notation, Vim = {v1, v2,…, vs} is the set of s vertices in the 
graph representing road intersections and Eim= {e1, e2,…, et} is 
the set of  t edges in the graph representing relationships 
between road intersections. The degree d (vi) of the vertex vi is 
defined as the number of edges with vi an endpoint. If there is 
an edge between vertex vi and vj, then vi and vj is said to be 
adjacent to each other and denoted by vi ~ vj. Vertices adjacent 
to vi are termed neighbors of vi. The neighborhood of vi 
(denoted by N (vi) is the set of all vertices adjacent to vi (Wallis, 
2007). The adjacency matrix of the vertex set Vim is defined as 
follows: 
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The third element Rim is a set of attributes include unary 
attributes r1 defined over Vim, binary attributes r2 defined over 
Eim, ternary attributes r3(i,j,k) defined over any vertex with its 
two neighbors and n-ary attributes rn (i,j,k,…,p) defined over 
any vertex with its n neighbors. The road network, hence, is 
defined in this manner through sets of vertices, edges and 
attributes among nodes. Similarly, the corresponding vector 
data can also be defined as Gdb=(Vdb, Edb, Rdb) where members 
in each set are in uppercase notation. Using the above notations 
for these two networks, our aim in matching is to optimally 
correspond (label) vertices Vim={v1, v2,…, vs} in graph Gim to 
those from the set Vdb={V1, V2,…, Vu} in Graph Gdb satisfying 
certain matching criteria. 
 
 

3. INVARIANT ATTRIBUTES FOR LOCAL 
SIMILAIRTY 

Invariant attributes are essential for matching as they can 
reduce ambiguities in local similarity and the corresponding 
search space. Developing invariant attributes, however, is a 
non-trivial issue. In one hand, as the involved imagery and GIS 
datasets may differ in terms of resolution, scale, coverage, and 
orientation in general, the conjugate features may also differ to 
a certain extent. On the other hand, as road networks usually 
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involve high volume of data, it is important to develop 
attributes that require less computational efforts. In this section, 
we introduce attributes derived from the geometry and topology 
of road networks, which are invariant to translations, rotations 
and scale changes.  
 
As the topological properties of a graph describe its structural 
characteristics and are not altered by 2D transformations (such 
as scaling or rotation), it is straightforward that the degree, a 
topological invariant of graphs, is an ideal unary attribute 
associated with each node. In our defined graph for the road 
networks, every node represents a road intersection where at 
least two roads join. The degree of any node must be equal to or 
greater than two.  
 
Typically the mathematical Euclidean metric is an important 
measurement of the geometry. It is invariant to translations and 
rotations, but not to scale changes. The Euclidean distance 
between two nodes joined by an edge can not be used directly 
as a binary property. The angle formed by one node and its two 
neighbors, however, is invariant to 2D translations and 
appropriate to be applied as a ternary property. To overcome 
the variation of Euclidean distance to scales, a relative distance 
is proposed and can be used as one type of ternary property: 
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Where Dij is the Euclidean distance between vertices i and j (j is 
a neighbour of i) and Dit is the Euclidean distance in i and t (t is 
a neighbour of vertex i and t ≠ j). The denominator is the 
average of the Euclidean distances between vertexes i and its 
two neighbours. As vertices in the graphs denote road 
intersections, every vertex will have at least two adjacent 
vertices. In the case of more than two neighbours to current 
vertex i, j and t in the relative distance are selected randomly 
from its neighbourhood. Apparently, the property can be 
extended for higher-ordered property as:  
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(3) 

It easily understands that more and complex attributes, if 
desired, may be derived and used. Potentially additional 
attributes may contribute to improving performance of the next 
phase – matching extracted features. The derivation process and 
computing local matching, on the other hand, may be 
computationally expensive, particularly when the number and 
complexity of proposed attributes increase substantially. What’s 
worst is that these additional attributes may be redundant to 
achieve a robust matching. At this point, proper attributes used 
for matching are critical and further analysis is necessary in 
terms of sufficiency. We will examine this issue in subsection 
4.1. 
 
