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ABSTRACT: 
 
This paper reports on the empirical comparison of seven machine learning algorithms in texture classification with application to 
vegetation management in power line corridors.  Aiming at classifying tree species in power line corridors, object-based method is 
employed. Individual tree crowns are segmented as the basic classification units and three classic texture features are extracted as 
the input to the classification algorithms. Several widely used performance metrics are used to evaluate the classification algorithms.   
The experimental results demonstrate that the classification performance depends on the performance matrix, the characteristics of 
datasets and the feature used.  
 

                                                                 
*  Corresponding author.  This is useful to know for communication with the appropriate person in cases with more than one author. 

1. INTRODUCTION 

Vegetation management activities in power line corridors 
including tree trimming and vegetation control is a significant 
cost component of the maintenance of electrical infrastructure. 
Currently, most vegetation management programs for 
distribution systems are calendar-based ground patrol (Russell 
et al., 2007). Unfortunately, calendar-based tree trimming 
cycles are expensive. It also results in some zones being 
trimmed more frequently than needed and others not cut often 
enough. Moreover, it is seldom practicable to measure all the 
plants around power line corridor by field methods. Satellites 
and aerial vehicles can pass over more regularly and 
automatically than the ground patrol. Therefore, remotely 
sensed data have great potential in assisting vegetation 
management in power line corridors (Li et al., 2008). Remote 
sensing image classification is one of the key tasks for 
extracting useful information to assist power line corridor 
monitoring.   
 
Texture contains important information for image classification, 
as it represents the content of many real-world images. Texture 
feature extraction and classification have been intensively 
studied for interpreting vegetation properties from remote 
sensing imagery (Franklin et al., 2000, Coburn and Roberts, 
2004). Selection of appropriate texture measurements and 
classification algorithm are two critical steps in a texture 
classification problem. However, most previous research 
focused on how to representing texture in an image, few 
research verified the discriminatory power of different 
classification algorithms using these texture features. Lu and 
Weng reviewed a number of image classification techniques for 
improving classification performance and suggested that the use 
of multiple features and selection of suitable classification 
method are especially significant for improving the 
classification accuracy. However, no empirical comparison and 

quantitative results have been presented. It would be interesting 
to investigate which one have more impact on the classification 
results, the features or the classifiers? 
 
Machine learning techniques are now widely used in remote 
sensing classification. A machine learning algorithm is one that 
can learn from experience (observed examples) with respect to 
some class of tasks and a performance measure (Mitchell, 1997). 
Different performance metrics are often used and it is possible 
for one learning method to perform well on one metric, but be 
suboptimal on other metrics. For example, SVMs are designed 
to optimize accuracy, whereas neural networks typically 
optimize squared error or cross entropy (Caruana and 
Niculescu-Mizil, 2004). Moreover, in many applications 
Accuracy are used as the only measure to assess the 
performance of the built classifier. However, there are many 
other evaluation methods such as Precision/Recall and ROC 
analysis. We need to understand the advantage and 
disadvantage of these measures before using them for 
evaluation. Sometimes we may need to find tradeoffs on these 
methods and try to select a model that best suit the problem.  
 
The motivation behind this paper is to develop a better 
understanding of the machine learning process in object-based 
image classification, to evaluate the performance of different 
machine learning algorithms in a specific texture classification 
application, and to compare the results not only in terms of their 
classification accuracy but also the benefit and cost and some 
other properties such as computational cost. 
 

2. METHODOLOGY 

2.1 An overview of object-based image classification 

Since remote sensing images consist of rows and columns of 
pixels, conventional land-cover mapping has been based on a 
per-pixel basis (Mas et al., 2006). Unfortunately, classification 
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algorithms based on single pixel analysis often are not capable 
of extracting the information we desire from high spatial 
resolution images. For example, the spectral complexity of 
urban land-cover materials results in specific limitations using 
per-pixel analysis for the separation of human-made materials 
such as roads and roofs and natural materials such as vegetation, 
soil, and water (R.Jensen, 2005). We need information about 
the characteristics of a single pixel but those of the surrounding 
pixels so that we can identify areas (or segments) of pixels that 
are homogeneous. Object-based approaches become popular in 
high spatial resolution remote sensing image classification, 
which has proven to be an alternative to the pixel-based image 
analysis and a large number of publications suggest that better 
results can be expected (Blaschke, 2010).  

