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ABSTRACT: 
 
The use of appropriate features to characterize an output class or object is critical for all classification problems. This paper 
evaluates the capability of several spectral and texture features for object-based vegetation classification at the species level using 
airborne high resolution multispectral imagery. Image-objects as the basic classification unit were generated through image 
segmentation. Statistical moments extracted from original spectral bands and vegetation index image are used as feature descriptors 
for image objects (i.e. tree crowns). Several state-of-art texture descriptors such as Gray-Level Co-Occurrence Matrix (GLCM), 
Local Binary Patterns (LBP) and its extensions are also extracted for comparison purpose. Support Vector Machine (SVM) is 
employed for classification in the object-feature space. The experimental results showed that incorporating spectral vegetation 
indices can improve the classification accuracy and obtained better results than in original spectral bands, and using moments of 
Ratio Vegetation Index obtained the highest average classification accuracy in our experiment. The experiments also indicate that 
the spectral moment features also outperform or can at least compare with the state-of-art texture descriptors in terms of 
classification accuracy. 
  
 

                                                                 
*  Corresponding author.   

1. INTRODUCTION 

Interpretation of remotely sensed images has played an 
important role in vegetation mapping in the past decades, 
however the use of coarser spatial resolution satellite imagery 
have proven insufficient or inadequate for discriminating 
species-level vegetation in detailed vegetation studies (Yu et al., 
2006). Airborne high spatial resolution imagery provides more 
information for detailed observation of vegetation. However, 
traditional classification algorithms based on single pixel 
analysis are often not capable of extracting the information we 
desire from high spatial resolution images. In recent years, 
object-based approaches become popular in high spatial 
resolution image classification, which has proven to be an 
alternative to the pixel-based image analysis and a number of 
publications suggest that better results can be expected 
(Blaschke, 2010). When applying object-based method to 
vegetation species classification, individual trees are expected 
to be segmented as image-objects and after that classification 
will be conducted in object-feature space.  
The use of appropriate features to characterize an output class 
or object is fundamental for all classification problems.  How to 
extract representative object-features in arbitrary-shaped 
regions is still an open issue for object-based image 
classification. Texture is a fundamental feature to describe 
image, but most texture descriptors are based on regular images 
or regular regions (e.g. small blocks) and do not consider the 
color information (Liu et al., 2006). Shape features are very 
significant features which are very close to human perception. 
However due to the inaccuracy of image segmentation and view 
angle variations, shape features are not widely used in natural 
image analysis. We believe that statistical measurement is a 
better way to summarize arbitrary-shaped image regions in 
object-based image classification. Color histograms are the 

most widely used statistical features in computer vision. They 
are often used for the illumination independent characterization 
of the color distribution of the pattern. However, color 
histograms do not exploit the spatial layout of the colors. A 
good way to include such lost information is to use statistical 
moments as features. Color moments improve the 
characterization the shape and color distribution of the pattern 
and have proven to be effective features under changing 
viewpoint and illumination (Moons, 2004).  
 
Most previous feature extraction methods were conducted in 
original spectral bands (e.g. RGB color space), which were 
often fragile in visually complex environments. Incorporating 
domain knowledge might be a better way in real-world image 
analysis projects. From the literature review, the dominant 
method for interpreting vegetation biophysical properties from 
optical remote sensing data is through spectral vegetation 
indices. Plants have distinctive spectral signatures which is 
often modelled by combinations of reflectance measured in two 
or more spectral bands (Myneni et al., 1995). To our knowledge, 
little work has been done on utilizing vegetation indices as 
visual feature descriptors to combine multiple spectral bands for 
vegetation species classification from remote sensing images.  
In this paper, we take the advantage of vegetation spectral 
properties and use spectral moment features for object-based 
vegetation species classification. To evaluate the usefulness of 
spectral moment features, the state-of-art texture features such 
as Gray-Level Co-Occurrence Matrix (GLCM) and Local 
Binary Patterns (LBP) are also extracted for comparison 
purpose. Different feature descriptors were compared by means 
of classification accuracy. A Support Vector Machines (SVM) 
classifier is employed for the classification in object-feature 
space. Multispectral images are collected in a power line 
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corridor for vegetation management purposes and an extensive 
experiment on this dataset is conducted. 

