
DEVELOPING A DISTANCE EDUCATION PROGRAMMING SKILLS COURSE FOR
GEO-INFORMATION SCIENCES AND EARTH OBSERVATION STUDENTS

Ivánová, I., Huisman, O., de By, R.A., Rutzinger, M., Bakker, W., Feringa, W.

ITC Faculty of Geo-Information Science and Earth Observation of the University of Twente, The Netherlands

[ivanova, huisman, deby, bakker, feringa, rutzinger]@itc.nl

Commission VI

KEY WORDS: Programming, courseware, Python, e-learning, open-source

ABSTRACT:

This paper describes the development of a distance education course on programming skills. The purpose of this course is twofold:
first, it supports ITC’s Joint- Education Projects (JEPs) currently underway in several developing countries, and secondly, it
broadens the target market for our educational services. One of the key aims in teaching programming skills using any programming
language is to teach students how to approach computational problem-solving in a structured and logical way. The challenge in doing
so is how to develop adequate learning resources on the programming fundamentals, which are both intuitive and functional.
Drawing upon several years of experience of teaching programming skills at the Faculty of Geo-Information Science and Earth
Observation of the University of Twente (ITC, The Netherlands), we designed a course based on an interactive learning
environment, developed for a previous distance education course (Ivánová et al. 2008), but significantly extended to support new
content. The programming language taught is Python, which is a general-purpose, open-source computer language well-suited for
use in the hybrid context of databases, Geographic Information Systems, image processing, and web applications. It is well-known
for its lean syntax, which allows the novice student to devote more time to algorithmic and programming fundamentals. The course
is designed around an interactive learning infrastructure. It is built in an environment that seamlessly integrates the Python
environment (= program scripting and command line) and the teaching environment (= lecture material, exercise environment, and a
textbook). The course material is developed for plug-and-play deployment on a student’s PC, reducing the initial requirements on
installation and optimization of the work environment. Although the nature of studying a programming language is intrinsically self-
study, this plug-and-play solution also allows components of the course to be deployed in a face-to-face set-up, as well as in distance
education mode. This type of integrated learning environment currently does not exist anywhere; existing solutions are mostly in the
form of isolated tutorials or books. From a didactic perspective, the course presented here is a system of self-instructional learning
objects, allowing students to proceed in their own location, in their own time, and at their own pace, with an extensive direct
feedback embedded in the course materials. Most of the course content is based upon open-source materials – the textbook and some
of the exercises. However, we are extending these materials to tailor the course better to geoinformation science students by adding
material (in the form of lessons, as well as adding a chapter to the book itself). By doing so, we release the new chapter into the
open-source realm through creative commons licensing.

1. INTRODUCTION

1.1 Programming Skills at ITC

A substantial fraction of geoscientific problems can be viewed
as problems in which geoinformation in one format needs to be
transcribed into another one. Solutions to such problems require
high-level analytic thinking, with the application of algorithmic
and computational principles, and then a realization of the
solution through appropriate application of programming tools.
The standard application fields where programming skills are
used are databases and Geographical Information Systems
(GIS) analysis, image processing, and web services.
Programming Skills is a geoinformatics course component split
into two parts. The first part is integrated into the current core
courses, which provide the fundamentals in geoinformatics and
geosciences (four three-week, full-time educational modules) of
ITC’s MSc and Master degree programme. Using a variety of
theoretical and applied examples, these courses aim to teach
students how to approach problem-solving in a structured,
logical way, and to develop computational solutions for given
problems.

Python is a general-purpose, open-source computer
programming language used by thousands of developers around
the world in areas as diverse as spatial modelling, internet
scripting, user interfaces, product customization, and more. The
language is generally regarded as easy to learn, due to its no-
frills syntax and insightful command structure. It is also
recognized as an extremely powerful language, with more and
more industrial-quality extension modules becoming available.
Finally, it is widely used in geo-software projects and libraries
such as in hybrid contexts of databases, GIS, image processing
and web applications.