 
A typical object-based image classification consists of a three-
stage processing: image segmentation, object feature extraction, 
and pattern classification. Successful object-based image 
analysis results largely depend on the performance of image 
segmentation. Since we are going to classify the species among 
trees, tree crowns are the only image-objects of interest in our 
research. The aim of segmentation is, therefore, to detect and 
delineate all trees from images while eliminating other image 
regions. We have developed an automatic tree crown detection 
and delineation algorithm by utilizing spectral features in a 
pulse coupled neural network followed by post-processing 
using morphological reconstruction (Li et al., 2009). Although 
the automatic segmentation is satisfied from visual assessment, 
decomposition of tree clusters is occasionally poor. Since the 
main aim of this research is evaluate different machine 
classifiers, manual segmentation is used to minimize the 
influence of under-segmentation and over-segmentation. The 
background is removed and each tree crown is labelled with a 
unique label to identify the tree which is paired against 
individual tree species obtained from field surveys.  
 
2.2 Texture Feature Extraction Methods 

Texture patterns are defined as the characteristic intensity  
variations that typically originate from roughness of object 
surfaces (Davies, 2009). According to a recent review  texture 
feature extraction methods can be divided into three categories: 
statistical, structural and signal processing based approaches 
(Xie and Mirmehdi, 2009). In this paper, three widely used 
texture features are extracted from the segments (polygons) and 
then input to the classifiers: GLCM, Gabor wavelet features, 
and Uniform LBP. In this paper, all three texture features are 
extracted from grey channel which is derived by averaging the 
four spectral bands of the original image. 
 

GLCM: Grey-level co-occurrence matrices (GLCM) have 
been successfully used for deriving texture measures from 
images. This technique uses a spatial co-occurrence matrix that 
computes the relationships of pixel values and uses these values 
to compute the second-order statistics (Kubo et al., 2003). In 

this paper, we use mean and standard deviation of four 
measures from the grey-level co-occurrence matrices: energy, 
entropy, contrast, and homogeneity. The GLCM feature vector 
has 8 dimensions. 

Gabor Wavelet Features: 24 Gabor wavelet filters are 
employed with center frequencies [0.05, 0.4], 4 scaling factors, 
and 6 orientations at angles of 0 and 180 degrees to achieve 
optimal coverage in the Fourier domain. The mean and standard 
deviation of magnitude of each filtered image region are used as 
feature components. The feature vector has 48 dimensions.  

ULBP: Local Binary Pattern (LBP) is first proposed by 
Ojala et al. to encode the pixel-wise information in the texture 
images (Ojala et al., 2002). The LBP value for the centre pixel 
is calculated using the following equation: 
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where P is the total number of neighbouring pixels, R is the 
radius used to form circularly symmetric set of neighbours. In 
our experiment, we use the uniform LBP (ULBP) contains at 
most two bitwise (0 to 1 or 1 to 0) transitions The occurrence 
histograms of the ULBP are computed using 24,16,8=P , with 

3,2,1=R respectively, which is claimed to have the best 
performance of the local binary patterns in the experiments 
conducted by Ojala et al. (Ojala et al., 2002). The features are 
obtained by combining the three sets of features together. 
 
2.3 Machine Learning Algorithms 

During the past decades, a variety of machine learning 
algorithms have been proposed for classification tasks. 
Although the potential advantages and disadvantage of these 
techniques have been addressed in many published work, most 
of them are from the theoretical view under some assumption 
about data distribution, characteristics of the classification task, 
signal-to-noise-ratio, etc. In reality, these assumptions are often 
hard to be verified. Therefore, a practical solution for selecting 
an appropriate model for a given classification task is to 
experimentally compare these algorithms. In this paper, we 
compared seven widely used machine classifiers which are 
implemented in DTREG (Sherrod, 2009): K-Means Clustering, 
Linear Discriminant Analysis (LDA), Radial Basis Function 
Networks (RBFN), Multilayer Perceptron Neural Networks 
(MLPNN), Support Vector Machines (SVM), Single Decision 
Tree (SDT), and Decision Tree Forest (DTF). Only a brief 
introduction of these algorithms is presented in this section, and 
may safely be skipped by readers since they are all well known 
techniques. 
 

K-Means Clustering (KM): K-Means is a classic 
unsupervised clustering technique. When used for supervised 
classification, the model is built by minimizing the 
classification error (distances between the predicted cluster and 
the actual cluster membership.  In DTREG, the training is done 
by searching the optimal number of clusters and each category 
may have several corresponding clusters. 

Linear Discriminant Analysis (LDA) The basic idea of 
Linear Discriminant Analysis (LDA) is to find the linear 
combination of features (“linear transformation”) which best 
separate desired classes.  