2. STUDY AREA AND DATA 

The data used in this research were collected in rural 
Queensland Australia in October 2008 for research into 
vegetation management in power line corridors. The reason 
why we need species information of individual trees is that 
vegetation management in power line corridors is based on their 
potential risks to power lines. Some tree species are of 
particular interest and are generally categorized as undesirable 
and desirable species. For example, species with fast growing 
rates and that also have the potential to reach a mature height of 
more than four meters are defined as undesirable species. These 
undesirable species often pose high risks to power lines and 
therefore should be identified and removed.  
The images were captured in a 1.5 kilometres corridor by a high 
resolution 3-CCD digital multi-spectral camera mounted on 
fixed wing aircraft. Figure 1 shows a mosaic of the test area 
generated from aerial images acquired from the trial. The four 
spectral bands of the camera are: NIR (800-966 nm), red (670-
840 nm), green (540-640 nm), and blue (460-545 nm). The 
spatial resolution of the captured images is about 15 cm. The 
ground truth data of vegetation species were obtained from a 
field survey with domain experts’ participation. 

 
Figure 1. Experiment test site 

 
It should be noted that classifying all types of species in power 
line corridors requires significantly more resources than are 
currently available, however, classifying species in a given test 
area as a proof of concept is possible. In this research, we focus 
on three dominant species in our test field: Eucalyptus 
tereticornis, Eucalyptus melanophloia, and Corymbia tesselaris. 
These three species Here we abbreviate the species names to 
Euc_Ter, Euc_Mel and Cor_Tes. According to the field survey, 
these three species account for over 80% of all the trees in the 
test corridor.  
 
 

3. METHODS 

In this research, object-based image analysis is adopted which 
consists of a three-stage processing: image segmentation, 
spectral and texture feature extraction, and supervised 
classification employing SVM. 
 
3.1 Image Segmentation 

Successful object-based image analysis results largely depend 
on the performance of image segmentation. Since we are going 
to classify the species among trees, tree crowns are the only 
image-objects of interest in our research. The aim of 
segmentation is, therefore, to detect and delineate all trees from 
images while eliminating other image regions. We have 

developed an automatic tree crown detection and delineation 
algorithm by utilizing spectral features (i.e. band ratio of near-
infrared and red) in a pulse coupled neural network (PCNN) 
followed by post-processing using morphological 
reconstruction (Li et al., 2009). Since PCNN is capable to 
capture the proximity of image structure and texture, this 
method can automatically detect and delineate tree crowns from 
multi-spectral images and has been proved to be superior to 
some classic segmentation algorithms. Figure 2 shows an 
example of the segmentation results generated by our automatic 
segmentation algorithm.  
Although the automatic segmentation is satisfied from visual 
assessment, decomposition of tree clusters is occasionally poor. 
Since the main aim of this research is evaluate the effectiveness 
of different feature descriptors for detailed vegetation species 
classification, manual segmentation is used to minimize the 
influence of inaccuracy in segmentation. The background is 
removed and each tree crown is labelled with a unique label to 
identify the tree which is paired against individual tree species 
obtained from field surveys. After segmentation, different 
feature descriptors are extracted from the segments (i.e. tree 
crowns) and used for training classifiers.  

 
Figure 2. Example of automatic segmentation results 

 
3.2 Spectral and Texture Feature Extraction  

The object-based classification is substantially different from a 
per-pixel classification as it is done in object-feature space. 
Once the image-objects are segmented, both spectral and spatial 
attributes of each image-object (polygon) are extracted and used 
as input to a variety of classification algorithms for analysis. 
The basic approach to compute object-features from a multi-
spectral image is to calculate separately the derivatives of the 
spectral channels. However, to generate features which could 
have high discriminative power among tree species is difficult 
as they all look green from visual spectrum. In addition, there 
can be large variations in lighting and viewing conditions for 
remotely sensed images, which may greatly affect the 
classification results if the feature descriptors used are not 
robust to these changes.  
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3.2.1 Spectral Moment Features:  Color histograms are 
often used for the illumination independent characterization of 
the color distribution of the pattern. However, color histograms 
do not exploit the spatial layout of the colors. A good way to 
include such lost information is to use moments. Probability 
theory identifies that a probability distribution is uniquely 
characterized by its moments. Based on this idea, moment 
features have been proposed for color indexing (Stricker et al., 
1995). However, moment features are mostly extracted from 
image as global features for image retrieval purpose, few work 
has been done on trying to represent image-object using 
moment features in object based image classification. 
 
