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ABSTRACT:

A five dimensional (5D) geospatial dataset consists of several multivariable 4D datasets, which are sequences of time-varying volu-
metric 3D geographical datasets. These datasets are typically very large in size and demand a great amount of resources for storage
and transmission. In this paper, we present a lossy compression technique for 5D geospatial data as a whole, instead of applying 3D
compression method on each 3D slice of the 5D dataset. Our lossy compression technique efficiently exploits spatial and temporal
similarities between 2D data slices and 3D volumes in 4D oceanographic datasets. 5D-ODETLAP, which is an extension of, but es-
sentially different from, the Laplacian partial differential equation, solves a sparse overdetermined system of equations to compute
data at each point in (x,y,z,t,v) space from the data given at a representative set of points. 5D-ODETLAP is not restricted to certain
types of datasets. For different datasets, it has the flexibility to approximate each one according to their respective data distributions
by using suitable parameters. The final approximation is further compressed using Run Length Encoding. We use different datasets
and metrics to test 5D-ODETLAP, and performance evaluations have shown that the proposed compression technique outperforms
current 3D-SPIHT method on our selected datasets, from the World Ocean Atlas 2005. Having about the same mean percentage error,
5D-ODETLAP’s compression result produces much smaller maximum error than 3D-SPIHT. A user-defined mean or maximum error
can be set to obtain desired compression in the proposed method, while not in 3D-SPIHT.

1 INTRODUCTION

Current advances in data-acquiring technology in geospatial fields
have greatly facilitated the research in Geology and other inter-
disciplinary studies. For example, the National Oceanographic
Data Center (NODC) and National Geophysical Data Center (NG-
DC), which are operated by the National Oceanic and Atmo-
spheric Administration (NOAA) of the U.S. Department of Com-
merce, serve as national repositories and dissemination facili-
ties for global geospatial data. They provide a record of earth’s
changing environment, and support numerous research and op-
erational applications. Specifically, they keep records of various
geospatial data including temperature, salinity, nitrate and silicate
of oceans(Garcia et al., 2006, Locarnini et al., 2006, Antonov et
al., 2006). These data are often collected and stored in high di-
mension, usually in four dimension (4D) or five dimension (5D).

A 5D dataset consists of several 4D datasets, which keeps records
of different environmental variables in the same area at a cer-
tain period of time. Then, these 4D geospatial datasets describe
temporal changes of geological variables, such as temperature of
ocean water, as a sequence of three-dimensional (3D) volumes.
Similarly, a 3D geospatial dataset is a sequence of two dimen-
sional (2D) datasets in the same 2D area. As the dimension
goes higher, the amount of data will consequently increase, which
makes storage and transmission of these data more difficult than
ever before even at today’s internet speed. Without effective way
of utilizing these data, it’s a waste of time and effort to collect
and store them.

Current improvements on data storage and communication meth-
ods are minimizing the cost of storing and transmitting large amo-
unts of geospatial data. Nevertheless, as the research goes on in

this field, the decrease rate in storage and bandwidth costs will not
be able to surpass the rate of growth in high dimensional geospa-
tial data. Furthermore, the emergence of real-time rendering of
3D earth environment such, as Google Earth, makes high dimen-
sional geospatial data compression a significant area of research.
Unfortunately, not much effort in this field has been made, and
work still needs to be done. Therefore, it’s still a challenge to de-
sign a progressive and effective compression scheme for efficient
storage and transmission of rising high dimensional geospatial
data.

Figure 1: 180 × 360 × 24 Monthly Temperature (January) Data
in WOA05

For example, monthly temperature(Locarnini et al., 2006) in World
Ocean Atlas 2005 is of size 180 × 360 × 24 × 12, which was
compressed with gzip. Figure 1 visualizes January’s data derived
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from this monthly temperature data.

In this paper, we use a 5D Over-determined Laplace Partial Dif-
ferential Equation (5D-ODETLAP) to progressively compress 5D
marine data. Firstly, for a sequence of 4D data in 5D space,
we construct over-determined systems using a specially designed
point selection method. Then we solve these systems with an
over-determined PDE for a smooth 5D approximation. This ap-
proximation is likely to have large errors due to a limited num-
ber of selected points. But we can improve this approximation
by adding points which have the largest error with respect to the
original 5D marine data. After this, we run 5D-ODETLAP again
on the augmented representation for each 4D data to obtain a bet-
ter 5D approximation. These two steps are run alternatively until
we reach a stopping criteria, which is often a user-specified max-
imum error.