 

4. MATCHING TWO ROAD NETWORKS 

Accordingly, the road networks from the image and vector data 
are respectively defined through a graph embedded topological 

(e.g. neighbourhood) and geometric attributes (e.g. relative 
distance). Using the above notations for these two networks 
from two datasets, our aim in matching is to optimally 
correspond (label) nodes vi in graph Gim to those in graph Gdb 
satisfying certain matching criteria. Now the problem of 
matching an image to a vector data becomes a matching of 
attributed graphs. 
 
Based on relaxation labelling, the matching process iteratively 
re-labels the data nodes with model nodes by changing their 
corresponding weights. The weights are optimized according to 
their local geometric and topological similarity. After each 
iteration, the global matching (i.e. global compatibility) is 
measured. The process reaches an optimal matching when the 
global compatibility measurement becomes unchanged or varies 
to a limited threshold. 
 
4.1 Statistical Analysis on invariant attributes 

As discussed, proposed attributes are preferred to be capable of 
describing sufficient patterns of the road networks 
geometrically and/or topologically, invariant to any 2D 
transformation, required for a robust matching, yet without 
comprising much on the complexity in deriving and exploring 
them. Unfortunately, this issue hasn’t given rise to much 
attention in popular matching literature. Attributes are usually 
selected based on ad hoc decisions. In this subsection, we 
address the abovementioned issue using entropy concept. 
Originated from classical thermodynamics (Clausius, 1867), 
Entropy is a quantitative entity defined fundamentally via an 
equation. It has been extended to various new domains ever 
since as a measurement. In Shannon information theory 
(Shannon, 1948), the entropy is used to measure the uncertainty 
over the true content of a message (a string of binary bits). 
Mathematician Alfréd Rényi constructed the proper entropy for 
fractal geometries (Jizba and Arimitsu, 2001). In statistical 
mechanics, the entropy is defined as a function of statistical 
probability to measure the probability for a given macrostate. In 
this work, we introduce an entropy function as follows to 
measure how well a type of attribute describes a given data in 
terms of its pattern for matching: 
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where Ri is each measured attribute value, μ is the arithmetic 
mean of the population, n is the number of the Ri. A high 
entropy indicates salient pattern represented by such attribute, 
and a low entropy indicates weak pattern represented by the 
attribute. The defined entropy Ep is similar to unbiased 
estimator of sample variance σ2 where the two parameters μ and 
σ2 are estimated from the data itself. Attributes that has most 
distributed values is useful for salient patterns and should be 
selected for matching.  
 
4.2 Local Similarity 

Once we have constructed the attributed graphs from two 
networks and select proper attributes from statistical analysis, 
we proceed with their local similarity. Our aim at this stage is to 
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measure the similarity in structure and geometry associated 
with each mapping nodes. The local similarity is also termed 
the goodness of the local fit, local compatibility or the goodness 
of local mapping. They are used interchangeably in this thesis. 
Given Vj from Gdb as the current counterpart (label) of vi in Gim, 
let {vs, … vq} be neighbor vertices of vi and {Vp, …, Vt} be any 
neighbor vertices of Vj. We introduce an exponential function, a 
modified version from the work of Li (1992), to measure the 
goodness of such mapping (vi  Vj). Using the relative distance 
attribute as an example, the goodness of the local fit can be 
measured with H (vi, Vj): 
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where σ is some parameter, ri,{s, …,q} is the relative distance from 
vi to its neighbors in Gim, Rj,{p, …,q} is the relative distance from 
Vj to its neighbors in Gdb.  
 
Use Figure 2 as an example. Let’s assume we are considering 
labeling v2 for V1 in the process. According to Eq. 5, the 
summation component in H (v2, v) includes two ingredients 
since v2 has two adjacent vertices v1 and v4. Specifically, 
relative distance r21 is compared with all relative distance R1t, 

t{2,3,4}) and the most proximate one (say t=2) is used to 
calculate the absolute difference as one ingredient. The relative 
distance r24 is then compared with the rest of relative distance 
R1t, t{3,4}) and the most proximate one (say t=4) is used to 
calculate the absolute difference as the second ingredient. With 
relative distance attribute and adjacency constraints, the vertex 
(t=3) in neighborhood of V1 matches no neighbors of v1. We 
assign it to match null, a special label in Vdb. 

