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ABSTRACT:

A real-time segmentation of images requires features which are fast to calculate and a segmentation procedure which can fastly classify
pixels or regions with respect to these features. Automatic surveillance of a honeybee comb requires the segmentation of homogeneous
image regions. Such regions correspond to visible brood cells while the regions which are covered by a crowd of bees appear non-
homogeneous. In this paper a novel and efficient way to calculate an existing homogeneity feature is presented. Second, it is extended
to a novel feature and empirical results are provided which show improvements over the basic homogeneity value. Third, a simple but
effective segmentation procedure is presented and segmentation results are provided.

1 INTRODUCTION

The need for fast and reliable segmentation exists in many com-
puter vision applications. Surveillance applications such as the
monitoring of traffic scenes or the monitoring of animals in be-
havioral studies are typical examples. For us, this need has arisen
from implementing a video based monitoring system for the sup-
port of biological studies. These studies aim to fight one of the
biggest threats for the native honeybee Apis melifera: the mite
Varroa destructor. The varroa mites are external honeybee par-
asites. The infestation of a colony is a serious problem because
it is not possible to cure an afflicted colony without the use of
acaricide agents which lead to unwanted residues in wax and
honey. Current research in the field of apiculture focuses on the
genetic selection of hygienic bees (Bienefeld and Arnold, 2004)
for blocking the mites. However, the selection of hygienic bees
requires a time consuming observation of the combs. Process-
ing all the material that is typically recorded for a period of one
week (24 hours a day) by a human expert requires at least twice
of the recorded period. Therefore, it would be helpful to develop
algorithms for an automated observation of the combs and for the
detection of the hygienic bees. Fig.1 shows a small region of the
observed comb.

Figure 1: Slice of an image from the observed beehive. The real-
time assessment of the brood cells in the presence of bees requires
fast and robust segmentation.

To show the generality of the approach, we provide segmentation
results for two traffic monitoring scenes. The feature seems to be
very robust since only the patch size had to be adapted. However,
we expect that restricting the analysis to regions of interest, using
different patch sizes to account for the cameras viewing angle, or
the combination with a background model will further improve
segmentation.

The contributions are as follows. First, we present a novel and
efficient way to calculate an existing homogeneity feature. Sec-
ond, we extend it to a novel feature and provide empirical results
which show improvements over the default homogeneity value.
Third, we propose a simple but effective segmentation procedure
and provide segmentation results.

2 RELATED WORK

Real-time segmentation of a homogeneous image background in
monitoring a honeybee comb requires the application of compu-
tational inexpensive features as well as a fast classification method.
Traditional background modelling is not applicable since the ba-
sic assumption that the combs surface is visible more often then
it is occluded by bees is false. The most sophisticated feature
sets which are used in semantic segmentation tasks such as HoG
(histogram of gradients), matching of bags of words or visual vo-
cabularies does not fulfil the real-time constraint. Image color
information can not be used since we are using near-infrared il-
lumination and monochrome cameras. FFT-based and wavelet-
based features might have also been of interest. Since relevant
properties of the homogeneous background are only captured by
low frequency components we did not pursuit this approach. In
our opinion, the need for a patch based FFT or wavelet transform
contradicts the idea of a fast segmentation.

The calculation of the proposed feature (a homogeneity measure)
is based on the image gradients. Therefore, it is closely related to
other gradient based techniques. One related method is the struc-
ture tensor of an image patch and the analysis of its Eigenvalues.
It is commonly used to detect low level image features such as
edges and corners. If such a method is not restricted to detect
only the most prominent points, it can generate a mask which can
be further improved to match the results of our proposed method.
Principally, calculating the structure tensor for many large and
overlapping image patches is an expensive operation. However,
it is possible to use a pyramidal approach to speed up calculation.
The compatibility of the proposed feature with summed area ta-
bles (integral images) is a major benefit and also a contribution
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for different real-time image processing tasks. We will show that
a traditional definition of homogeneity can be transformed such
that it can be calculated in constant time for any upright rectan-
gular image patch.

Our choice of a simple but adaptive threshold operation for im-
age segmentation is motivated by its wide-spread use in industrial
applications. There exists a vast number of threshold approaches,
but a recent survey revealed that the choice of a best perform-
ing method is highly application specific (Sezgin and Sankur,
2004). Therefore, we decided to use a modification of the well
known Otsu method which on average provides a high perfor-
mance level. Region growing, split-and-merge algorithms, and
graph based segmentation are different approaches to image seg-
mentation. Typically, they iterate until convergence of some opti-
mization criterion and therefore can not ensure a fixed processing
time.

