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ABSTRACT: 

 

GOTCHA is a well-tried and tested stereo region growing algorithm, which iteratively applies Adaptive Least Square Correlation 

(ALSC) matching to the adjacent neighbours of a seed point in order to achieve a dense reconstruction with sub-pixel precision. It is, 

however, a computationally expensive algorithm as every seed point collected by the ALSC matching produces quadrants or octants 

of new matching candidates. Accordingly, the computational complexity increases exponentially as the stereo matching region 

grows. To expedite the matching process of a traditional GOTCHA, this paper proposes a parallelised stereo region growing 

algorithm called a MT-GOTCHA. To achieve data parallelism, the proposed method initially divides a stereo image from arbitrary 

distributed seed points, which are able to employ multiple GOTCHA’s. In addition, since it estimates a cluster of neighbours using a 

non-linear diffusion equation and performs multiple ALSC processes in parallel to verify local matching candidates, more tiepoints 

are obtained within less processing time. Experimental results demonstrate the proposed method can reduce the processing time of a 

dense reconstruction at a reasonable cost of memory consumption. 

 

                                                                 

*  Corresponding author.   

1. INTRODUCTION 

A major goal of “shape from stereo” is generally concluded to 

obtain accurate and complete reconstruction from an 

overlapping image pair. However, it is often difficult to satisfy 

both conditions at the same time, particularly when dealing with 

images containing a matching ambiguity (e.g., significant scene 

distortion due to a wide baseline separation or containing either 

a repetitive pattern or homogeneous texture). Thus, matching 

accuracy tends to trade off against matching completeness and 

vice versa depending on their application. 

 

For example, a traditional matching approach for close-range 

developed for dense reconstruction in the computer vision 

community exploits the epipolar constraint (i.e., a correct 

correspondence should only be found within an epipolar line in 

the other image). Consequently, Dynamic Programming (DP) 

has served as a standard method for dense reconstruction but it 

often includes outliers as the epipolar constraint is not sufficient 

to define a tiepoint at times (i.e., DP results only satisfy the 

global matching constraint defined within an epipolar line and 

not for each and every potential pixel pair). Moreover, matching 

consistency between epipolar lines is not guaranteed without a 

proper post-process (Scharstein and Szeliski, 2002; Ohta and 

Kanade, 1985).  

 

On the other hand, the remote sensing (far-range) community 

has developed a stereo region-growing algorithm to achieve a 

dense reconstruction from different reasons, such that some 

matching difficulties noticed in close range images are not 

generally found but the linear epipolar constraint no longer 

holds. For instance, occlusion and significant geometric (e.g., 

projective) distortion are hardly observed in orbital stereo pairs. 

However, it is difficult to define a linear fundamental matrix 

that maps a point to a line in satellite imagery from a push 

broom sensor (Otto, 1988; Kim, 2000). 

 

One good example of a stereo region growing algorithm is the 

Gruen-OTto-CHAu (GOTCHA) algorithm (Otto and Chau, 

1989), which is based on the Adaptive Least Square Correlation 

(ALSC) (Gruen, 1985) combined with a 2D region growing 

algorithm. For example, given initial matching results, referred 

to as “seed points” in (Kim and Muller, 1996), GOTCHA can 

increase the number of matching pairs considerably as it does 

not limit growing directions within an epipolar line as a seed 

point can grow in both the x and y directions if ALSC confirms 

that the accuracy of a matching candidate is acceptable.  

 

However, there is one major disadvantage which is that the 

computational complexity of the GOTCHA algorithm is 

significant compared with its counterpart DP matching. This is 

partly because ALSC needs to be performed sequentially at 

every neighbouring pixel of a new growing position. Also, 

growing results need to be ordered with respect to matching 

similarity in order for GOTCHA to decide the next “best” 

growing point. Consequently these two procedures (i.e., ALSC 

followed by sorting) become a major bottleneck of the 

GOTCHA process as the number of seeds increases. To address 

this problem, this paper proposes a modified GOTCHA 

algorithm called MT-GOTCHA, which expedites the growing 

process by employing multiple processes in parallel. 