Since most information is concentrated on the low-order 
moments, only four central moments are considered as feature 
vectors in this research. They are defined as (Weinbach et al., 
2007): 
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where in equations (1-4) N is total number of pixels within the 
image-object (i.e. tree crown), μ is the arithmetic mean, and 
σ represents the standard deviation, sk  stands for the  third 
moment skewness, and ku  indicate the fourth moment kurtosis.  
 
Plants have distinctive spectral properties. In the past decades, 
many spectral vegetation indices have been developed as 
measurements of relative abundance and activity of green 
vegetation. These vegetation indices are developed for purposes 
such as to estimate vegetation biophysical properties, to 
normalize or model external effects like viewing and sun angle 
variations and internal effects like background and soil 
variations (Jensen, 2000). Most of these vegetation indices are 
calculated from the near-infrared and red band of the spectrum. 
These vegetation indices have been successfully applied to 
measure biophysics of green vegetation. However, there has 
been very limited work on using these vegetation indices as 
feature descriptors for detailed vegetation species mapping, 
especially from the individual tree perspective. 
 
In this paper, moments extracted from three widely used 
vegetation indices maps are evaluated: Ratio Vegetation Index 
(RVI) (Jordan, 1969), Normalized Difference Vegetation Index 
(NDVI) (Rouse et al., 1973) and Perpendicular Vegetation 
Index (PVI) (Richardson et al., 1977). They are defined as:  
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where NIRρ  and redρ are the spectral reflectance of near-
infrared and red band respectively.  The parameters of PVI are 
set to be a=0.96916,b=0.084726 according to literature (Seo et 
al., 1998). 
3.2.2 Texture Features: Texture contains important 
information in image classification, as it represents the content 
of many real-world images. Textures are characteristic intensity 
(or color) variations that typically originate from roughness of 
object surfaces (Davies, 2008). As a powerful source of 
information, texture features have been intensively studied in 
remote sensing image classification (Zhang et al., 2004, 
Franklin et al., 2000, Reulke et al., 2005, Samal et al., 2006). 
There are many different methods used to extract model texture 
from images. In this paper, we evaluated the widely used 
GLCM texture measures and state-of-art texture descriptor 
Local Binary Patterns (LBP) and its extensions: uniform LBP, 
rotation-invariant LBP, dominant local binary patterns (DLBP). 
In this section, an overview of these texture descriptors is given. 
 
The image-objects generated from segmentation is arbitrary-
shaped, however, texture measurements are usually extracted 
based on the texture property of pixels or small blocks within 
the rectangular shaped region. Therefore, in this paper, the 
arbitrary-shaped objects are extended to a rectangular area for 
texture extraction. This can be achieved by padding zero or 
mean value outside the object boundary, or obtaining the inner 
rectangle from the object. Zero padding introduces spurious 
high frequency components leading to degrading the 
performance of the texture feature, while the inner rectangle 
cannot usually represent the property of the entire object well. 
Mean-intensity padding has shown better performance than the 
other two approaches (Liu et al., 2006) and thus is adopted in 
this paper. Firstly, the minimum bounding rectangle is obtained 
from the image segment, and then the area which is outside of 
the segment and inside of the minimum bounding rectangle is 
padded using the mean value of pixels in the region. 
 
Grey-level co-occurrence matrices (GLCM) have been 
successfully used for deriving texture measures from images. 
This technique uses a spatial co-occurrence matrix that 
computes the relationships of pixel values and uses these values 
to compute the second-order statistics (Haralick et al., 1973). 
The GLCM approach assumes that the texture information in an 
image is constrained in the overall or “average” spatial 
relationships between pixels of different grey level. In this 
paper, we use mean and standard deviation of four measures 
from the grey-level co-occurrence matrices: energy, entropy, 
contrast, and homogeneity. 
 
LBP is first proposed by Ojala et al. to encode the pixel-wise 
information in the texture images (Ojala et al., 2002). The LBP 
method attempts to decompose the texture into small texture 
units and the texture features are defined by the distribution 
(histogram) of the LBP code calculated for each pixel in the 
region under analysis.  Figure 3 gives an example of binary 
code in a  33×  neighbourhood which generates 28 possible 
standard texture units. The LBP value for the centre pixel is 
calculated using the following equation: 
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where P is the total number of neighbouring pixels, R is the 
radius used to form circularly symmetric set of neighbours. In 
this paper, we use 1R,8 ==P . 
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Although LBP has proven to be a powerful texture descriptor, a 
number of extensions have been proposed to improve or 
supplement the classic LBP operators. We also evaluated 
several extensions to the conventional LBP operator including: 
uniform LBP, rotation-invariant LBP, and dominant LBP 
(DLBP) (Ojala et al., 2002, Liao et al., 2009).  The uniform 
LBP is used to represent the most important microstructures, 
which contain at most two bitwise (0 to 1 or 1 to 0) transitions. 
The rotation-variant LBP is produced by circularly rotating the 
original the original LBP code until its minimum value is 
attained, making LBP code invariant with respect to rotation of 
the image domain. DLBP only considers the most frequently 
occurred patterns, and try to avoid the information loss caused 
by just considering the uniform LBP and the unreliability by 
considering all possible patterns.  