3 DATASETS

We have selected five datasets from a honeybee monitoring to
illustrate our method and to assess its performance.

Dataset 1 consists of 10,200 images of brood cells. It has been
first used to assess the performance and parametrization of dif-
ferent classification algorithms which dicriminate between three
typical states of brood cells (Knauer et al., 2007). Here, it is
reused to evaluate the performance of the proposed homogeneity
feature in comparison to other feature sets.

The datasets 2, 3, and 4 are short video sequences from three
different experiments with different cameras, illumination, and
numbers of bees. They are used for evaluation of the segmenta-
tion performance.

Dataset 5 is a set of 26 manually segmented images from different
experiments. It is used to assess the performance of the proposed
segmentation method in comparison to ground truth data as well
as to more sophisticated but computational too demanding algo-
rithms.

Datasets 6 and 7 are images from two different traffic monitor-
ing facilities. They are used to illustrate the generality of the
approach.

4 FAST HOMOGENEITY-BASED SEGMENTATION

4.1 Theoretical Background

The source of the homogeneity value is the gray value cooccur-
rence matrix C. The gray value cooccurrence matrix is the two
dimensional histogram of the cooccurrence of gray values in an
image. It is a classical approach to represent textural features for
image classification (Haralick et al., 1973). Given images with
256 (the default 8 bit quantization) or 4096 (12 bit quantization,
e.g. in medical or satellite imaging) different values, the cooccur-
rence matrix has 2562 or 40962 elements. The matrix element
Ci,j is the (normalized) frequency p of the cooccurrence of gray
value i and gray value j in image I:

p
(
Ix1,y1 = i, Ix2,y2 = j|(x2, y2) = Nk(x1, y1)

)
. (1)

In Eq.(1) Nk denotes a fixed geometrical relationship between
image pixels such as the right horizontal neighbor. A different
cooccurrence matrix exists for any other geometrical relationship.

Figure 2: Mappings of gradient values to the interval [0..1] for
different choices of the parameter z

Different features that characterize attributes of the texture can be
derived from the matrix elements. In (Haralick et al., 1973) the
authors presented a list of 14 features. They used the angular
second moment as a measure of texture homogeneity.

In Eq.(2) the homogeneity value H is defined differently as pro-
posed by Hochmuth (Hochmuth, 2001). First, all possible gray
value differences |i− j| are mapped to the interval [0..1], such
that the largest difference value corresponds to zero and the small-
est difference corresponds to one. The maximum gray value is
denoted by gmax. The exponent z controls the importance of
certain difference values. Second, the average of all mapped dif-
ference values is calculated. The influence of the parameter z on
the homogeneity value is visualized in Fig.2.

H =

gmax∑
i=0

gmax∑
j=0

[
1−

(
|i− j|
gmax

)z]
· Ci,j (2)

The calculation of the homogeneity measure with Eq.(2) requires
the elements of the cooccurrence matrix Ci,j . According to Eq.(1)
Ci,j is the frequency of cooccurrence of the gray values i and j.
Hence, the cooccurrence matrix is equivalent to the normalized
histogram of absolute gradients. Therefore, Eq.(5) and Eq.(6)
can be used instead of Eq.(2). Basically, this substitution is fa-
miliar to the two ways of calculating the mean value of a gray
value image I as illustrated by the following equation:

255∑
g=0

p(g)g =
1

wh

w−1∑
x=0

h−1∑
y=0

Ix,y, (3)

where p(·) denotes an element of the normalized histogram of
image I . We call Eq.(4) a dual representation of Eq.(2) since H
no longer depends on the cooccurrence matrix. The variables w
and h denote width and height of the image.

Hhorz =
1

wh
·

w∑
x=1

h∑
y=1

[
1−

(
|Ix,y − Ix+1,y|

gmax

)z]
(4)
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The transformation between Eq.(2) and Eq.(4) shows that the ho-
mogeneity is basically the weighted average difference image of
the original image and a shifted version of the same image. This
is important because the mean value of arbitrary rectangular re-
gions can be calculated efficiently.

Hhorz = 1− 1

whgmax
z
·

w−1∑
x=1

h∑
y=1

|Ix,y − Ix+1,y|z (5)

The cooccurrence of gray values should not be investigated in a
single direction only. Therefore, Eq.(6) is used to calculate the
homogeneity for the vertical relationship.