 

To realise a parallel process, the proposed method divides an 

image into multiple growing regions so that each region has its 

own independent process. Additionally, multiple ALSC 

processes associated with a single seed point are also 

parallelised. This means that the proposed method could 

achieve micro and macro level parallelism, e.g., multiple 
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GOTCHA’s can operate at a macro level with multiple ALSC 

processes at a micro level. To achieve this, MT-GOTCHA 

models the growth of a seed point by two boundaries called 

inter and intra boundary respectively, i.e., the intersection of 

two boundaries defines the final growing region of a seed point.  

 

This paper is organised as follows. Section 2 reviews more 

details about the ALSC and GOTCHA algorithm and identifies 

potential problems. In Section 3, the proposed stereo region 

growing method is explained particularly regarding how the 

growing boundaries are defined in MT-GOTCHA. Finally, 

experimental results and conclusions are presented in Section 4 

and 5, respectively. 

 

 

2. STEREO REGION GROWING 

2.1 ALSC 

Adaptive Least Square Correlation is the core-matching 

algorithm used in GOTCHA. It can estimate a true 

correspondence from an approximated tiepoint by changing the 

shape of a matching window iteratively. Thus, if a given seed 

point is located close enough to the true correspondence, ALSC 

can move the initial position and converge at the true 

correspondence. 

 

Suppose 



Il (
r 
x )  is a functional which maps a 2D positional 

vector 



r 
x  [x y]T  to an intensity scalar value of a left image, 

and also assume that it is continuous and differentiable at any 

point within a left image domain. Then, a tiepoint can be 

defined as a point pair 



(
r 
x i,

r 
x j ) which satisfies  

 



Il (
r 
x i)  Ir(

r 
x j )N(

r 
x j )                     (1) 

 

where 



N(
r 
x )  is a Gaussian functional that represents image 

noise at a point 



r 
x  and similarly 



Ir(
r 
x )  is an intensity functional 

defined in a right image. 

 

If the right position of an initial tiepoint is given around the true 

position and assume the error between the true and the initial 

position is introduced by a local affine distortion, then the error 

vector 



r 
d j  

can be found by minimising a cost function, 

 



minr 
d j

Il (
r 
x i)  Ir (

r ˆ x j 
r 
d j )

                      (2) 

 

where 



r ˆ x j denotes an approximate right position given initially 

and 



r 
d j  is the offset between the true position and its 

approximation such that 



r 
x j 

r ̂ x j 
r 
d j  and a point pair 



(
r 
x i,

r 
x j ) 

defined in a tiepoint is related by a local affine transform, i.e.,  

 



r 
x l 

a11 a12

a21 a22










r 
x r 

tx

ty











                      (3) 

 

where aij denotes affine distortion parameters and tx and ty 

represents a translation in x and y direction.  

By employing Taylor’s theorem up to the first order term, the 

second term of the cost function (2) can be expanded with 

respect to the approximated right position, 



r ˆ x j, i.e.,  

 



Ir(
r ˆ x j 

r 
d j )  I(

r ˆ x j )
I(

r ˆ x j )

x
dx 

I(
r ˆ x j )

y
dy

           

  (4) 

 

where dx and dy is delivered from (3). Thus, a closed form 

solution of (2) is found in the least squares sense and ALSC 

recursively applies (2) with the updated solution until it 

converges at a certain point.  

 

It is also important to mention that the cost function shown in 

(2) appears to find a 2D vector 



r 
d j  but it is, in fact, 

parameterised by (3) so that at least three points pairs (i.e., each 

pair provides two conditions for an affine transform) are 

required to avoid a singular system of equations. These point 

pairs are found from a matching window and (2) is therefore 

normally over-determined.   

 

Fig. 1 demonstrates the performance of ALSC, which started 

from an incorrect right position  (see a green cross in the right 

image) but found the correct position after 15 iterations. One 

can notice that ALSC rapidly converges at the true point and a 

square box shown in both images represents an initial matching 

window and multiple rectangles shown in the right image 

visualises how ALSC distorts the square shape iteratively from 

the initial matching window. 

 

 
Figure 1 Example of ALSC, where an initial point marked as a 

green cross in both images. The right image shows an updated 

corresponding point after 15 iterations as a yellow cross whilst 

intermediate right positions are highlighted as a red colour. 