Multilayer Perceptron Neural Networks (MLP): Neural 
networks are predictive models loosely based on the action of 
biological neurons. Artificial neural network usually refers to 
multilayer percetron neural network which is typically full-
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connected, three layers, feed forward, perceptron neural 
network.  

Radial Basis Function Networks (RBFN): The basic idea 
of RBFN is that a predicted target value of an item is likely to 
be about the same as other items that have close values of the 
predictor variables. A RBFN typically has three layers: an input 
layer for each predictor variable, a hidden layer that uses 
Gaussian function as radial activation function and an output 
layer that implements weighted sum of hidden layer outputs.  

Support Vector Machines (SVMs): The basic idea of SVM 
is to find an optimal decision function (a hyperplane) that 
separates clusters of vector in such a way that cases with one 
category of the target variable are on one side of the plane and 
cases with the other category are on the other size of the plane. 
The vectors near the hyperplane are the support vectors.  

Single Decision Tree (SDT): Decision tree is a binary tree 
structure whose internal nodes correspond to input patterns and 
whose leaf nodes are categories of patterns. The tree can be 
induced by iteratively splitting the dataset into subsets based on 
classes attributes. The decision tree assigns a pattern category to 
an input pattern by filtering the pattern from the root to the leaf 
in the tree.   

Decision Tree Forests (DTF): It is also known as Random 
Forests, which is an ensemble of tree-type classifiers. A 
decision tree forest grows a number of independent trees in 
parallel, and they do not interact until after all of them have 
been built. For classification, each tree in the DTF casts a unit 
vote for the most popular class at input, while the output of the 
classifier is determined by a majority vote of the trees.  
 
2.4 Performance Metrics 

Given a certain application, more than one method is applicable. 
This motivates evaluating the performance of these 
classification methods empirically in a specific application. 
That is, given several classification algorithms, how can we say 
one has less error than the others for a given application? 
Having selected a classification algorithm to train a classifier, 
can we tell an expected error rate with enough confidence that 
later on when it is used in a new dataset?  
 
In this section, we consider several most commonly used 
metrics for evaluating different classification algorithms: 
overall accuracy, precision/recall, F-measure, ROC analysis, 
and computational cost. All of these measures are based on the 
definition of a confusion matrix. An example of confusion 
matrix for binary classification is described in Table 1. To help 
the definition that follows, we define the following symbols: TP: 
True Positive count; FN: False Negative count; FP: False 
Positive count; TN: True Negative count.  
 
The overall accuracy is the simplest and most intuitive 
evaluation measure for classifiers. It is defined as  

NP
TNTP

samplesofnumberTotal
spredictioncorrectofNumberAccuracy

+
+

==  

It is worth noting that the overall accuracy does not distinguish 
between types of errors the classifier makes (i.e. False Positive 
versus False Negative) (Japkowicz, 2006). For example, two 
classifiers may obtain the same accuracy but they may behave 
quite differently on each category. If one classifier obtains 
100% accuracy on one category but only 41% on the other 
category, while another classifier generate 70% for each 
category, it is hard to claim that the first classifier is better. 
Therefore, overall accuracy may not be use blindly as the 
evaluation method for classifiers on a dataset. Precision and 

Recall can avoid the problem encountered by Accuracy. 
Precision can be seen as a measure of exactness or fidelity, 
whereas Recall is a measure of completeness. Their definitions 
are: )(Pr FPTPTPecision += , PTPcall =Re . Usually, 
Precision and Recall scores are discussed jointly and a single 
measure can be derived by combing both measures (e.g. F-
measure). F-measure is the weighted harmonic mean of 
precision and recall. In this paper, we use the 1F  measure in 
which the precision and Recall are evenly weighted. It is 
defined as: 

callecision
callecisionF

RePr
RePr21 +
⋅

⋅=  

The goal of Precision/Recall space is to be in the upper-right-
hand corner, which means that the higher value of 1F  measure, 
the better classifier’s performance.  