2 PRIOR ART

Current compression methods have two categories: lossy com-
pression and lossless compression. While lossless techniques al-
low exact reconstruction of the original data, they usually can’t
achieve high compression ratios. Some data, like 3D medical im-
ages, are always stored in lossless format because of a possible
false diagnostic and its legal implications. But for geospatial data,
we can still conduct data analysis and obtain satisfying informa-
tion from it as long as we keep the compression error relatively
small.

Various compression schemes have been proposed for 2D, 3D and
4D gridded data. Most of those schemes are focused on 2D im-
ages and 3D image sequence data, especially in multidimensional
medical images (Menegaz and Thiran, 2002, Kim and Pearlman,
1999). These 3D compression methods either compress image
slices independently (ignoring the correlation in the third dimen-
sion), or compress the whole 3D volume using 3D wavelets trans-
form, such as 3D-SPIHT (Kim and Pearlman, 1997), with which
we will compare our method later in this paper. In the former
case, JPEG2000 (Skodras et al., 2001) and JPEG-LS (Weinberger
et al., 2000) are the most popular ones.

For 4D data, including videos and time-varying 3D geospatial
volumes, various methods have been proposed to compress them,
including 4D wavelets (Yang et al., 2006), run length encoding
(RLE) (Anagnostou et al., 2000) and discrete cosine transform
(DCT) (Lum et al., 2001). Similar to 3D compression, a 4D
dataset can also be treated as a sequence of 3D volumes; thus
those 3D compression methods can be applied. But there are
methods which exploit the temporal redundancy between vol-
umes and usually outperform their 3D counterparts. These in-
clude video compression methods using motion compensation
technique (Sanchez et al., n.d.) and 4D-SPIHT, a wavelet based
method. These methods using different schemes to compress
the temporal dimension, utilize the data correlation between vol-
umes; thus they have a higher compression ratio.

Unfortunately, there aren’t many prior works done in compress-
ing 5D dataset mainly because the difficulty in compression in-
creases significantly from 4D to 5D, and 4D compression meth-
ods can also be applied on 5D data individually.

3 5D-ODETLAP

3.1 Definition

5D-ODETLAP, or Five Dimensional Over-Determined Laplacian
Partial Differential Equation, is an extension of the Laplacian

PDE δ2z
δx2 + δ2z

δy2 = 0 to an overdetermined linear system (Stookey
et al., 2008, Xie et al., 2007). In this overdetermined linear sys-
tem, every point, known or unknown, has an equation setting its
value as the average of its 4, 5, 6, 7 or 8 neighbors in four dimen-
sional space. The equation is:

ui,j,k,t = (ui−1,j,k,t + ui+1,j,k,t + ui,j−1,k,t

+ui,j+1,k,t + ui,j,k−1,t + ui,j,k+1,t

+ui,j,k,t−1 + ui,j,k,t+1)/8

(1)

for every point, which means the 4D volume satisfies 4D Lapla-
cian PDE,

δ2u

δx2
+

δ2u

δy2
+

δ2u

δz2
+

δ2u

δt2
= 0 (2)

Unfortunately, this simple 4D Laplacian PDE will only have one
solution, which is probably not the optimal one for different data
distribution. On the other hand, the solution of laplace equation
doesn’t have a relative maximum or minimum in the interior of
the solution domain, which is defined as the maximum princi-
ple(Sewell, 2005).

In order to generate local maximum/minimum values, we first
apply the Equation 1 to every non-border point and then add one
equation for each known point in a set S:

ui,j,k,t = hi,j,k,t (3)

where hi,j,k,t stands for the known value of points in S and ui,j,k,t

is the “computed” value as in Equation 1.

So now we have more equations than points in the data, and this
means the linear system is over-determined. A least-square so-
lution to this system will be computed, and since it may not be
consistent, we obtain an approximate solution instead of an exact
solution (which is impossible) by keeping the error as small as
possible. Equation 1 sets the value at each point to be the average
of its neighbors, which makes the data distribution in 4D more
“smooth” and continuous. In the meantime, Equation 3 keeps the
value at each known point equal to its known value. So for every
known point, we can choose the relative importance of data conti-
nuity versus accuracy through a continuity parameter R added to
Equation 3 when solving this over-determined system(Franklin,
2000).

