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ABSTRACT: 

 

Flow measurement techniques determine velocity vector fields in liquid or gas flows. In fluid mechanics, many methods are based on 

seeding particles to visualize the flow imaged by an adequate camera system. The tomo-PIV (tomographic particle image 

velocimetry) technique presented in this paper generates time-resolved volumetric reconstructions of a particle constellation from a 

limited number of synchronized camera views. The advantage of tomo-PIV in contrast to the established 3-D PTV (particle tracking 

velocimetry) technique is its insensitivity to high seeding densities. While 3-D PTV comes with the necessity to detect, identify and 

match individual particles for establishing multi-image and multi-temporal correspondences, tomo-PIV facilitates volume-based 

tracking schemes applied to voxel cuboids filled with particles. The paper presents improved photogrammetric techniques for the 

determination of 3-D flow velocity fields. This includes a multi-camera system configuration and calibration, approaches for a full 

tomographic reconstruction in gas and liquid and 3-D least squares tracking for volume-based tracking in object space. 

 

 

1. INTRODUCTION 

Elsinga et al. (2005) have proposed an approach to 3-D PIV, 

which is based on a tomographic reconstruction of the 

observation volume and subsequent 3-D cross correlation in 

time-resolved voxel data. Tomographic PIV generates a 

tomographic reconstruction of a particle constellation from a 

limited number of camera views, for instance by applying 

Herman and Lent’s (1976) MART algorithm (multiplicative 

algebraic reconstruction technique). 3-D velocity field 

information can be obtained from time-resolved voxel data by 

dividing the data into cuboids of a pre-defined size and tracking 

these cuboids. Herein, 3-D cross correlation is a straightforward 

enhancement when advancing from 2-D PIV to 3-D PIV. 

Disadvantages of both, MART and 3-D cross correlation can be 

seen in the computational effort causing rather long processing 

times.  

 

Putze & Maas (2008) and Maas et al. (2009) have already 

introduced more efficient approaches on volumetric 

reconstruction and particle tracking. This article summarizes the 

efforts of our working group and presents results which prove 

the suitability of photogrammetric techniques in voxel data 

sequences analysis. 

 

 

2. SENSOR AND DATA 

The tomographic reconstruction methods and the cuboid 

tracking have been implemented and tested in two different 

experimental setups. First, a vortex ring in a water tank is 

illuminated by a 3-D laser beam device. A rotating mirror 

generates parallel light sheet planes with a thickness of 10 mm. 

This volume of about (10×10×1) cm3 is recorded by a system of 

four synchronized high speed cameras (1024×1024 pixel, 1000 

fps) equipped with telecentric lenses (Fig. 1 and 2). Neutrally 

buoyant seeding particles are injected into the center of a vortex 

generator. See (Kitzhofer et al., 2009) for detailed specifications 

of this experimental setup. 

 

  

  
Figure 1. Vortex ring at one epoch. 

 

 
Figure 2. Experimental setup with telecentric lenses (Kitzhofer 

et al., 2009). 

 

Using telecentric lenses results in a parallel projection for the 

observed volume. A consideration of multi-media geometries is 
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not necessary for this special case, but the collinearity equations 

have to be adapted to a parallel projection in space: 
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where cc: Focal length 

 x’,y’: Image point 

 ppx,ppy: Principal point 

 Δx’, Δy’: Correction functions 

X0,Y0,Z0: Projection center 

X,Y,Z: Object point 

rr,c: Elements of a rotation matrix R 

 

The four-camera system was calibrated by taking image 

sequences of a target, which was moved through the 

observation volume by a 3-D translation stage. From these 

reference positions and their respective image coordinates, the 

orientation parameters of each camera were determined in a 

parallel projection telecentric optics camera model (Eq. 1). The 

transition of the optical paths from the camera through the plain 

glass interface into the water could be neglected due to the fact 

that the cameras were equipped with telecentric lenses 

warranting a parallel projection rather than central perspective 

projection.  