1.2 Rationale for a distance education course on
programming skills

The distance education course on programming skills (DEPS)
covers the same topics as the core module Programming
Skills 1 of ITC’s GFM degree programmes, with extended and
integrated material to support e-learning. The key objective was
that no face-to-face contact is required. The DEPS course offers
a ‘stand-alone’ introduction to Python of eight weeks duration
(plus one ‘warm-up’ week), with materials developed

62

specifically for plug-and-play deployment on student PCs via a
USB stick.
Drawing upon several years of experience of the GFM
Programming Skills course, DEPS is deployed as an integrated
environment for student learning. Effectively, the Python
‘environment’ (program scripting and command-line) is
accessible directly from within the learning environment,
providing seamless integration of lecture material, exercises,
and other support documentation developed specifically for the
course.
This type of environment currently does not exist anywhere, and
is a valuable learning resource that contributes to reduced
requirements for tutor input during the course run. Together
with a focus on student-centred content, it also provides greater
flexibility for students (for study in own time, at own pace, in
own location, with own learning style preference) within an
interactive learning environment.
It is the intention that the course material is also usable for e-
learning in a campus setting (to enhance classical learning by
individualizing learning) and for joint/decentralized
programmes. Upon course completion, students should be able
to decompose and structure a problem, formulate algorithms
that solve a given simple problem, and be able to implement
these using Python. Successful completion of the course also
implies exemption from having to follow the respective module
at ITC in context of a Master or MSc course.

2. TEACHING DISTANCE-EDUCATION
PROGRAMMING SKILLS: SPECIFIC ISSUES

2.1 Programming and Geo-information Science

The developed course is the starting point for different types of
student. Some of them have never had any contact with
computer science or a related field yet. Others already know one
or two high-level programming languages. Some members of
those groups may have a background in mathematics. The
course should therefore offer content that is relevant for both
groups. This requires a mixed approach: Initially, it requires the
basic programming methods and techniques to be taught,
programming examples from other disciplines, such as
mathematics and geometry, which make it easy to translate the
concepts with which the student is already familiar into the new
programming concepts. Finally, after successful course
participation this rather diverse group of students will achieve
the same base level of computational concepts and
programming skills to prepare them for more advanced
problems in spatial data processing.
The understanding of computational concepts and the ability of
implementing algorithms are a fundamental pre-requisite for
working in geoinformatics. Programming skills are needed to
handle different types of geo-data, convert between formats, and
to automate workflows to reduce manual user interaction, time,
and cost. Current data volumes in the geosciences and remote
sensing are such that they can no longer be handled manually.
The learned programming skills will help students to solve geo-
related problems such as information capture, extraction and
fusion, data storage and management, spatial data analysis, and
data presentation, for instance, by plotting for publishing or
providing the data as web services to a larger audience.
Effectively, the challenge of distance education is to
compensate the missing face-to-face contact hours, which
normally give room for more detailed explanation, discussion
and direct questions. The extensive implementation of animated
content and interactive learning tools in this course will close

this gap, and the modular structure of the course itself allows an
individual learning approach in terms of speed and time.

2.2 How to teach problem solving skills?

A substantial portion of problems in the geosciences can be
viewed as problems in which geospatial information in one
format needs to be transcribed into another format. That
transcription process may intend to highlight parts of the
contained information, aggregate information, or bring together
disparate sources. Some of the problems are common and well-
known and have found solutions that are now nicely embedded
in GIS or related tools. Examples are topological predicates for
vector-based data, overlay operators, and spatial reference
transformations of data sets. Other problems are less common,
are often of a higher complexity, and do not have standardized
solutions built into off-the-shelve systems. We want to equip
our students for tackling such problems as well.
Solutions to them require high-level analytic thinking, with the
application of computational principles, and then a realization
of the solution through appropriate application of one or more
tools. The standard tools and techniques include database and
GIS functions, image processing, web services, and as a catch-
all, general purpose programming. In realizing the solution, the
student should develop an appropriate strategy: parts to an
overall solution may be well-known sub-problems with posted
solutions, while other parts fundamentally are in need for
solution still. In both situations, programming can help to
realize the solution. In the first, it can be applied to combine
partial solutions into an orchestrated complete solution, while in
the second, it can be used to script a solution entirely.

As an example, a problem of geocoding a free natural language
description of a locality, like the following, is given:
Paciencia: A village or farm in São Paulo state, visited by
Natterer, 24-25 Mar. 1824: Natterer's itinerary indicates
locality is in ne São Paulo, north of Casa Branca [2146/4705
(USBGN)].
The, admittedly under-specified, problem is to obtain as precise
as possible the lat/long of this locality, with an accompanying
indication of spatial accuracy. A strategic solution might
involve: (1) natural language parsing, (2) use of a gazetteer
service for ‘Casa Branca’, (3) use of a web feature service for
Brazilian states, (4a) use of a gazetteer service for Paciencia, or
(4b) use of a freeform internet search engine for it, and (5)
application of an advanced spatial predicate to combine the
various obtained inputs to list Paciencia candidate localities.
This proposed solution is rather a linear pipeline of steps, but in
the details a more functional structure would be apparent.