48x48x24x12x4  
5D matrix from 
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Figure 2: 5D-ODETLAP Algorithm Outline

In our algorithm, factor R is used to weight Equation 1 relative to
equation 3 for all known points. If R is small, the system will ap-
proximate a determined solution and data accuracy will be main-

A special joint symposium of ISPRS Technical Commission IV & AutoCarto 
                                                      in conjunction with 
                                ASPRS/CaGIS 2010 Fall Specialty Conference 
                                       November 15-19, 2010 Orlando, Florida 



tained. On the other hand, if R is very large, the system will pro-
duce a data distribution with no divergence, completely ignoring
all the known values. The reconstructed 4D volume doesn’t nec-
essarily have the same value on those known points, but since we
already know those values, we can always keep them and replace
the reconstructed values in those known points’ positions. So
now we have an approximation with exact values on those known
points and reconstructed values for all unknown points. Since a
5D dataset essentially consists of a sequence of 4D volumes, we
apply the above approximation on each 4D volume dataset and
then refine this approximation in 5D space to minimize the com-
pression error.

3.2 Algorithm Outline

Input: 5D −GeospatialData : V
Output: PointSet : S
S = InitialSelection(V );
foreach 4D volumes s in S do

vReconstructed = 4DReconstruction(s);
add vReconstructed in set V Reconstructed;

end
while MeanError > Max MeanError do

S = S ∪Refine(V, V Reconstructed);
foreach 4D volumes s in S do

vReconstructed = 4DReconstruction(s);
add vReconstructed in set V Reconstructed;

end
end
return S

Algorithm 1: 5D-ODETLAP algorithm pseudo code

An algorithm outline of 5D-ODETLAP is given in Figure 2 along
with the pseudo code in Algorithm 1. First, initial point selection
is conducted to produce point set S. We use random selection
in practice. After that, an initial approximation of 5D data is
computed using Equations 1 and 3.

This approximation is done by individually applying 4D recon-
struction on each 4D dataset within the 5D dataset and then merge
them back together to form a 5D approximation. Then we require
users to set a stopping condition based on an error metric. In prac-
tice, we use the average mean percentage error of all 4D datasets
within the 5D dataset as the stopping condition, because each 4D
dataset has different data range and represents completely differ-
ent practical meaning in GIS fields. If this condition is not sat-
isfied, we calculate all the percentage errors on all reconstructed
points in the 5D dataset.

We then select k (k≥1) points with the largest percent error with a
restriction called “Four Dimension Forbidden Zone” to optimize
our selection. These selected points will be added into the exist-
ing point set S, and this extended set is used again to compute a
more refined 5D approximation by applying 4D reconstruction on
each 4D dataset and putting them back together. Again, this 5D
approximation will be evaluated by the defined stopping criteria
to see if condition is satisfied. These two steps run alternatively
as the algorithm proceeds. A better approximation is obtained as
the total size of point set S increases and the total error converges.

After we have a satisfying point set S, further compression is done
by using Run Length Encoding to compress the 5D coordinates
(x,y,z,t,v), where v represents the variable of that 4D dataset. For
details, please refer to the paper (Li et al., in-press).

Forbbiden Zone Radius

abandoned point

point being considered

abandoned point

point being considered

point being considered

added point

Figure 3: 4D Forbidden Zone check. The red sphere represents
the forbidden zone of the red point in the center. The green point
are abandoned. The blue ones are being considered.