Table 1 A confusion matrix 
Predicted  Actual Category 
Category Positive Negative 
Positive TP FP 
Negative FN TN 

 P=TP+FN N=FP+TN
 
Precision and Recall do not judge how well a classifier decides 
that a negative example is, indeed, negative. Receiver 
Operating Characteristic (ROC) analysis can solve both the 
problems of Accuracy and Precision/Recall. ROC analysis plots 
the False Positive Rate (FPR) on the x-axis of a graph and True 
Positive Rate (TPR) on the y-axis. TPR is equal to Recall and 
FPR is defined as NFPFPR = . An ROC graph depicts 
relative trade-offs between true positive (benefits) and false 
positive (costs), and the goal in ROC space is to be in the 
upper-left-hand corner (Davis and Goadrich, 2006). The (0,1) 
point of the ROC space is also called a perfect classification. 
The diagonal line from the left bottom to the right top corner is 
also called the random guess line, which can be used to judge 
the whether it is good or bad classification. Points above the 
random guess line indicate good classification results, while 
points below the line are considered as bad classification results. 
In this paper, we calculate the distance of the each point and the 
(0,1) point and rank it. The shorter the distance, the better the 
classification is.      

 
Figure 2 Illustration classifier evaluation in ROC space 

Computational costs of the classification algorithms also need 
to be considered in a real-world problem. Although in most 
remote sensing image classification tasks real-time processing 
is not required, it is certainly not unnecessary to choose a 
computational efficient classification algorithm. In this paper, 
we compare the computation cost of different machine learning 
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algorithms by recording the analysis time in both training and 
testing stages. 

 
3. EXPERIMENT AND DISCUSSION 

3.1 Data Collection  

The experiment dataset used in this research were collected in 
rural Queensland Australia in October 2008 for research into 
vegetation management in power line corridors. The reason 
why we need species information of individual trees is that 
vegetation management in power line corridors is based on their 
potential risks to power lines. Some tree species are of 
particular interest and are generally categorized into undesirable 
and desirable species. For example, species with fast growing 
rates and that also have the potential to reach a mature height of 
more than four meters are defined as undesirable species. These 
undesirable species often pose high risks to power lines and 
therefore should be identified and removed. The images were 
captured in a 1.8 kilometres corridor by a high resolution 3-
CCD digital multi-spectral camera mounted on fixed wing 
aircraft. Figure 3 shows a mosaic of the test area generated from 
aerial images acquired from the trial. The spatial resolution of 
the captured images is about 15cm. The ground truth data of 
vegetation species were obtained from a field survey with 
domain experts’ participation. 

It should be noted that classifying all types of species in power 
line corridors requires significantly more resources than are 
currently available, however, classifying species in a given test 
area as a proof of concept is possible. In this research, we focus 
on three dominant species in our test field: Eucalyptus 
tereticornis, Eucalyptus melanophloia, and Corymbia tesselaris. 
We abbreviate the species names to Euc-Ter, Euc-Mel and Cor-
Tes. Through field survey with botanist’s participation, 121 
trees were selected and labelled for the experiment with 64 Euc-
Ter, 30 Euc-Mel and 27 Cor-Tes. The criterion is that tree 
crowns are big enough so that they can be visually identified 
from the aerial images. Visual classification of these species 
often uses features such as leaf shape and bark type which are 
not available from the data used. However, texture analysis can 
be very useful to identify these species from digital imagery. 

 
Figure 3 Experiment test site 

 
3.2 Results and Discussion 

To evaluate the performance of different machine learning 
algorithms in texture classification, we use the implementation 
of these algorithms in DTREG. For all classifiers the default 
setting of DTREG is used. V-fold cross validation technique is 
employed in the experiment, and 10 folders were selected for 
the cross validation. The dataset is partitioned into 10 groups, 
which is done using stratification methods so that the 
distributions of categories of the target variable are 
approximately the same in the partitioned groups. 9 of the 10 

partitions are collected into a pseudo-learning dataset and a 
classification model is built using this pseudo-learning dataset. 
The rest 10% (1 out of 10 partitions) of the data that was held 
back and used for testing the built model and the classification 
error for that data is computed. After that, a different set of 9 
partitions is collected for training and the rest 10% is used for 
testing. This process is repeated 10 times, so that every sample 
has been used for both training and testing. The classification 
accuracies of the 10 testing datasets are averaged to obtain the 
overall classification accuracy. 
  
Table 2 summarizes the overall classification accuracy of each 
machine classifier on the three feature vectors respectively. As 
is shown in the experimental results, of the seven methods 
investigated in this paper, the left three (KM, LDA and RBFN) 
show relatively low overall classification accuracy, whereas the 
MLP SVM classifiers generate higher accuracy on all three 
features.  It is also noted that the SDT and DTF methods also 
give relatively good results when using Gabor and ULBP 
features, however, the classification accuracy drop off 
considerably when using GLCM features.  
 