Hvert =
1

wh
·

w∑
x=1

h−1∑
y=1

[
1−

(
|Ix,y − Ix,y+1|

gmax

)z]
(6)

Horizontal and vertical homogeneity are combined into a single
measure of homogeneity. In Eq.(5) the minimum of both values
is used.

H = min (Hhorz, Hvert) (7)

The mean of both values is a different option to combine both
values.

H =
Hhorz + Hvert

2
(8)

In the following section we will discuss how the presented fea-
ture H can benefit from Summed Area Tables. The key is the
transformation step which has led to Eq.(5) and Eq.(6). Instead
of calculating the cooccurrence matrix of each region, the SAT
of the shifted difference images allows fast computation of the
homogeneity measure for use in texture analysis.

4.2 Fast calculation of homogeneity

Integral images have received lots of attention since they have
been introduced by Viola and Jones for fast face detection (Viola
and Jones, 2001). They are also known as Summed Area Tables
(Lienhart and Maydt, n.d.). Lienhart et al. presented an extended
feature set as well as an empirical analysis of feature extraction
and learning based on integral images (Lienhart et al., 2002, Lien-
hart and Maydt, n.d.). Wang et al extended the ideas of Viola and
Jones to integral histogram images for face detection (Wang et al.,
2005). Peihua used integral images for the efficient calculation of
color histograms, mean and variance values for color object track-
ing (Peihua, 2006). Also, Adam and Shimshoni implemented a
fast image patch tracker with integral histogram images (Adam
et al., 2006). Porikli and coworkers proposed integral images
for calculation of region covariance (Tuzel et al., 2006, Porikli,
2006). Recently, Beleznai et al. used integral images to quickly
calculate features for scale-adaptive clustering in a people count-
ing framework (Beleznai et al., 2007).

The Summed Area Table S at the coordinates (x, y) is defined as
the sum of all gray values Ii,j in the upright rectangular region
bounded by the image origin (0, 0) and the coordinates (x, y).

Sx,y =

x−1∑
i=0

y−1∑
j=0

Ii,j (9)

Hence, the recursive definitions are

Sx+1,y = Sx,y + Sx+1,y−1 − Sx,y−1 + Ix,y (10)

Sx,y+1 = Sx,y + Sx−1,y+1 − Sx−1,y + Ix,y (11)

SATs are a well suited data representation for calculating features
of rectangular image regions. With Eq.(12) the mean value m for
every upright rectangle defined by its upper left corner point A
and its lower right corner B can be calculated in constant time
with only four lookup operations from the Summed Area Table.

m =
SBx+1,By+1 + SAx,Ay − SAx,By − SBx+1,Ay

(Bx −Ax) · (By −Ay)
(12)

Remember the dual representation of the homogeneity feature as
it was defined by Eq.(4):

Hhorz =
1

wh
·

w∑
x=1

h∑
y=1

[
1−

(
|Ix,y − Ix+1,y|

gmax

)z]
. (13)

First, we calculate the (per pixel) difference image |Ix,y − Ix+1,y|.
Second, we calculate the SAT of the resulting difference image.
Third, we can query homogeneity values for arbitrary rectangular
regions by applying Eq.(12).

4.3 Region homogeneity - Hierarchical application of SATs

Fig. 3 shows how to obtain region homogeneity. The upper two
blocks correspond to the approach described in the previous sec-
tion. The combination of the homogeneity values Hhorz and
Hvert into a single homogeneity value is depicted as an overall
homogeneity H(I). The SAT of this homogeneity map is used to
efficiently calculated the average of the homogeneity within any
upright rectangular region.

4.4 Segmentation

Fig. 4 shows the proposed segmentation procedure. Homogene-
ity can be measured at different resolution levels. Here, the patch
size has been fixed to 20 × 20 pixels which approximately cor-
responds to the size of a brood cell. Remember, that the patch
size defines only the coordinates of SAT lookups. Therefore, the
patch size can be arbitrarily chosen with respect to the applica-
tion demands. Moreover it is possible to lookup the patch size
for each pixel individually.

The key contribution in this segmentation approach is the use of
an adaptive threshold. We decided to use a modified version of
the Otsu algorithm. This method finds an optimal threshold that
maximizes the between-class variance in a gray value image. The
threshold is also required to have a low probability of occurrence.
This constraint is an extension of Otsu’s method and has been
suggested by Ng (Ng, 2006). According to Otsu, the optimal
threshold can be determined by maximizing the between-class
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Figure 3: Flow chart of the calculation of region homogene-
ity. N i denotes different neighborhood relationships. The ho-
mogeneity map H(I) is calculated for a fixed patch size, e.g.
H5×5(I). Instead an optional patch size map can be used to cre-
ate Hmap(I) which combines different resolution levels into a
single homogeneity map.