3.3 Four Dimension Forbidden Zone

The naive way of selecting refined points would be to pick the
first k(k≥1) points with largest percentage error. But this strategy
needs further improvement in that those selected points are often
clustered due to abrupt value change within a small 4D region. In
our experiment, if one point with large error is selected, it’s most
likely that its immediate neighbors are erroneous as well and thus
will be selected. So this introduces redundancy in some regions,
which we need to minimize in order to achieve high compression
ratio. The Four Dimension Forbidden Zone is the restriction we

Data divided into 4x4 squares

Second run on overlapping 3x3 area

Reconstruction

Reconstruction Reconstruction

Reconstruction

ReconstructionReconstruction

ReconstructionReconstructionReconstruction

Reconstruction

Reconstruction Reconstruction Reconstruction

Reconstruction

Reconstruction

Reconstruction

Reconstruction

Figure 4: 2D illustration of Dividing into Boxes method. Re-
construction is done individually for each square in first run as
marked by grey squares. The 50% overlapping blue squares also
have approximation separately for each square and we take a
weighted average of both values in the overlapping area (blue)
to produce a good approximation.

put upon the process of adding new refined points: the candidate
point’s spatial local neighbors in 4D space will be checked to test
if there is one or more existing refined points added in the same
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iteration. If yes, this candidate point is abandoned and the point
with the next biggest error is tested until we add a predefined
number of points. Figure 3 is a 2D illustration of a forbidden
zone. The red point has been added in this iteration, and the circle
around it is the forbidden zone. The green points are in the circle
so they are not included. All the blue points are outside the zone
and thus have the possibility to be included in this iteration if they
are not in other added points’ forbidden zone.

3.4 Implementation

3.4.1 Speed-up Solving such a large linear system can be time-
consuming and requires considerable memory. Since this linear
system is overdetermined, the underlying solver uses sparse QR
decomposition in our implementation in Matlab. It runs much
slower than the Cholesky factorization, which solves only Sym-
metric Positive Definite linear systems.

The Normal Equations is introduced in (Li et al., in-press). It
transforms the overdetermined linear system Ax = b into an
equivalent system:

AT Ax = AT b (4)

Now we can use Cholesky factorization to solve it because AT A
is Symmetric Positive Definite. By applying this method on 5D-
ODETLAP, the running time of our algorithm significantly de-
creases. For a performance comparison between original solver
and transformed solver using the Normal Equations method and
technical details, refer to (Li et al., in-press).

Solving this large linear system still requires much memory and
the running time is not fast enough to be applied on large real
world data. So we use a divide-and-conquer strategy, Divid-
ing into Boxes to enable 5D-ODETLAP to be applied on large
dataset. We also used similar approach, except that now the sub-
box is a 4D box instead of 3D. A 2D illustration is presented in
Figure 4.

Data1
Method Random1 Random2 Grid Border
Points 10527 10227 10356 10344
Mean Err(%) 2.240 2.302 3.040 2.460
Max Err(%) 36.33 46.67 58.76 49.60

Data2
Method Random1 Random2 Grid Border
Points 14040 14058 13968 14088
Mean Err(%) 2.341 2.354 3.610 3.066
Max Err(%) 59.360 59.636 58.358 59.900

Table 1: This table shows the consequent initial approximation
of using different initial point selection methods on two datasets.
Data1 has 99.82% filled points and Data2 has only 58.01% filled
points. Random1 and Random2 are two runs on the same dataset
using Matlab’s random method.

3.4.2 Initial Point Selection Different initial point selection
strategies may result in large differences in the quality of con-
sequent approximation. Our above Dividing into Boxes strategy
involves doing reconstruction in smaller 4D boxes and then merg-
ing them back together to form a complete 4D reconstruction.
So it’s inevitable that on the borders of these small 4D boxes,
we don’t have enough information from the data to produce a
good approximation even though we alleviate this problem by
taking weighted average of two different recontracted values at
one point(Li et al., in-press). To have a satisfying initial ap-
proximation, we created a Border Selection initial point selection
method, which gives priority to points on borders of smaller sub-
boxes, and then use regular grid selection inside each sub-boxes

to get enough number of point initially. Then we compared this
method with the regular grid selection and the random selection
method and we kept the number of initially selected point to be
approximately the same.

We can see from Table 1 that the random selection method ac-
tually has a surprisingly smaller mean and max percentage er-
ror on both datasets. Although two runs of random selection
have slightly different results, the number of points selected by
all methods are approximately the same and random methods in
general are better than regular grid and Border Selection methods.
Note that since each 4D dataset in the 5D datset has different data
range and different practical meaning, we take the average of all
4D datasets’ mean percentage error as the mean percentage error
for the whole 5D dataset. Similarly, we also take maximum of
all 4D datasets’ maximum percentage error as the maximum per-
centage error for the whole 5D dataset. This metric is used in the
entire paper.
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Figure 5: This figure shows that as the iterative process proceeds,
the number of points added to each 4D dataset within the 5D data.
Each 4D data is of size 48× 48× 24× 12 and the test 5D data is
of size 48× 48× 24× 12× 4.