We also compare the average 1F  measure of three categories 
from different classification algorithms (Figure 4). As discussed 
in the previous section, a higher value of 1F  measure indicates 
a better classifier. From the figure it is clear that MLP and SVM 
generally perform well for all three features, while the 
performance of other classifiers largely depends on the data 
used. For example, RBFN obtains reasonable result for Gabor 
and ULBP features but generates terrible result when using 
GLCM feature.    

 
Figure 4 Average F1 measure of different classifiers 

  
Figure 5 presents the analysis results of different classification 
algorithms for three texture features in ROC space. The plots of 
different algorithms use different markers specifiers, and within 
which the three categories are shown as different colours. 
Different from the analysis results of using overall accuracy and 

1F  measure (Precision/Recall), ROC space provide more 
details of the classifier performance. As we can see from the 
figures, the performance of the classifier depends on the 
category and the feature used. By calculating the distance of 
points to the upper-left-corner point (point (0,1) in ROC space), 
the performance of the classifiers is ranked. From the 
experimental results, most classifiers perform the best for 
classifying Cor-Tes. The MLP classifier with ULBP features, 
the KM classifier with GLCM features, and the KM classifier 
with ULBP features obtained the best performance for 
classifying Euc-Ter, Euc-Mel and Cor-Tes respectively. The 
analysis result from ROC space is different from that derived 
from overall Accuracy and average 1F  measure, where SVM 
and MLP are supposed to be superior to other classifiers.   
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Table 2 Comparison of the overall classification accuracies 

 KM LDA RBFN MLP SVM SDT DTF 

GLCM 55.37 64.46 62.81 69.42 69.42 58.68 56.20 
Gabor 65.29 62.81 57.02 71.90 71.07 71.90 71.07 
ULBP 69.42 50.41 52.89 72.73 71.07 66.12 71.07 

Table 3 Comparison of the computational costs (in seconds) 
 

KM LDA RBFN MLP SVM SDT DTF 

GLCM 2.64 0.23 43.53 2.72 22.89 0.3 0.55 
Gabor 44.06 0.47 139.14 5.81 15.97 0.56 1.13 
ULBP 385.97 7.41 113.19 136.41 230.93 2.53 2.31 

 
Table 3 compares the computational cost of each machine 
classifier on the three feature vectors respectively. The analysis 
time is recorded by DTREG software under a desktop PC 
configuration of core duo 2.66GHz CUP and 2GB memory. 
From the results, we can see that the analysis time varies a lot 
for each machine classifiers and feature vectors. Overall, LDA, 
SDT and DTF are very computational efficient, whereas RBFN, 
MLP and SVM are computational much more intensive. It 
should also be mentioned that with the dimensions of feature 
vectors increase, the computational cost increase considerably 
(The dimensions of GLCM, Gabor and ULBP are 8, 48 and 607 
respectively). For example, the analysis time of KM algorithm 
increase considerably when using ULBP feature.  
 
From the evaluation results, it is noticed that: 1) The selection 
of an approriate performance metrix is critical to evaluate the 
discriminatory power of different classifiers. Simply choose 
accuracy as the only measure often cause some misleading 
evaluation results. ROC analysis provide more details about the 
benefit and cost of a classifier. 2) The classification 
performance not only depends on the discriminatory power of 
classifiers but also the characteristics of datasets and the 
feature(s) selected. The evaluation results suggest to select 
approprate feature and classification algorithm for different 
categories. For example, to classify Euc-Ter the MLP classifier 
and ULBP feature are suggested. 3) Choosing a ‘best model’ is 
a complex issue and need to consider many factors such as the 
tradeoff between discriminatory power and computational cost. 
4) Overall, the classification accuracies of all classifiers and 
texture features are not as good as expected. Trees can often 
show different apperances in different seasons and even the 
same tree species may vary due to the their health status. 
Nevertheless, using texture feature and machine learning 
techniques has shown the potential in analyzing vegetation in 
power line corridors by means of digital remote sensing 
imagery.  
 

4. CONCLUSION 

This paper evaluates the capability of seven machine learning 
algorithms and 3 texture features by means of classifying 
vegetation species in a power line corridor using high resolution 
aerial imagery. Object-based method is employed that local 
texture features are extracted from image-objects (i.e. tree 
crowns) and the classification is done in object feature space. 
Several performance matrixes are used to evaluate the 
performance of classifiers. The experimental results showed 
that the classification performance depends on the performance 
matrix, the characteristics of datasets and the feature(s) used.  

 

 
(a) GLCM feature 

 
(b) Gabor feature 

 
(c) ULBP feature 

Figure 5 The analysis results in ROC Space 
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