 

 

2.2 GOTCHA 

GOTCHA can be seen as an extended version of a general 2D 

region growing algorithm used in image segmentation. Similar 

to a traditional binary segmentation, GOTCHA grows a seed 
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point by adding adjacent neighbours to a seed point recursively. 

A difference is it uses neighbour point pairs to deal with a 

stereo image and avoids a false neighbour pair which fails to 

produce a refined correspondence within predefined ALSC 

matching error. Suppose that a set of initial tiepoints is given as  

 



T {tk  (
r 
x i

k,
r 
x j

k) :| Il (
r 
x i

k)  Ir(
r 
x j

k) |}               (5) 

 

where 



  is a matching threshold, then the 8-connected 

neighbours of the kth tiepoint are defined as 

 



N8(k) {nl  (
r 
x m,

r 
x n) :|

r 
x m 

r 
x i

k |1, |
r 
x n 

r 
x j

k |1}
    

(6) 

 

In this case, initial seed point pairs of GOTCHA (i.e., the first 

place from which the algorithm begins to grow) is defined as all 

neighbours of an initial tiepoint set, i.e.,  

 

                                   (7) 

 

where S(0) represents a set of seed points and the number in the 

parenthesis written as a superscript denotes the number of 

iterations that GOTCHA takes to grow. Once an initial seed set 

is ready, GOTCHA recursively adds a new seed point pair if any 

point pair in S(i) produces a saturated result from ALSC and this 

iteration continues until 



|S(i) |0.  

 

To explain this more clearly, a pseudo code of GOTCHA 

algorithm is presented in Fig. 2 where ALSC(.) shown on line 7 

represents a function that returns the dissimilarity of ALSC 

matching, 



a
represents a matching threshold of ALSC, s’k on 

line 8 represents an updated seed point pair of sk by ALSC, and 

sort(.) in line 12 is a sorting function which orders seed 

elements with respect to the matching similarity so that a seed 

point having the higher similarity is tested earlier in the next 

growing process. As noticed from lines 7 to 10 in Fig. 2, this 

algorithm increases a search space exponentially. Also, 

recursive sorting shown in line 12 makes the growing process 

slower as |S| increases. Please also note that the pseudo  

 

 
Figure 2 A pseudo code of GOTCHA 

 

code presented in Fig. 2 is used to highlight how data in T and S 

in (5) and (7) change incrementally. The more efficient 

algorithm is therefore possible by minimising the number of 

temporary variables. 

 

As a dissimilarity measure of ALSC matching, a traditional 

ALSC uses the largest eigenvalue of the covariance matrix of 

the estimated 



dtx  and 



dty
. Thus, if an updated solution has a 

large dissimilarity, this means that the solution is not saturated 

at the fixed point as the increment of the translation parameters 

is large. This measure normally performs better than the sum of 

intensity differences or correlation score when matching 

windows contain homogeneous or repetitive texture that can 

also gives small intensity difference at any point within a 

matching window.  

 

 

3. PARALLELISED STEREO REGION GRWOING  

One of the straightforward approaches to expedite the growing 

process shown in Fig. 2 is performing multiple ALSC matching 

processes (see from line 5 to 7 in Fig. 2) simultaneously. Otto 

and Chau implemented this idea in the Multi-Instruction stream 

and Multi-Data stream (MIMD) parallel processing architecture, 

where multiple processors establish a farm of worker processors 

to which a central control processor (i.e., the main CPU of a 

Unix system) connects via data pipelines (Otto and Chau, 

1989). In this method, the main controller processor owns a 

global GOTCHA process, operating as a master process such as 

sending multiple ALSC tasks to each worker processor and 

managing both the priority of the processing queue and image 

data required for individual ALSC matching, whilst each 

worker processor simply performs a single ALSC matching and 

returns the result to the master.  

 

However, this approach only works if the size of an image is 

small enough due to the narrow data bandwidth of the data 

pipelines at that time. To address this, Holden et al. (1993) 

proposed a Geometrically Parallel Streo Matcher approach (also 

referred to as GPSM), which divides an input image into 

multiple overlapping rectangular tiles and initiates multiple 

GOTCHAs after providing each worker processor with relevant 

tiles for matching (Holden et al., 1993). Accordingly it can also 

achieve data parallelism and this minimises data transfer rate. 