4 RESULT AND COMPARISON

4.1 Experiment on WOA05

Our experiment of 5D-ODETLAP is based on a real world marine
5D dataset–World Ocean Atlas 2005 (WOA05), which is pro-
vided by NODC (National Oceanographic Data Center). WOA05
is a set of objectively analyzed (1 degree grid) climatological
fields of in situ temperature, salinity, dissolved oxygen, Appar-
ent Oxygen Utilization (AOU), percent oxygen saturation, phos-
phate, silicate, and nitrate at standard depth levels for annual, sea-
sonal, and monthly compositing periods for the World Ocean. In
our experiment, we derive four 48×48×24×12 4D datasets for
fields including Temperature, Apparent oxygen utilization, Per-
centage oxygen saturation and Dissolved oxygen. So this derived
test dataset has dimension of 48× 48× 24× 12.

Table 2 shows information about the raw 5D data from WOA05.
Besides smooth variable R and initial point selection strategy,
other parameters can also affect the effectiveness of our method.
These are points added at each iteration and size of forbidden
zone. Aiming at achieving high compression ratio while keep-
ing the errors beneath a tolerant level, we approach the optimal
parameters as close as possible for the test 5D dataset.
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Fixed Mean Percentage Error
Method 5D-ODETLAP 3D-SPIHT

Mean Err(%) 1.6803 (1.6408, 1.6215, 1.8281, 1.6310) 1.6788 (1.6399, 1.6230, 1.8258, 1.6263)
Max Err(%) 29.2318 (6.7723, 29.2318, 8.7549, 6.2170) 32.7897 (31.0172, 26.3545, 29.1149, 32.7897)

Compressed Size(byte) 96195 192204
Compression Ratio 110.37 : 1 55.24 : 1

Fixed Maximum Percentage Error
Method 5D-ODETLAP 3D-SPIHT

Max Err(%) 29.2318 (6.7723, 29.2318, 8.7549, 6.2170) 32.3055 (8.2964, 32.3055, 9.9796, 6.7117)
Mean Err(%) 1.6803 (1.6408, 1.6215, 1.8281, 1.6310) 0.9637 (0.6104, 1.7630, 0.8855, 0.5962)

Compressed Size(Kb) 96195 389495
Compression Ratio 110.37 : 1 27.26 : 1

Table 3: This table shows the performance comparison between 5D-ODETLAP and 3D-SPIHT on the derived dataset, which is the
same with Data2 dataset in Table 1. The upper part of this table shows the results with approximately same mean percentage error
of both methods; lower part shows results with approximately same maximum percentage error. Random initial selection is used for
5D-ODETLAP. The four values within brackets in the rows “Mean Err” and “Max Err” represent respectively values of each 4D dataset,
including apparent oxygen utilization, percentage oxygen saturation, dissolved oxygen and temperature. Mean error is the average of
all four 4D datasets’ mean percentage error and similarly, Max error is the maximum of all four 4D data’s maximum percentage error.
Each point uses 4 bytes to store its value in single precision; thus total size of each dataset is 10.13Mb.

Variable Unit Data Range Size(Mb)
Temperature ◦ [-2.10, 33.23] 71.20
Dissolved oxygen mll−1 [0, 11.80] 71.20
Apparent oxygen uti-
lization

mll−1 [-4.11, 8.42] 71.20

Percent oxygen satu-
ration

% [0, 158.57] 71.20

Table 2: Before compression, these are monthly objectively an-
alyzed climatology datasets on 24 standard depth levels on four
variables. Each point uses 4 byte to store its value in single preci-
sion; thus total size of each 4D dataset is 71.20Mb, which forms
a 5D data of 284.77Mb in total.