Students should thus learn how to exploit existing functionality,
as well how to develop new functionality. Python is as easy a
tool for both as one can possibly find. But what is needed first is
the ability to think computationally. We cannot emphasize
enough that ‘knowing how to program’ is about more than just
the specific syntax of a computer language. It involves
computational thinking, an ability to conceptualise solutions, by
applying abstractions, in which the notions of functional
decomposition, transformation, mathematical semantics, data
modelling, modularity, iteration and recursion, generalization,
but also decidability, complexity and performance are key
metaphors. Computers, as well as programming languages, are
merely the tools to turn these abstractions into reality.
We feel the best way to introduce these rich ideas to our
students is by presenting them real life examples of their
application, and with exercises (at first easier ones) that invite
them to apply the principal ideas. We have found that it is

63

important for students to grow their confidence to a level where
they actually exercise abstraction, in the sense that they will feel
to have developed a solution even when not a single line of code
has been created. This should come with a level of confidence
in their own fundamental abilities and cleverness that abstractly
the problem has been solved, and what rests is coding that
solution. And then, they should realize that this is the only ideal
procedure and that while coding their understanding of the
problem and its solution will only deepen.
Finally, our institute's educational system, for various reasons,
is organized in three-week modules. We have found that for
students with no previous exposure to the world of
computational problem solving, three weeks constitutes too
short an incubation time to digest the materials. This is why the
regular course spreads out over several months, and why we
advice the distance takers a somewhat similar digestion.

2.3 Didactical principles applied in distance course

DEPS is developed as a self-instructive course. Our choice of a
self-instructive distance education course is motivated by the
aim to offer students a learning environment that can be
accessed in their own time, can be processed at own pace in own
location. In DEPS, we apply the same didactical principles used
in the existing distance education course - Distance education:
Principles of Databases developed by ITC (Ivánová, 2010).
ICARE, one of the instructional design models, is the didactical
system in use. ICARE stands for Introduce, Connect, Apply,
Reflect and Extend. As described in detail in (Ivánová et al.,
2008), ICARE is a didactical system that contains various
taxonomies, including Gagne's Nine events of instruction,
Merill's Component display theory, and Bloom's Taxonomy of
higher order learning. ICARE system in DEPS courseware is
depicted in Table 1.

ICARE System DEPS
Introduce Introduction to the lesson
Connect Lecture, Demonstration
Apply Demonstration, Exercise
Reflect Self-test
Extend e-Book, Additional links

Table 1 DEPS and its compliance to didactical principles of
ICARE system

Figure 1 shows the didactical system used in DEPS. The course
consists of three units, every unit contains four lessons. A
lesson is the atomic didactical element of DEPS.
All elements used to build a lesson are seen as course
components (Ivánová et al., 2008). Although we allow the
students to choose their own path through the course
components, we suggest an example path through units and
within a lesson. We use the study guide for this. However, the
course is designed in such a way, that every lesson can be
consumed as an independent learning object. The course is
embedded in a learning management system (LMS) used at
ITC. Every lesson is introduced by a short document –
Introduction to the lesson, in which the main objectives of the
lesson and components of the lesson are listed. An overview of
topics covered by lessons in DEPS is displayed in Table 2.

Figure 1 Didactical system of DEPS

.

Unit Lesson

1.1 Introduction to programming
1.2 Variables, expressions and
statements
1.3 Functions

1 Getting started

1.4 Conditionals and recursions
2.1 Fruitful functions
2.2 Iterations
2.3 Strings

2 Python fundamentals

2.4 Lists and tuples
3.1 Dictionaries
3.2 Files (I/O)
3.3 Classes and objects

3 Intermediate Python
programming

3.4 Case study – spatial processing
Table 2 Overview of DEPS course content

3. THE COURSEWARE

DEPS courseware is depicted in Figure 2. A solid blue line
represents containment – of the course on the USB stick and on
ITC’s server. A dashed red line represents the communication
amongst tutor and students through the LMS.

64

Figure 2 Structure of the course

3.1 Plug-and-Play learning environment

The course material is being developed for plug-and-play
deployment on a student’s PC, reducing the initial technicalities
related to installation and optimization of the work
environment. The course will run entirely off a USB stick,
requiring no installation and configuration on the student side.
Students plug in the USB stick, start up the LMS client. This is
a small browser application that acts as user interface to the
course, which allows to browse the course content. This LMS
client interface also allows students to interact with tutors, by
following the discussion board. Since the LMS client contains
an automatic update mechanism, students will always access the
most up-to-date version of the course (observe the
‘communication line’ between Blackboard and Agilix in Figure
2). Part of the USB content is a portable Python application
used in exercises (see Chapter 3.3). In this way, there is no need
for any type of installation. Python installation tips are included
as bonus material at the end of the course. Although the nature
of studying a programming language is self-study, this plug-
and-play solution also allows components of the course to be
deployed in a face-to-face set-up, as well as in the distance
education mode.