 

In a second experimental configuration, different particle 

constellations in a water basin are illuminated by a fiber optic 

light source and are captured by a four-camera-recording-

system (1000×1000 pixel; Fig. 3). Herein, the cameras are 

equipped with central perspective lenses and are able to capture 

images with an interval of a few microseconds between two 

images in a triggered double exposure mode.  

 

 
Figure 3: Experimental setup with central perspective lenses. 

 

If used in one medium only, the well-known collinearity 

equations describe the image ray paths: 
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This collinearity of the image point, the projection center and 

the object point is not given if particles are observed in liquids 

by central perspective lenses. To consider the multimedia 

geometry, two kinds of ray tracing approaches are implemented; 

a forward (FRT) and a backward ray tracing (BRT).  

 

For a spatial intersection, the complete image ray path has to be 

reconstructed (Fig. 4): (i) Intersect the image ray with the first 

interface Σ1 and calculate the piercing point P1. (ii) Calculate 

the angle of incidence α1 resp. the angle of refraction α2 in 

accordance to Snell’s law using the refraction indices of the 

media air and glass. (iii) Calculate the refracted direction vector 

using the incoming direction vector, the surface normal vector 

of P1 in Σ1 and the relative refractive index. (iv) Repeat i-iii for 

the second refraction at the following interface Σ2. (v) Finally, 

the coordinates of an object point X can be calculated by 

intersecting the reconstructed ray with a desired depth layer 

resp. with two (or more) other ray paths. For a spatial resection 

(BRT) the coordinates of the piercing points P1 resp. P2 have to 

be calculated sequentially in an iterative manner by solving a 

non-linear system of equations of conditions. These constraints 

are: (i) The piercing point P1,2 is located on the plane Σ1,2. (ii) 

Snell’s law has to be fulfilled. (iii) The normal vector of P1,2 in 

Σ1,2 as well as the incident and reflected ray are coplanar. A 

detailed mathematic description for FRT and BRT including all 

necessary equations is given in (Mulsow, 2010). 

 

 
Figure 4. Multimedia geometry. 

 

Mulsow’s (2010) flexible multimedia bundle approach is used 

to determine the interior and exterior camera parameters as well 

as the media and interface parameters. The latter, namely the 

refractive indices and the normal vectors of the planes, are 

necessary to reconstruct the image ray paths through the 

different media gas, glass and liquid as described above.  

 

 

3. VOLUMETRIC RECONSTRUCTION 

3.1 Principle 

Tomographic particle image velocimetry (Tomo-PIV, Elsinga et 

al., 2005) generates a tomographic reconstruction of a 3-D 

particle constellation from typically four camera views. and has 

the potential to solve the spatial resolution limit in 3-D PTV 

(particle tracking velocimetry), which is set by ambiguities 

occurring at high seeding densities. A reconstruction can be 

performed by a MART (multiplicative algebraic reconstruction 

technique; Herman & Lent, 1976): 

1. Project every voxel into the first image space, using the 

model equations 1 resp. 2. The voxel gets the gray value GV 

obtained by interpolation the gray value gv1 from the 

corresponding pixel. (Fig. 5, left) 

P1 

X0 

α1 

α2 

* 
x‘ 

X 

α3 

 air 

 

 

 

 glass 

 

 

 

 liquid 
P2 

Σ1 

Σ2 



 

 

 

International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. XXXVIII, Part 5 

Commission V Symposium, Newcastle upon Tyne, UK. 2010 

 

599 

2. Project every voxel into the second image space. Multiply 

the existing voxel gray value GV with the gray value gv2 of 

the corresponding pixel. (Fig. 5, right) 

3. Proceed with all other camera views j. 

Finally, the voxel space will contain multiplicatively 

accumulated image intensity information of the instantaneous 

particle constellation. It is obvious, that only voxels at valid 

particle positions will show high values. Repeating the MART 

for each epoch results in a time-resolved 3-D voxel space 

representation of the object space. Disadvantages of a pixel-

wise reconstruction and the final realization by the MART can 

be seen in the computational effort.  