Figure 5 shows the number of points increases in each 4D dataset
as we add 300 points with the largest errors in 5D space. The de-
rived test data have size of 48×48×24×12×4. We demonstrate
the iterative process of 5D-ODETLAP in each 4D dataset. It
can be seen from this figure that during each iteration, the points
added in each 4D dataset are not even. Because each 4D data has
different data distribution, it’s possible that the approximation of
one 4D dataset is more likely to have more erroneous points than
others. Figure 5 clearly illustrates this possibility. Consequently,
since the number of points added at each 4D dataset are different,
they tend to have different mean and max percentage errors. Fig-
ure 6 and 7 show that as the points are added, each 4D datasets’
mean and maximum percentage error decrease at different speed,
and priority is given to the datasets with most large errors when
adding points.

4.2 Compression Comparison with 3D-SPIHT

We have illustrated the iterative process of compressing a 48 ×
48× 24× 12× 4 5D dataset above. In our comparison with the
3D-SPIHT method, we use the same derived dataset with each
point caring a single-precision value, stored in 4 bytes each and
resulting in a total size of 10.13Mb. We also apply 3D-SPIHT
on the same dataset in our experiment in order to provide an ob-
jective comparison of the compression performance between two
algorithms. The idea is to compress every 3D blocks of this 5D
data and sum up the size of all compressed 3D data. Since the
first three dimension of this 5D data is 48 × 48 × 24, the length
of each dimension is not an integer power of 2. In order to apply
3D-SPIHT on this 3D block, zero padding is used to extend 3D
block from 48× 48× 24 to 64× 64× 32.

We can see from Table 3 that 5D-ODETLAP outperforms 3D-
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Figure 6: This figure demonstrates the decrease of mean percent-
age error of each 4D dataset within the 5D dataset and the overall
5D dataset, which is the average mean percentage error of all 4D
datasets. Test data is the same as that in Figure 5.

SPIHT in general. Firstly, with approximately same mean per-
centage error in overall 5D dataset and every individual 4D dataset,
5D-ODETLAP has a high compression ratio of 110:1 as shown
in the upper part of Table 3. But the compression ratio of 3D-
SPIHT in this case is only 55:1, which is about half as much as
that of proposed method. Furthermore, the maximum percentage
errors of 5D-ODETLAP in overall 5D dataset and every individ-
ual 4D dataset is a lot smaller than the ones from 3D-SPIHT. In
addition, our method provides users the flexibility to set a desired
maximum or mean percentage error before compression, while
3D-SPIHT can’t.

Secondly, in the lower part of Table 3, if we force the maximum
percentage errors of 3D-SPIHT in overall 5D dataset and every
individual 4D dataset to be approximately the same as, or even
a little worse than, the ones of 5D-ODETLAP, we can see that
5D-ODETLAP has a compression ratio of 110:1, which is almost
four times as much as that of 3D-SPIHT. Since we are propos-
ing a lossy compression method, the maximum error is important
because we need to guarantee, in many application, that the com-
pression’s error is under certain limit. So if we take this into con-
sideration, 5D-ODETLAP is much more better than 3D-SPIHT.
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Figure 7: This figure demonstrates the decrease of maximum per-
centage error of each 4D dataset within the 5D dataset and the
overall 5D dataset, which is the maximum maximum percentage
error of all 4D datasets. Test data is the same as that in Figure 5.

5 CONCLUSION AND FUTURE WORK

Our recent work in 5D Time-varying Multivariable Geospatial
Dataset Compression has been demonstrated in this paper. Our
technique efficiently exploits spatial and temporal redundancies
in 5D geospatial data to achieve high compression ratio. Perfor-
mance evaluation shows that the proposed method achieves great
compression ratio on our test data–WOA05.

We have limited 5D-ODETLAP in the application of compress-
ing 5D geospatial data in this paper. However, the potential of
5D-ODETLAP is far beyond this field. 5D-ODETLAP is cer-
tainly not restricted in geology-related fields, and it provides a
framework for researchers to explore its usability in other fields
which necessitate true 5D compression on large datasets. With
proper parameter settings, 5D-ODETLAP has the ability to ap-
proximate various kinds of 5D data. But this still needs much
more work to adjust 5D-ODETLAP for those specific purposes.

Now 5D-ODETLAP hasn’t taken into account the correlation be-
tween each 4D dataset within the 5D dataset. It only evaluates the
approximation in 5D without taking advantage of possible vari-
able correlations. So the next step is to incorporate the correlation
analysis into 5D-ODETLAP and exploits the redundancy in 5D
space further more to achieve a even higher compression ratio.
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