Figure 4: Flow chart of the segmentation procedure. In this ex-
ample homogeneity (not region homogeneity) is calculated at a
single resolution level (H20x20). The homogeneity map is thresh-
olded. The threshold T is estimated with a modified Otsu algo-
rithm. Recursive filtering (IIR) over time is applied to the thresh-
old value to eliminate segmentation errors. See the text for addi-
tional details.

variance. Eq.(14) is an equivalent but simplified formulation from
(Ng, 2006).

thr = arg max
0≤t<B

{
ω1(t)µ

2
1(t) + ω2(t)µ

2
2(t)

}
(14)

The gray value distribution which is given by a normalized his-
togram with B bins is divided into two parts. The probability
of occurrence given by the i-th histogram bin is denoted by p(i).
The two mean values µ1 and µ2 are calculated with Eq.(15) and
Eq.(16).

µ1 =
1

ω1(t)

t∑
i=0

ip(i) (15)

µ2 =
1

ω2(t)

B−1∑
i=t+1

ip(i) (16)

The two weights ω1 and ω2 are defined by Eq.(17) and Eq.(17).

ω1 =

t∑
i=0

p(i) (17)

ω2 =

B−1∑
i=t+1

p(i) (18)

The extension to the valley-emphasis method is simple but effec-
tive. In Eq.(19) the between class variance is multiplied with
a weight (1 − p(t)). This term replaces the argument of the
arg max function in Eq.(14).

(1− p(t)) · (ω1(t)µ
2
1(t) + ω2(t)µ

2
2(t)) (19)

A high probability p(t) results in a low weight. Therefore, the
valleys of the gray value distribution are the preferred candidates
for threshold selection. The Otsu method can be extended to se-
lect multiple thresholds. However, computational time increases
exponentially with the number of classes/thresholds. To over-
come this limitations Huang and Wang developed a two-stage
multithreshold Otsu-method (Huang and Wang, 2009). Among
others, this work documents the importance of the contribution
of Otsu that he did in the late 1970s.

Reduction of false threshold selection is done by recursive filter-
ing (IIR) of the image based thresholds thr:

thrt = α · thrt−1 + (1− α)thr (20)

Typically we set α = 0.95. However, segmentation results in
Fig. 6 have been obtained without recursive filtering.

5 RESULTS AND DISCUSSION

5.1 Performance of the homogeneity features

In previous work we found that a simple feature space of ho-
mogeneity and luminance is easy to interpret, fast to calculate,
and provides satisfactory classification performance. However,
the rbfSVM on a rich feature set (normalized image) performed
much better. We wanted to verify our hypothesis that region ho-
mogeneity outperforms the traditional homogeneity measure.

Tab. 1 shows the overall performance of different classifiers (10-
fold cross-validation) with changing feature sets. The task was
to discriminate between visible and occluded brood cells. The
parameters of the different classifiers (if exist) have been opti-
mized by systematically testing within practical boundaries. The
abbreviation dmin denotes the minimum Mahalanobis distance
between a feature vector and the mean class vector. It is used as
a fast and simple decision rule in the existing monitoring system
and provides a lower bound on the overall accuracy of the classi-
fiers. The upper bound is given by the performance of rbfSVM in
a 121-dimensional feature space. Boosted decision trees and Ran-
dom Forest classifiers reach a comparable level of performance as
rbfSVM but require a high number of base classifiers.

The results show an error rate reduction of approximately 3 %
by using region homogeneity instead of homogeneity. The low
dimensionality of the feature space also allows to use more so-
phisticated classification methods without a drastic loss in run-
time performance. Using rbfSV M instead of a minimum dis-
tance classifier an error rate reduction of approximately 10 % can
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H regionH 18-dim 121-dim
dmin 82.22 % 84.93 % 86.56 % -

rbfSVM 90.8 % 91.09 % 91.59 % 94.3 %
linSVM 82.4 % 85.46 % 88.62 % 84.46 %
polSVM - 89.92 % 88.89 % 85.04 %

Table 1: Comparison of classification results for different SVM
kernel functions and different feature sets (dataset 1). The results
of a minimum distance classifier dmin are given as a reference.