3.2 Lectures with Python flavour

In DEPS lessons, the lecture acts as ‘knowledge glue’. The
lecture relates ideas presented in other elements of the
courseware (e-Book, Demonstration, Exercise, Self-test). We
typeset most of our courseware using LaTeX, a high-quality
typesetting system based on TEX, developed by Donald Knuth
in 1978 (Knuth, 1984). The Python language has a special
flavour, by which we mean native Python code typesetting and
use of colours in most Python interpreters is catered for by
using a special environment in LaTeX, the ‘pythonlisting’
environment. Authors of the lecture can simply copy code
snippets from the interpreter and paste them into the .tex source
file of the lecture. All it requires is inserting a piece of code

(observe the indentation) into the .tex file of the lecture such as
the following:

\begin{pythonlisting}
def squaredPositive(x):
 if x<0:
 print "Number is negative"
 return
 return x**2
\end{pythonlisting}

The above example will be typeset as shown on Figure 3.

Figure 3 DEPS lecture - the 'knowledge glue'

As mentioned earlier, the DEPS lecture didactical system
understands the lecture as ‘knowledge glue’. This is exemplified
by a multimedia strip on the right margin of the lecture page.
Every page of the lecture can point to a podcast (audio file), a
screencast (video demonstration), an exercise, and/or a specific
location in the book.

3.3 Self-instructive learning of practical programming
skills

Teaching practical programming skills is always an area in
which self-study and supervised study are demanding priority.
The demand for supervision is two-fold. On the one hand asking
for assurance while starting to write programs is needed, and on
the other hand asking for help to solve a problem when
programs do not run is required. The traditional approach to
distance courses often used practical assignments to check
student progress in applying the knowledge explained by the
lecture. Staff processing of assignments and providing feedback
requires huge time investments. In a self-instructive distance
education course, the main challenge is to embed the supervisor
into the courseware. In other words, to enhance the application
tools (i.e., exercises) with a capability to provide feedback that
is timely and to-the-point. Embedding extensive feedback
directly to the courseware allows tutors of the distance course to
provide only additional clarification and explanation.
In DEPS, to teach practical programming skills in Python we
use a Python application called Crunchy. Crunchy is a program,
developed by André Roberge in 2007. It takes a Python tutorial
and turns it into an interactive session within a normal browser.
Conventional text is mixed with snippets of Python code and
command lines or complete text editors that can be used to
execute a single line or even multiple lines of Python code (see
Figure 4).

65

Figure 4 Crunchy in DEPS

Crunchy installs itself as a wrapper around the browser,
translates normal html pages into attractive and interactive
pages using a bit of JavaScript. Any Python code is executed by
a regular Python interpreter and Crunchy catches its output and
puts it inside the browser page. In this way, the student
experiences no difference between interacting with a normal
Python interpreter and interacting with Python through
Crunchy. Crunchy offers an attractive editor for Python code
with syntax high-lighting. Python's help system and docstrings
can be accessed in various ways. The code that is entered by the
student can be checked with a method that is used in Python
known as doctest. The doctest can be used to check the
correctness of a piece of Python code. For instance, if the task is
to build a function for squaring numbers then the doctest can
test the student's function for a number of predefined, and
strategically chosen values to see if the function performs
correctly. The current version of Crunchy has an exam mode, in
which the doctest can only be passed if it falls within a certain
amount of time. This is useful for building online exams. Other
capabilities of Crunchy include dynamic insertion of images,
building GUI's in separate windows, and a simple turtle system
for programming vector graphics. All this makes Crunchy the
ideal tool for building online Python tutorials, exercises and
tests.

A minimum of effort is needed to turn a piece of standard text
into a controlled interactive session with the Python interpreter.
The student, while reading the text, can interactively try out
pieces of code or do exercises that can be tested on the fly. Unit
tests can be designed to test the knowledge of the student.

3.4 Book

The book used in DEPS presents background reading material
to the student of our course on Programming Skills. It was
written by Allen Downey, with the help of other authors,
especially Jeff Elkner. Allen’s original book used Java as the
principal language, not Python. That’s where Jeff entered. Allen
had decided to put the book in the open domain, allowing,
amongst others, us to use it for the purpose here. The original
book by (Downey, 2002) has copyright information, while text
of the book’s Preface can be found here:
http://www.greenteapress.com/thinkpython/.
Figure 5 illustrates how the original book shows up in DEPS.