 

 
Figure 5: Principle of a tomographic reconstruction (Putze & 

Maas, 2008) 

 

3.2 Improvements 

Improvements can be seen in the radiometric as well as 

geometric reconstruction process and will be presented and 

discussed in the following sub-sections. 

 

Algebraic Reconstruction Technique 

 

 To fill-up the voxel space with gray value information, Herman 

and Lent’s MART can be replaced by a MinART (minstore 

algebraic reconstruction technique; Maas et al., 2009) applying 

a minimum operator rather than a multiplication to the gray 

values of all camera pixels in each voxel. A 3-D particle 

constellation can then easily be obtained by a thresholding in 

voxel space. 

 

Volumetric Reconstruction in Gas 

 

For a volumetric reconstruction in gas, the process bases on a 

multiple projective transformation of each camera view into 

each depth layer of a voxel representation of the object space. 

Compared to pixel-wise line-of-sight based implementations, 

this approach saves plenty of computation time. After the 

initialization of the voxel space with an adequate resolution, the 

calculation of the corresponding image coordinates of each 

voxel of each depth layer i for each view j is performed by 

either using homogeneous coordinates as suggested by Putze & 

Maas (2008) or even more straightforward by utilizing the 

projective transformation directly: 
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In homogeneous coordinates, it is sufficient to go through the 

transformation for the corner voxels of a depth layer i only. All 

other image coordinates can be obtained by a bilinear 

interpolation. See (Putze & Maas, 2008) for a detailed 

mathematic description. 

In the second case, the projective transformation model can be 

solved directly by taking the four corner voxel of each depth 

layer i. All other image coordinates can be obtained by inserting 

the corresponding set of parameters into Eq. 3. 

 

A layer-wise reconstruction can be performed with orthographic 

projections, too. In comparison to the use of a projective 

transformation, the determination of correspondences between 

voxel and pixel for each camera view is even more 

straightforward. Again, only the corner voxel of a depth layer 

have to be transformed in a discrete way by using the according 

model equation 1. Due to orthographic projections, all other 

image coordinates can be obtained by a bilinear interpolation. 

 

Volumetric Reconstruction in Liquid 

 

For a volumetric reconstruction in liquid, the layer-wise 

rectification approaches are not feasible anymore. To avoid a 

throwback to a voxel-wise reconstruction from object to image 

space, the image rays originating in each pixel of each camera 

are intersected with each layer of the voxel space, taking into 

account the fact that each ray is twice broken at the air-glass and 

glass-water interfaces (Sec. 2). Though this solution is 

performed pixel-wise, it is quite fast. A huge improvement of 

the computation time can be achieved by thresholding the 

images before the voxel space transformation, performing the 

ray tracing only for pixels above the threshold. Obviously, the 

use of MinART is not feasible here because not every pixel will 

be projected into the voxel space. As an alternative, the MART 

can be used.  

 

Further, a volume-wise transformation of each image content 

into the voxel space can be performed by the determination of 

the parameters of a polynomial with three variates in X, Y and Z 

(Eq. 4). Consequently, the use of the improved MinART is 

feasible again to map the image content into the actual depth 

layer. 

 

 



 ,,,' ZYXax     (4) 

 

To solve the transformation model of Eq. 4, the image 

coordinates of a sufficient amount of control points are 

calculated directly using the collinearity equations 2 plus 

multimedia correction. The distribution of those control points 

can be seen in analogy to the distribution of ground control 

points of a set of aerial photographs for a block adjustment; 

namely a dense pattern along the edges of the voxel space and 

some single points in the center of each depth layer. The 

corresponding image coordinates of all other voxels can then be 

efficiently calculated by solving Eq. 4 using the set of 

parameters determined prior. 