 
Figure 3. Example of binary code calculation in a 33×  

neighbourhood. The binary labels of the neighbouring pixels is 
obtained by applying a simple threshold operation with respect 

to the centre pixel ct . )( ci ttu −  represents a step function, 
where 1)( =xu when 0≥x ; else, 0)( =xu . 

 
3.3 Supervised Classification Using SVM 

In this research, the species distribution in the test area is 
known a priori through the field survey and thus supervised 
classification is adopted to evaluate the discriminative power of 
different features in vegetation species classification. From our 
field survey, a vegetation database has been generated by 
giving each tree in the test field a unique ID and recording 
several attributes of each tree (e.g. species name and values of 
all extracted object-features).  
 
In our research, Support Vector Machines (SVMs) are 
employed as the classification methodology. SVM is an 
machine learning technology which has been successfully used 
in a variety of pattern recognition tasks and often outperforming 
other classification methodologies (e.g. Artificial Neural 
Networks) (Mills, 2008). The basic idea of SVM is to find an 
optimal decision function (a hyperplane) with the largest 
margin to separate the training data },...,,{ 21 nxxx with a label 

}1,1{ +−∈iy  into the positive (+1) or negative (-1) classes. The 
decision function is described as equation (9), and decision 
could be made according to that when 0)( =xf , x is classified 
as +1, otherwise, x is classified as -1. Figure 4 illustrates a 
simple linear separable case.  
 

bxwxf +⋅=)(                             (9) 
 
For data not linearly separable in the input space, SVM would 
map the data from the initial space to a (usually significantly 
higher dimensional) Euclidean space H by computation of 
inner-product kernels ),( xxK i .  After the mapping, the data, 
which is not linearly separable in the input space, become 

linearly separable in the H space. Thus, the SVM classifiers can 
be described as equation (10). Various classification methods 
are constructed by employing different kernel 
functions ),( xxK i  (e.g., linear, polynomial, RBF, sigmoid, etc.). 
Radial basis function (RBF) is selected in this paper as it often 
suggested as the first choice since it has several advantages over 
other common kernel functions (Hsu et al., 2008): 1) unlike 
linear kernel, RBF nonlinearly maps samples into a high 
dimensional space, so it can handle the case when the relation 
between class labels and attributes is nonlinear; 2) RBF kernel 
has less hyperparameters than the polynomial kernel which 
make it less complex in model selection; 3)   
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where Ci ≤≤ α0  is the maximal margin hyperplane in the H 
space. When the maximal margin hyperplane is found, only 
those points that lie closest to the hyperplane have Ci ≤≤ α0 , 
and these points are the support vectors. 
 

 
Figure 4. A linearly separable binary classification problem. 

The optimal hyperplane is with the maximum margin ε between 
the separating hyperplane and a hyperplane through the closest 
points of each of the two classes. These closest points are called 
the support vectors ( 1x and 2x are examples of support vectors). 
 
 

4. EXPERIMENT AND RESULT 

4.1 Experiment Setup 

The proposed spectral moment features are evaluated against 
the LBP and GLCM texture features on the multispectral data 
set discussed in section 2. The experiments are conducted in an 
open source SVM toolbox (SVMKM) (Rakotomamonjy et al., 
2008). For the decision function of SVM, two parameters γ and 
C are specified using a grid search scheme. The ‘one against 
one’ strategy is employed for multi-class classification. The 
training samples include 75 trees with 25 for each species. Two 
testing datasets were used for evaluation with 60 samples in 
each dataset. Totally 10 region feature descriptors are extracted 
from the segments (polygons), of which LBPs and GLCM 
texture features are extracted from grey channel which is 
derived by averaging the four spectral bands.  The LBP and its 
extensions are calculated in a 33×  neighbourhood. All the 
feature descriptors are extracted from the regions of interest 
(segmented tree crowns). Figure 5 shows an example of LBP 
texture feature extraction from tree crowns. The extraction of 
other feature descriptors also follows the same procedure. Table 
6 lists the evaluated features in the experiment, their 
abbreviations and feature dimensions.   
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(a) Original image   (b) region of interest  (c) LBP code image 