For example, since each worker processor has an image tile to 

which a seed point belongs as well as the overlapping regions 

from adjacent tiles, each worker process is independent and 

inter-processor communications are significantly minimised. 

However, GPSM requires a tool that can regenerate uniformly 

distributed seed points to initiate every GOTCHA process 

successfully. 

 

Unlike these previous efforts, the proposed method is more 

concentrated on task parallelism as the hardware constraint 

studied in the earlier parallel computing methods has been 

changed significantly, e.g., the amount of memory and data 

transfer bandwidth are even ready for the cloud computing. 

Therefore, a hardware-related issue of parallel computing (e.g., 

balancing computing load of the multi-processing cores and 

managing communications between processors) is not 

investigated in this paper. Instead we focus on identifying 

independent sub-tasks from the growing algorithm and how to 

perform them simultaneously without sharing any input data. 

Therefore, the fundamental idea of the proposed method is to 

define independent processing tasks with as many as we can. 

For example, the proposed method is designed to have multiple 

GOTCHA processes, which also use multiple ALSC matchers 

when testing neighbours. Thus, to some extent, this can be 

considered as a way to combine two previous efforts (i.e., one 

of which uses multi-ALSC and the other of which uses multi-

GOTCHA).  

 

As a preliminary requirement of the proposed method, an input 

stereo image needs to be divided appropriately according to the 

distribution of initial seed points, i.e., a larger growing area is 



 

 

 

International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. XXXVIII, Part 5 

Commission V Symposium, Newcastle upon Tyne, UK. 2010 

 

546 

assigned to a seed point having higher matching similarity, and 

we call the boundary between seed points an inter-boundary. In 

addition, we define another boundary (called an intra-boundary) 

within the inter-boundary. This is used to define a cluster of 

local neighbours from a seed point according to a matching 

confidence. Consequently, intra-boundary can provide more 

than 8 neighbours if a seed is surrounded by strong matches. 

Otherwise, it only produces small number of neighbours, which 

are tested by multiple ALSCs in parallel. 

 

3.1 Inter-boundary estimation 

The inter-boundary is the boundary between multiple seed 

points and it is estimated by a modified Voronoi tessellation 

that provides a larger area to a seed point having a higher 

matching similarity. To realise this idea, the initial positions of 

seed points move according to the sum of gravity pulls between 

seed points before applying Voronoi tessellation and an initial 

matching dissimilarity is used as the mass of a seed in the 

computation of a gravity pull.  

 

Voronoi tessellation, which is also known as a dual of Delaunay 

triangulation, is a method partitioning a plane into convex sub-

regions based on the nearest neighbourhood rule 

(Aurenhammer, 1991) from input points (called sites). For 

example, a Voronoi region of the ith point 



r 
x i of a site set V is 

defined as 

 



Ri  {
r 
p :|

r 
x i 

r 
p ||

r 
x j 

r 
p |}                       (8) 

 

where 



r 
p  is a point in an image and 



r 
x j V {

r 
x i} . Although 

there are sophisticated implementations of Voronoi tessellation 

which can improve the computational efficiency considerably 

such as Fortune’s algorithm (Fortune, 1986) in which the 

computational complexity is known as O(|V|ln|V|), we adopt the 

simplest algorithm estimating a Voronoi region by intersecting 

half planes constructed between sites. For example, a half plane 

used to estimate Ri from two sites 



r 
x i  and 



r 
x j is a half infinite 

plane that contains 



r 
x i  and limited by an orthogonal line 

intersecting the middle of the line (



r 
x i ,



r 
x j ). Thus, the 

construction of a half plane is affected by the geometrical 

distribution of input sites. 

 

In our case, a site set V is replaced with a set of initial seed 

point pairs T(0), so that the positions of T(0) need to be modified 

according to their matching dissimilarity values before 

tessellation. We model the motion of the initial point as a result 

of the interconnected gravity pull. For example, if a point 



r 
x i has 

a higher dissimilarity then it creates a strong pulling force 

resulting in that other points move toward the point. 

Consequently, the middle points that define half planes move 

closer to the point 



r 
x i  and Ri estimated by intersecting every 

half-plane containing 



r 
x i becomes smaller. 