Gim 

v1 

v2 

v3 

v4 

Gdb 

V1 

V2 

V3 

V4 

V5

 
 

Figure 2. Two graphs used for exemplifying local similarity 
measure 

 
The novel feature of this local consistency measure H is its 
compound exponential structure, which distinguishes it from 
many alternatives in the literature. The underlying advantages 
are that the constructed H function will not be affected by the 
presence of noise (i.e. the additional link V3 in Figure 2) and the 
ambiguity will be reduced as low as possible. Similarly, the 
presence of noise (i.e. additional links) in Vdb would not affect 
our measurement. 
 
4.3 Global Compatibility 

As discussed before, matching two attributed graphs that model 
road networks requires an optimal solution, which maximizes a 
sort of global compatibility. With the constructed local 
similarity H, we use the continuous relaxation labeling method 

introduced in (Hummel and Zucker, 1983; Rosenfeld et al., 
1976) which require no threshold to determine whether a 
mapping is acceptable. As the continuous relaxation-labeling 
framework, probability values other than logical assertions (1 or 
0) are attached to all possible assignments for each vertex in Gdb 
and null vertex. The probability with which label Vim is 
assigned to vertex Vdb (including null) is denoted by p() and 
satisfies: 

},{,,1)(0 nullVVp dbim
u    (6) 

and 
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Let  be all available assignments with Vim to Vdb and null. The 
global compatibility function (using relative distance attribute 
as an example) can be formed as: 
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where vj,vkN(vi) and Vb,VcN(Va). This function is close in 
nature to the global gain in (Li, 1992). Yet, with the data 
structure and attributes we proposed in this work, the 
neighborhood can easily been identified through edges of 
graphs. This is important to network matching as it allows our 
algorithm to determine the local similarity based on the 
topological structure intrinsic inside the data itself, not any ad 
hoc information. Thus, the optimal labeling of Gm with Gdb will 
be the one that maximizes the above function: 

)max(*)(   (9) 

The gradient projection algorithm by Hummel and Zucker 
(1983) is used. The advantage of the algorithm lies in its 
projection operator which is based on a theory of consistency 
and still widely used in solving constrained optimization 
problems. An exhaustive discussion and proof can be referred 
to (Mohammed et al., 1983). With the algorithm, we can 
iteratively compute the length and direction of the updating 
vector to update p such that the global compatibility function  
will increase with each updating of p. The iteration terminates 
when the algorithm converges, generally producing an 
unambiguous labeling (or matching). 
 
 

5. EXPERIMENTS 

To evaluate the performance of our approach, experiments are 
performed in MatLab environment to find the correspondences 
in road networks from the high-resolution imagery and GIS 
vector data, where the two data sets present typical matching 
conditions for registration. 
 
The used imagery and vector data are queried from the National 
Map Seamless Server1. The imagery has spatial resolution of 
0.5m that covers some area of the county of Prince William, 
VA and has been orthorectified. The vector data covers larger 
area than the imagery and presents unknown orientation 
differences. The two datasets are shown in Figure 3a and b 
respectively.  

                                                                 
1 http://seamless.usgs.gov/ 
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(a) The imagery 

  
 

(b) The Vector data 
 

Figure 3. The imagery and vector data with differences in 
orientation, scales and coverage 

 
Figure 4 demonstrates aforementioned differences when the 
image is directly superimposed on the vector data.  
 
From the datasets, two attributed graphs can be derived and 
they are marked as G and H below (Figure 5), where G 
represents the attributed graph built from the road network from 
the satellite image; H represents the attributed graph built from 
the road network in the vector data. 
  
For each graph, we derive two types of attribute based on the 
datasets: degree on each node and relative distance between 
nodes. Before proceeding to the matching process, we analyze 
these properties using entropy analysis. The analysis is 
significant as it allows us to quantitatively measure the 
distribution of attribute values, an important factor for reducing 
local ambiguity. Based on the analysis, it comes to a decision 
about whether or not both types of attribute should be used or 
additional attributes are needed. Figure 6 shows their 
distribution graphically ordered by nodes and their 
corresponding entropy using Eq.4. Node 7 in Fig. 5a shows a 
salient degree-4 (there are four road segments in the image 
incident to the intersection represented by node 7) from others. 
Similarly, node 4 and 9 in Fig. 5b. Because the majority of 
nodes in (a) and (b) have close degrees (same degree in this 
case), accordingly their entropy used to evaluate the distribution 
is very small, close to zero. This means the degree attribute is 
not appropriate to use for matching due to their proximate 
values. The relative attribute, however, has great entropy (96.92 
and 67.76), representing distinguishable patterns locally and 
thus appropriate and sufficient for matching.  
 