Figure 5 DEPS e-Book

3.5 Demonstrations

The main purpose of the demonstration is to expand the
theoretical knowledge by showing how to do certain things.
Demonstration in DEPS is developed as a narrated screencast.
For more technical details, we refer the reader to (Ivánová,
2008). For a visual impression of the DEPS demonstration, see
Figure 6.

Figure 6 Demonstration in DEPS lesson

3.6 Assessment tools

There are various ways and tools for assessing the knowledge
used in DEPS. Every lesson includes one self-test. Self-tests are
small Flash applications that allow students to test their
knowledge by answering questions in various forms, such as
short answer, multiple choice, fill-in-the-blanks and others (see
Figure 7).

66

Figure 7 Self-test in DEPS

Some exercises allow a discussion which is also a means to
verify student understanding. A discussion is moderated by the
tutor. At the end of every unit, there is a unit test. Unit tests are
developed in the LMS and results contribute to the student’s
final score. Tests are available during the whole course and
must be completed before the exam, at the end of the course.
Table 3 provides an overview of monitoring the assessment
tools.

Assessment
tool

Monitoring Contribution
to final score

Self-test NO -
Unit test YES 45%
Exercise –
programming

PARTLY –
consultation

provided through
discussion board

-

Exercise as
discussions

YES 5%

Exam YES 50%
Table 3 Assessment tools in DEPS

4. USE AND CONTRIBUTION TO OPEN-SOURCE
COMMUNITY RESOURCES

Most of the course content — the textbook and some of the
exercises — is based on open-source material. This material has
been extended to tailor the course to geoinformation science
students by adding material in the form of lessons, as well as
adding a chapter to the book itself (Case study: spatial
processing). We will release the new chapter into the open-
source realm through a Creative Commons license. This will be
a return of value-added components based upon open content to
the community.
The content of the Case study chapter is very much ITC-
specific, focusing on the use of Python to process spatial data.
The main points discussed in this new chapter address the
following questions:
 What is spatial vector data?
 Which Python modules allow working with spatial data?
 How to input spatial data to Python and what type of

output spatial data can be produced?
 What type of spatial processing functions can be used?
 How can one develop custom spatial functions?

5. SUMMARY

This paper discusses key aspects of the development of a
distance education course on programming skills. There are
unique requirements for teaching programming – most
noteworthy is to instil in the students a logical approach to
problem solving, coupled with improved algorithmic skills. The
Python programming language, with its simple syntax and
command structure is an ideal environment to facilitate this.

We also note that specific courseware is required to successfully
teach a distance education course on programming skills. Most
importantly, a didactical system is needed that compensates for
the lack of face-to-face contact by providing as much flexibility
as possible that maintains simplicity and navigability. Other key
elements of the courseware include assessment tools such as
exercises, self-tests and exams.

The incorporation of, and contribution to, open-source learning
material is an important feature of the course, and fits well with
the emerging view of knowledge as a shared resource.

REFERENCES

Downey, A. 2002. How to think like a computer scientist :
learning with Python / Allen Downey, Jeffrey Elkner, Chris
Meyers. – 1st ed., Green Tea Press, Wellesley, ISBN 0-
9716775-0-6

Harel, D.., Feldman, Y., 2004. Algorithmics—The Spirit of
Computing, third edition. Addison Wesley/Pearson, Harlow,
England, pp. 536.

Ivánová, I., Feringa, W.F., de By, R.A., Retsios, V., 2008. Self -
instructive course on principles of databases. In: Sharing good
practices : e-learning in surveying, geo - information sciences
and land administration, proceedings FIG International
Workshop, Enschede The Netherlands, pp. 35-50.

Ivánová, I., 2010. Principles of databases – distance education
course, ITC, Enschede, The Netherlands.

Knuth, D., 1984. the TeXbook, Adison-Wesley, Reading,
Massachusetts, 1984, ISBN 0-201-13448-9, 483pp

Roberge, A., 2007. Introduction to Crunchy, Series of
screencasts at showmedo.com,
http://showmedo.com/videos/video?name=1430000&fromSerie
sID=143 (accessed 13. April 2010)

Roberge, A., Woolard, J., 2010. Python Crunchy: Interactive
Python tutorials served through a web browser.
http://crunchy.sourceforge.net (accessed 13. April 2010)

Snyder, L., 2006. Fluency with Information Technology: Skills,
Concepts and Capabilities, second edition. Addison Wesley,
Boston, pp. 784.

Wing, J., M., 2006. Computational Thinking, Communications
of the ACM, Vol. 49, 3, pp. 33–35.

67