 

Suppose that there are two tiepoints 



tk
and



tl T (0) , 

where



tk  (
r 
x a,

r 
x b )  and 



tl  (
r 
x c,

r 
x d )  then a gravity force that 

pulls from 



tk  to 



tl  in a left image is defined as 

 



r 
f left (tk,tl )  g

ALSC(tk ) ALSC(tl )
r 
x a 

r 
x b

2 (
r 
x a 

r 
x b )

            (9) 

 

where g represents a gravity coefficient. Additionally, a gravity 

map F(T) can be defined as a network of gravity pulls between 

every pair of tiepoints, e.g., an element of F at the kth row and 

the lth column, fk,l is 



r 
f (tk , t l ). Thus, fk,l = -fl,k

  and its diagonal 

values should be 0 as self-pulling is avoided, i.e.,  

 



F(T) 

0
r 
f (t0,t1) L

r 
f (t0,t|T |)


r 
f (t0,t1) 0 M

M O
r 
f (t|T |1,t|T |)


r 
f (t0,t|T |) 

r 
f (t1,t|T |) L 0



















       (10) 

 

Once a gravity map is ready, the total gravity that a single point 

has can be easily found by summing elements of a row (or 

column) vector of F.  

 

 
(a) 

  

  
(b) 

Figure 3 Example of an inter-boundary estimation from four 

input tiepoints, where initial left positions of tiepoints (t1-t4) 

highlighted as red dots are moved to t’1-t’4 marked as blue dots 

(a) and updated tiepoints creates four partitions from Voronoi 

tessellation (b).  

Fig. 3 visualises an example of Voronoi tessellation from four 

initial tiepoints denoted as t1-t4. Fig. 3(a) is the left image of a 

test stereo data so that dots in Fig. 3(a) represent left tiepoints. 

Using (10), each tiepoint moves from its initial position from 

the red to the blue before partitioning the image. Consequently, 

each tiepoint owns a Voronoi region Ri where GOTCHA is 

performed later (see Fig. 3 (b)).  

 

3.2 Intra-boundary estimation 

The intra-boundary is the confidence boundary of a seed point, 

which can estimate how much a seed point possibly grows with 
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given dissimilarity value after the nth iteration of GOTCHA. A 

diffusion equation has been adopted to model this non-linear 

shape of a confidence boundary. Accordingly, the proposed 

method can include either non-adjacent neighbours of a seed 

point or a smaller number of neighbours depending on matching 

dissimilarity of the current state. In fact, an intra-boundary 

provides a way for GOTCHA to control the number of 

neighbours and this can be further exploited to balance 

computing load adaptively. For example, it is potentially 

possible that GOTCHA optimises the number of ALSC 

processes depending on the computing load by updating 

diffusion policy, e.g., a stricter diffusion rule is enforced if less 

neighbours are required. 

 

An intra-boundary is modelled using a diffusion equation, by 

assuming that the confidence at current state flows out from 

sources (i.e., correct matches up to the current state) until it 

reaches equilibrium. This is a more accurate assumption to  

 

 
(a) 

 
(b) 

 

Figure 4 Example of a cluster of local neighbours, where a 

confidence map of R1 obtained from Fig. 3(b) (a) and local 

neighbours found by an inter-boundary at point (268, 780) (b). 

describe the growth of a seed than a general idea that a 

matching possibility of a point pair is exponentially reduced as 

it goes away from known true matches. Suppose c(



r 
x , t) is a 

function that estimates a matching confidence at time t and 

assume it is differentiable, then a diffusion of confidence is 

given as 

 



c(
r 
x ,t)

t
2c(

r 
x ,t)                           (11) 

 

where 



  is a diffusion coefficient and matching initial 

confidence at 



r 
x  is defined as  

 



c(
r 
x ,0) 1

ALSC(
r 
x )

a

                            (12) 

 

After sampling continuous time t, (11) can be approximated as  

 



c(
r 
x ,n 1)  c(

r 
x ,n){Lxc(

r 
x ,n) Lyc(

r 
x ,n)}  (13) 

 

where Lx and Ly represent Laplacian operators in terms of x and 

y and n denotes the nth discrete time. In the proposed method, a 

7x7 window centred at a seed point is used to define a 

supporting area of diffusion, i.e., the previous matching results 

in this window are also taken into consideration when defining 

the neighbourhood of a current seed point, and a degree of 

diffusion is controlled by 



  and the number of iterations, i.e., n 

in (13).  