 

3.3 Reconstruction Results 

The following Fig. 6 shows the reconstruction results at one 

epoch of a vortex ring in a water tank, illuminated by one of the 

10 thickened laser light sheets (Sec. 2). The volumetric 

representation is 278×1112×944 voxel. Each voxel corresponds 

to (90 µm)3.  
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Figure 6. Voxel space of the volumetric reconstruction of a 

vortex ring at one epoch.  

 

All voxels with gray values less than 15 were eliminated for a 

better visual representation. Further, the right of Fig. 6 is shows 

a reduced resolution of 10:1. The section in the left is at full 

resolution 1:1. 

 

The numeric results of the different geometric reconstruction 

methods do not differ, which means that the accuracy of the 

image ray path reconstruction only depends on the accuracy of 

the calibration routine.   

 

 

4. VOXEL SPACE TRACKING 

4.1 3-D Least Squares Tracking 

Eulerian 3-D velocity field information can be obtained by 

volume-based tracking techniques applied to time-resolved 

voxel space representations. Here, 3-D least squares tracking (3-

D LST) forms a rather interesting alternative to conventional 3-

D cross correlation. 3-D LST is a volumetric tracking technique, 

which is adaptive to cuboid deformation and rotation. It 

minimizes the sum of the squares of voxel value differences by 

determining the coefficients of a 3-D affine transformation 

between cuboids at consecutive time steps. In addition to the 

three displacement vector components, the 12 parameters of the 

3-D affine transformation in 3-D LST contain scale, rotation 

and shear information. This allows for a higher precision and 

reliability in case of velocity gradients in the interrogation 

volume. Moreover, these parameters enable the determination 

of a shear tensor for each interrogation cube. When applied to 

liquid flow data, an incompressibility constraint is introduced to 

force the volume of a cuboid to remain constant during the 

iterative transformation. The result of 3-D LST applied to 

sequences of tomographically reconstructed voxel structures is a 

dense 3-D velocity vector field with additional shear tensor 

information. A more detailed description of the functional 

model of the 3-D LST can be found in (Maas et al., 1994). 

 

4.2 Tracking Results 

A regular grid of 253
 voxel cuboids was defined into the volu-

metric reconstruction gained form Sec. 3 to apply the 3-D LST. 

For each cuboid, the 12 parameters of the 3-D affine transfor-

mation were determined. Parameters, which turned out insigni-

ficant in the significance test, were excluded from the transfor-

mation. A volume constraint was applied to consider the in-

compressibility of the liquid. Outliers in the results were re-

moved in an outlier detection procedure based on the following 

criteria: 

 Affine transformation parameter standard deviation: The 

results of cuboids with standard deviations exceeding a pre-

set threshold were deleted. 

 Convergence behavior: Cuboids with a diverging or oscil-

lating solution were rejected. 

 Vector length: Translation vectors exceeding a preset thre-

shold were eliminated.  

 Neighborhood correlation: The differences of the translation 

vector components between neighboring cuboids were ana-

lyzed. Vectors with deviations from their neighborhood ex-

ceeding a preset limit were eliminated. 

The 3-D LST steering parameters were set on the basis of a-

priori knowledge on the flow and empirically on the basis of a 

series of program runs. The parameters controlling the outlier 

elimination process were set automatically following 3-sigma 

rules. Optionally, gaps in the vector field can be closed by 

neighborhood based interpolation. 

 

 
Figure 8. Cross sections of color-coded velocity in voxel space. 

 

Figure 8 shows a color-coded visualization of selected layers in 

the 3-D LST results. Figure 9 shows the translation vector 

lengths of one half of the vortex ring in a frontal view. As one 

can see, some velocity vectors in the center of the vortex were 

eliminated as potential outliers. This has to be attributed to the 

finite cuboid size and the fact that the 3-D affine transformation 

parameters can only recover linear cuboid deformations. The 

results might be improved by some parameter fine tuning or by 

a higher seeding density allowing for smaller cuboids. 