 
(d) LBP histogram on the region of interest 

Figure 5. Example of feature extraction from tree crowns 
 

Feature Abbr. Dimension 
Grey-level co-occurrence matrices GLCM 8 
Local Binary Pattern LBP 256 
Dominant Local Binary Patterns DLBP 205 
Uniform Local Binary Patterns ULBP 59 
Rotation-invariant Local Binary 
Patterns ri_LBP 10 

Spectral moments in RGB space m_RGB 12 
Spectral moments in CIR space m_CIR 12 
Spectral moments in RVI space m_RVI 4 
Spectral moments in NDVI space m_NDVI 4 
Spectral Moments in PVI space m_PVI 4 

Table 6. Evaluated features 
 
4.2 Results and Discussion 

The overall classification accuracy is obtained by comparing 
the classified data and the ground truth reference data. The 
overall accuracy is defined as: 

samplesofnumberTotal
spredictioncorrectofNumberAccuracy =        (12) 

Figure 6 compares the average classification accuracies in two 
datasets by using different feature descriptors. Classification 
accuracies in testing dataset1 using four central moments of 
RGB, CIR, RVI, NDVI and PVI spectral sub-space, LBP, 
uniform LBP, rotation-invariant LBP, DLBP and GLCM are 0.5, 
0.533, 0.65, 0.567, 0.533, 0.45, 0.45, 0.467, 0.383, and 0.5 
respectively. From the results we can see that the use of 
moments in spectral vegetation indices indicate higher 
classification accuracy than using original spectral bands and 

 the state-of-art texture descriptors. Similar results were 
obtained in dataset2 with the average classification accuracy of 
0.683, 0.717, 0.733, 0.717, 0.683, 0.733, 0.75, 0.617, 0.717, and 
0.717 respectively for the 10 feature descriptors. From the 
experiment, we can see that incorporating spectral vegetation 
index in moment feature extraction improved the classification 
accuracy and the spectral moments in RVI showed the best 
performance. 

 
Figure 8. Evaluation of feature descriptors on two testing 

datasets. The horizontal axis indicates the average classification 
accuracy and the vertical axis compares different features 

descriptors. 
 
Table 7 presents the average classification accuracies of the 10 
features per category. It is noted that the evaluated features 
have different discriminative powers for different tree species. 
Therefore, it would be interesting to investigate whether the 
integration of multiple features will improve the classification 
result and how to select and fuse different features. A possible 
solution is to use feature subspace selection methods such as 
principal component analysis (Lu et al., 2007) and  locally 
linear embedding (Roweis et al., 2001). These algorithms have 
been reported to be effective in reducing the dimensions of 
input space and achieving better performance which might be 
helpful when multiple features are used. 
 
Trees can often show different appearances in different seasons 
and even the same tree species may vary due to the their health 
status. Nevertheless, from our experiment we can conclude that 
the spectral moment fetures derived from spectral index maps 
have the potential to improve the accuracy in detailed 
vegetation mapping tasks. Our future work is to fuse multiple 
spectral and texture features to further improve the 
classification accuracy. 
 
 

 m_RGB m_CIR m_RVI m_NDVI m_PVI LBP ULBP ri_LBP DLBP GLCM 

Euc_Ter 0.725 0.675 0.65 0.8 0.65 0.375 0.375 0.325 0.35 0.4 
Euc_Mel 0.6 0.6 0.675 0.625 0.575 0.65 0.475 0.425 0.45 0.475 
Cor_Tes 0.45 0.6 0.75 0.5 0.6 0.75 0.95 0.875 0.85 0.95 

Table 7. Overall classification accuracies of 10 features per category 

 
5. CONCLUSION 

This paper evaluates the capability of spectral moment and 
texture features for object-based vegetation species 
classification. Totally 10 spectral and texture feature descriptors 

were evaluated using SVM by means of classification accuracy. 
The experimental results showed that spectral moment features 
has the potential to improve the accuracy in individual tree 
species classification from high resolution multispectral images. 

Category 
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The use of spectral moment in RVI indicates the highest 
classification accuracy in our experiment.  
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