Figure 5: Classification performance as a function of the param-
eter z (dataset 1)

be achieved. Furthermore, the performance in the 2-dimensional
feature space keeps up with the performance in a 18-dimensional
rich feature space. The usefulness of region homogeneity justifies
the need for an efficient computation which has been proposed
above. For a list of the 18 features see (Knauer et al., 2007).

Fig. 5 justifies the choice of z = 0.25 which has been used
throughout the experiments. For the given classification task only
a minor dependency on the parameter z exists. However, a smaller
value of z gives slightly better results. In this case, Fig. 2 shows
a fast and strong negative slope of the homogeneity value for in-
creasing gradient values.

5.2 Performance of the segmentation procedure

It was shown in the previous section that the feature region ho-
mogeneity reduces the gap in classification performance between
the fastest and the best classification method. The task was to
classify image patches showing occluded and visible brood cells.
This is in accordance with the assumption that the positions and
extends of the brood cells are known. An important aspect in our
application is the detection of smallest changes on the combs sur-
face. These openings are initiated by only a few hygienic bees
which have to be identified. We are also interested in solving the
same classification task at the image level instead of the brood
cell level. This has several reasons. First, to know where the
comb is not occluded is beneficial for other tasks such as bee
tracking. Second, changes that occur at brood cell boundaries
can be detected more reliable. Third, the segmentation results
can be combined to create a up-to-date background image in the
presence of a crowd of bees. Fourth, using fast computation of
homogeneity in first experiments in other fields (e.g. traffic mon-
itoring) shows promising results.

Some representative results are shown in Fig. 6. Each row con-
sists of three snapshots from recordings which are taken width
different cameras, experimental setups and changing environmen-
tal conditions. The threshold is calculated as described above.

Given the manually segmented images of dataset 5 we evaluated
the segmentation accuracy of different state-of-the-art classifiers.
Tab. 2 lists the average percentage of correctly classified pixels
from 10-fold cross-validation.

The results show that the proposed segmentation algorithm pro-
vides satisfying results given that a single feature was used for

frame 20 frame 100 frame 200

frame 40 frame 100 frame 200

frame 20 frame 50 frame 100

Figure 6: Segmentation results for datasets 2,3, and 5. The yellow
colored regions are classified as foreground.

Method Accuracy (single) Accuracy (adaboost)
J4.8 79.44 % 86.68 %

k-NN 82.39 % 83.1 %
Otsu (mean) 59.08 % -

Otsu (standard deviation) 63.78 -
Otsu (proposed) 66.87 % -

Table 2: Comparison of different classifiers for segmentation of
homogeneous image regions (dataset 5)
segmentation. The results of an Otsu-based segmentation using
different features are also provided in Tab.2.

Because the Spider Toolbox for Matlab was used to assess the
segmentation accuracy of different classification algorithms, we
do not provide a comparison of segmentation speeds between our
C++ implementation of the proposed algorithm and the Matlab
functions.

6 CONCLUSIONS AND FUTURE WORK

In this paper we presented the transformation of a homogeneity
feature such that the concept of integral images can be applied to
speed up its computation. In addition we have shown that an aver-
age homogeneity value which we have called region homogeneity
outperforms the basic homogeneity value in a classification task.
Moreover by using integral images this feature can also be calcu-
lated efficiently.

We have successfully applied the proposed approach for real-
time segmentation in honeybee monitoring. The segmentation
algorithm aims to detect those regions which are not crowded by
bees. Future work should cover at least two directions. First,
it would be beneficial to find efficient algorithms for calculating
other region-based features.

Second, the proposed segmentation procedure should be modi-
fied and used in other applications. Fig. 7 shows two images
from different traffic monitoring facilities. Promising segmenta-
tion results are obtained with adaptively thresholding the image
into homogeneous and non-homogeneous regions. An important
aspect that should be addressed in future work is the use of scale
adaptive patch sizes for the calculation of the homogeneity mea-
sure. Adapting the patch sizes to the cameras perspective would
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Figure 7: Illustration of the generality of the segmentation ap-
proach. Segmentation results in traffic monitoring without a
background model and analysis of motion (datasets 6 and 7).
H5×5 values are used instead of H20×20. Segmentation speed
approx. 30 fps, image size 320 × 200, used hardware: Intel P4,
2.4 GHz.

improve the reliability of the feature. The effects of a missing
compensation can be seen clearly from Fig. 7. Homogeneous
regions of the streets surface away from the cameras position are
falsely classified as non-homogeneous.
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