 

 

 
Figure 9. Color-coded vector lengths of one half of the vortex 

ring (frontal view, X=const.=13.14 mm). 

 

In the experiment described here, the standard deviation of unit 

weight produced by the least squared adjustment process, aver-

aged over all accepted cuboids, was 2.5 gray values. Tab. 1 
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shows the average standard deviations of the 12 affine trans-

formation parameters. As one can see, the internal precision of 

the cuboid translation parameters is in the order of 1/100 of a 

voxel. However, one has to consider that these internal preci-

sion figures are only realistic if the assumed functional and 

stochastic model is correct (3-D affine transformation and least 

squares adjustment assuming Gaussian error distribution). Fur-

ther verification tests have to be performed to get a better esti-

mate of the real accuracy potential of the method. 

 
 a0 b0 c0 

σi = [vx] 0.0132 0.0105 0.009 

Sig = [%] 100 100 100 
 

 a1 b2 c3 

σi = [vx] 2.4e-3 1.8e-3 1.6e-3 

Sig = [%] 1.95 2.68 3.75 
 

 a2 a3 b1 b3 c1 c2 

σi = [vx] 2.4e-3 2.3e-3 1.7e-3 1.8e-3 1.6e-3 1.6e-3 

Sig. = [%] 4.42 10.47 6.40 10.77 6.07 12.61 

Table 1 Average standard deviations of transformation 

parameters and percentage of significant parameters 

in accepted trajectories. 

 

Furthermore, Tab. 1 gives an overview on the percentage of 

significant 3-D affine transformation parameters over all 

accepted cuboids. As the cuboid translation parameters 

(a0,b0,c0) were not excluded as a rule in the significance tests, 

they all have 100% here. The scale parameters (a1,b2,c3), 

constrained by the incompressibility condition, were only 

significant in relatively few cuboids, while the rotation and 

shear parameters (a2,a3,b1,b3,c1,c2) were significant especially 

in the center of the vortex (Fig. 10). In total, about 20% of the 

cuboids showed at least one significant non-translation 

parameter, proving the adequateness of the 3-D LST approach. 

Further, the gained 3-D LST non-translation parameters can be 

used to estimate the 3-D deformation tensor as well as the 3-D 

rotational tensor directly (Kitzhofer et al., 2010). 

 

 
Figure 10. Velocity vector display with vectors belonging to 

cuboids with at least one significant non-translation 

3-D affine transformation parameter coded in green. 

 

 

5. SUMARY AND OUTLOOK 

The suggested approaches for volumetric reconstructions under 

different experimental setups and 3-D least squares tracking 

turned out to be efficient and accurate volumetric PIV 

techniques.  

 

The sequential projective transformation for volumetric 

reconstructions in gas, resp. in liquids if telecentric lenses are 

used, has the advantage of being fast and graphics card 

implementation friendly. For the more common case of a 

tomographic voxel space reconstruction in liquid using images 

captured with central perspective lenses, a fast pixel-wise 

technique and a polynomial approach were proposed. 3-D LST 

as a cuboid tracking technique has the great advantage of 

inherently determining 12 affine transformation parameters of 

each cuboid. These 12 parameters allow to adapt to linear 

deformations of cuboids, thus improving the precision and 

reliability of cuboid translation parameters. Moreover, they 

form a basis for the determination of a shear tensor for each 

tracked cuboid. The fact that about 20% of tracked cuboids in a 

vortex ring experiment showed at least one significant non-

translation parameter proves the relevance of determining not 

only transformation parameters in cuboid tracking. 

 

Future work will concentrate on a reliable implementation of 

the polynomial approach to reconstruct the whole voxel space 

using one set of higher order polynomial parameters only. 

Beyond, the linear transformation model in 3-D LST can be 

extended by introducing higher order polynomials. The 

resolution of the velocity field may also be improved by 

identifying individual particles in voxel space and tracking 

those particles, using the results of the volume-based tracking as 

good approximation.  
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