 

 
 

Figure 4. Superimpose the vector data on the image 
 

      
 

Figure 5. Attributed graphs G (left) from the imagery and H 
(right) from the vector data 

 
Table 1. Initial weights for matching 

 
 1 2 3 4 5 6 7 8 9 

1 0.0769 0 0.0769 
2 0.0769 0 0.0769 
3 0.0769 0 0.0769 
4 0 0.5 0 
5 0.0769 0 0.0769 
6 0.0769 0 0.0769 
7 0.0769 0 0.0769 
8 0.0769 0 0.0769 
9 0 0.5 0 

10 0.0769 0 0.0769 
11 0.0769 0 0.0769 
12 0.0769 0 0.0769 
13 0.0769 0 0.0769 
14 0.0769 0 0.0769 
15 0.0769 0 0.0769 
null 0 

… … … … … 

0 0 

…

 
It should be noted that, although the degree attributes score low 
entropy, they still include useful information for initiating the 
assignments to start the matching process. The underlying 
rationale lies in that a matched pair mostly likely has the same 
number of degree. Our initial assignment shows in Table1. The 
numbers in blue denotes nodes from graph G and the numbers 
in red are nodes from graph H. The special node in H is 
represented as null. Note that the sum of each column is equal 
to 1, satisfying the condition addressed by Eq. 7.  
 



 

A special joint symposium of ISPRS Technical Commission IV & AutoCarto 
i n  c o n j u n c t i o n  w i t h  

ASPRS/CaGIS 2010 Fall Specialty Conference 
November 15-19, 2010 Orlando, Florida 

G H 

 
Epdegree=0.22 

 
Epdegree=0.25 

 
Eprelative_distance=96.92 

 
Eprelative_distance=67.76 

a. b. 

c. d.

 
Figure 6. Graphical view of derived attributes over each node 

(x-axis shows the node # as shown in Figure 5) 
 
We demonstrate the novel feature of the local consistency 
measures in Figure 8, where stars are global compatibility over 
iteration with relative distance attribute. One may note that the 
global compatibility has a steep increase with first iteration. 
This characterizes the local similarity measurement we 
proposed having the advantage to fast approach the optimal 
matching locally without much ‘confusion’.  
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Figure 8. Variation of the global compatibility over iterations 

 
To evaluate the performance of our approach when errors 
present in the data, we assume there is a new road appearing in 
the image between intersections denoted by node 1 and node 8 
in graph G, but the vector data hasn’t been updated yet. There is 
no edge connecting node 8 and 10 in graph H. Furthermore, 
there is a road in the vector data between intersections denoted 
by node 3 and 5 in graph H. This road on the image, however, 
is missed due to extraction errors. Figure 9 shows that, under 
presented errors, the global compatibility present a similar 
characteristic (steep increase) as in Figure 8, representing a 
distinct feature of our approach. 
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Figure 9. Comparison under inexact matching 

 
Both matching results are summarized in Table 2, where the 
correspondences between nodes as a result of the network 
matching are shown column-wise. It can be easily seen that all 
nodes were matched correctly despite of coverage and 
orientation differences, as well as presented errors between 
these two networks. 
 

Table 2. Matching result from both experiments 
  

 Matching result 
G 1 2 3 4 5 6 7 8 9 
H 8 7 6 14 13 12 9 10 11 

 
 

6. CONCLUSIONS 

This paper introduced a novel matching approach to the 
registration problem based on graph matching. It offers the 
ability to utilize information about the topology and geometry 
of a network to establish correspondence. The ability to utilize 
both allows us to reduce the ambiguity of local consistency, 
especially when inexact matching takes place. The statistical 
analysis of attributes provides a quantitative measure to support 
the attribute selection in matching. Furthermore, the approach 
does not require user input for the acceptance of local similarity, 
other than detecting road intersections through image 
processing. Thus our approach offers a robust and general 
solution to the image-to-x registration problem using networks.  
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