 

Fig. 4 demonstrates a result of an inter-boundary estimation. Fig 

4(a) shows a confidence map of 1793 tiepoints obtained from a 

region R1 (see Fig. 3(b)) after 618 iterations of a GOTCHA 

process. The white box shown in both images illustrates a 

window used to define a supporting area of a seed point at (268, 

780). The seed point produces 13 neighbours when n = 5 and 

they are shown as highest confidence values in Fig. 4(b) for 

visualisation.  

 

 

4. EXPERIMENTAL RESULTS 

The proposed method has been implemented in JAVA and the 

algorithm tested in a multi-cored single processor system. Thus, 

in order to test parallelised tasks with a single processor, the 

proposed method has been designed to run a single processing 

task with multiple threads. Also, since we are only focussed on 

the task parallelism and do not investigate the effect of 

computational load balancing and the delay from the data 

transfer, direct comparison with the result from a C 

implemented parallel algorithm in MIMD architecture is 

unavailable. However, it is still possible to predict its impact 

from the normalised performance graph shown in Fig. 5.  

 

To compare a traditional GOTCHA with MT-GOTCHA’s 

having a different number of seed points, we fixed the number 

of GOTCHA iteration, i = 200  (see Fig. 2) and averaged 

processing time was measured to count the total processing time 

of MT-GOTCHA because some of the GOTCHA’s may 

terminate earlier than others in the proposed method. Four 

performance measures, such as peak memory usage (Max. 823   

 

 
 

Figure 5 Performance results of the MT-GOTCHA algorithm 
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[MB]), the number of added points (Max. 2657 [pts]), total 

processing time (Max. 32.34 [sec]), and a ratio of tiepoint 

addition (Max. 0.055 [pts/sec]), has been used to evaluate the 

performance of algorithms and Fig. 5 represents them as *, ☐

,O, and ×, respectively. From the test results we can conclude 

that a traditional GOTCHA performs worst in terms of the ratio 

of the tiepoint addition (381 [pts] / 21.11 [sec]), whilst all MT-

GOTCHA’s produce similar results. However, GOTCHA shows 

the smallest peak memory (339 [MB]), which is increased as the 

number of seeds increases in MT-GOTCHA. For example, MT-

GOTCHA with 4 seed points can achieve a 597% increase in 

the number of added tiepoints at cost of a 143% increase in 

peak memory usage.  

 

To demonstrate reconstruction completeness, the proposed 

parallel region-growing algorithm has been applied to stereo 

images from NASA Mars Exploration Rover mission. Fig. 6 

shows that the resulting dissimilarity maps (a)-(b) and disparity 

maps (c)-(d) from GOTCHA and MT-GOTCHA. In Fig. (a)-(b) 

the brighter red indicates smaller dissimilarity whilst Fig.6 (a)-

(b) uses a brighter colour to represent a larger disparity. 

 

 
(a)    (b) 

 
 (c)    (d) 

Figure 6 An example of dissimilarity map from GOTCHA (a) 

and MT-GOTCHA (b); a disparity map (c) from (a) and (d) 

from (b) 

The completeness ratios are 52.93% and 52.88%, respectively, 

so that GOTCHA is slightly better but it includes false tiepoints 

in the area adjacent to the sky and MT-GOTCHA with a single 

seed is 3.5 times faster than GOTCHA.  

 

5. CONCLUSIONS 

This paper has presented a parallelised stereo region growing 

algorithm, focussing on task parallelism for GOTCHA. In the 

proposed method, multiple GOTCHAs are performed after 

partitioning a stereo image according to the estimated inter-

boundary of initial seed points. Also, it has been designed to 

employ multiple ALSC operations simultaneously in each 

GOTCHA. The number of ALSCs is controlled intra-boundary 

of a seed point, which is estimated by the proposed confidence 

diffusion equation. The experimental results demonstrate the 

proposed MT-GOTCHA can achieve considerable speedup at 

reasonable cost of memory consumption.  
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