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ABSTRACT: 
 
Road surfaces are seriously disturbed by a variety of noises on the very high resolution (VHR) remotely sensed imagery in urban 
areas, e.g., abrupt geometric deformation and radiometric changes caused by sharp turning, shadows of tall buildings, and 
appearance of vehicles, which leads to frequent failures for most of current road tracking methods. In this paper, a semi-automatic 
method is proposed for urban road tracking on VHR imagery. Initially, a human operator inputs three seed points on a selected road, 
and then necessary information, such as road direction, road width, start point, and a reference template, is automatically derived. 
The automatic tracking is consequently triggered. During the process, the reference template is moved to generate several target 
templates. For each target template, a binary template is derived by classifying the target template using support vector data 
description (SVDD). Subsequently, region adjacency graphs (RAG) is used to eliminate the small disturbing features on the road 
surfaces in each binary template, which is helpful to search the optimal road centerline points. The above tracking process is 
repeated until a whole road is completed. Two VHR images were used for the test. The preliminary results show that our method can 
extract roads more robustly than existing least-squares template matching method in urban areas.  
 
 

                                                                 
* Corresponding author 

1. INTRODUCTION 

The increasing availability of commercial very high resolution 
(VHR) satellite imaging sensors such as QuickBird, GeoEye-1 
and TerraSAR, demands the availability of suitable automatic 
interpretation tools to extract and identify cartographic features 
(Lin et al., 2009). Roads are one of the most important 
cartographic features, and automatic extraction of them is 
meaningful for various applications such as Geographic 
Information System (GIS) database updating, transportation 
analysis and urban planning (Huang and Zhang, 2009). 
Nevertheless, attempts on developing fully automatic road 
extraction method for VHR digital imagery have been made for 
decades (e.g. Hinz and Baumgartner, 2003; Song and Civco, 
2004; Jin and Davis, 2005). It still involves several major 
scientific and technical challenges (Mena, 2003). Therefore, 
despite a lot of research work on fully automatic approaches 
for road extraction, the desired high level of automation could 
not be achieved by now and even in the near future 
(Baumgartner et al., 2002). One more practical solution to this 
problem is to adopt a semi-automatic approach that retains the 
“human in the loop” where the computer vision algorithms are 
used to assist human extracting the roads (Zhou et al., 2006). 
Currently, dozens of semi-automatic methods are proposed for 
road extraction from VHR imagery, and many of them reach 
various levels of success. In general, these semi-automatic 
approaches may be grouped into two categories: path 
optimizers and road trackers or path finders (Amo et al., 2006). 
A path optimizer is applied to determine an optimal trajectory 
between manually selected seed points, and it is often realized 
by improving the dynamic programming and snakes or active 
contour model (Gruen and Li, 1997) for VHR images. In these 
models, geometric and radiometric characteristics of roads are 
integrated by a cost function or an ‘energy’ function, and then 

the road extraction is equivalent to seeking the global energy 
minimum. Amo et al. (2006) improved the active contour 
model by the region competition algorithm to extract the 
ribbon roads on aerial images. Dal Poz and do Vale (2003) 
made a modification of merit function of the original dynamic 
programming approach, which is carried out by a constraint 
function embedding road edge properties. However, it is hard 
to define the reasonable ‘energy’ function for each road on 
each VHR image. 
Compared to the path optimizers, path finders are more popular. 
A path finder is an iterative line growing process: it often starts 
with some seed points, then the local information is used to add 
new segments into the road network based on the pixel 
intensities of the image, and typically a human operator is 
needed to help the path finder go through the various types of 
image noises such as cars and shadows. For example, 
McKeown and Denlinger (1988) described one of the most 
general road finder based on the cooperation between the 
intensity profile correlation of road cross sections and road 
edges following. Vosselman and Knecht (1995) imposed the 
profile matching by using least squares template matching and 
Kalman filter. Baumgartner et al. (2002) also presented a 
human-computer interactive prototype system by the above 
method. Similarly, Zhou et al. (2006) used two profiles, one 
perpendicular to road direction and the other parallel to road 
direction, to enhance robustness of the tracker and applied 
extended Kalman filter and particle filter to solve profile 
matching issues for road tracking. Slightly different from the 
above methods; Kim et al. (2004) employed a rectangular 
reference template of road surfaces to track roads by least 
squares template matching, and road path is modelled as 
similarity transform; Hu et al. (2004) presented a road finder 
using a piecewise parabolic model and least-squares template 
matching; Zhou et al. (2007) utilized one on-line learning 
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method based on the principle of one-class support vector 
machines (SVMs) to find the optimal matched template in road 
tracking; and Lin et al. (2009) described a road finder by both 
tracking the lane markings and road surfaces based on least-
squares template matching. However, most of the above road 
finders fail when they encounter the road intersections. 
Another road finder presented by Hu et al. (2007) can well 
extract the intersections besides the general roads, and it 
employed a spoke wheel operator to obtain the road footprints. 
Despite most of the above road finders perform well on some 
kinds of roads or intersections such as highways or rural roads 
where the road surfaces are relatively homogenous on VHR 
images, they often failed to extract the roads where the surfaces 
suffer from abrupt geometric deformation and radiometric 
changes caused by sharp turning, shadows of tall buildings, and 
appearance of vehicles etc. 
How to decrease the negative effects of various types of image 
noises is a key step to increase the robustness of a path finder. 
Actually, most of existing path finders, such as McKeown and 
Denlinger’s one (1988),  make use of least-squares template 
matching in searching an optimal road centreline point, but this 
type of method, using the squared sum of the grey value 
differences as a measure, is easily impacted by the image 
noises mentioned above. In this case, new features of roads 
should be selected and utilized. For example, Zhao et al. (2002) 
utilized the template matching on a classified image in a semi-
automatic road tracking system, and Lin et al. (2009) proposed 
a novel road signature measure called “parallelepiped angular 
texture signature” to semi-automatically track roads based on 
the unique characteristic of roads on a classified sub-windows. 
It is testified that the supervised classification can indeed 
provide a novel feature for road tracking. However, most of the 
existing conventional supervised classification analyses may 
depict multiple classes including buildings, water, trees etc. 
besides the roads and they assume implicitly that the set of 
training sample for each class is large enough (Foody et al., 
2006). However for road tracking application, our interest is 
only focused on just one specific class, road, and the training 
set size is not large enough in road mapping. Recently, 
statistical learning theory and one-class SVMs have been used 
in road extraction from VHR images, e.g., Zhou et al.’s method 
(2007) mentioned above. The support vector data description 
(SVDD) is a one-class classifier based on the principles of the 
SVM, and it provides a very simple to use supervised 
classification analysis that requires only the training data for 
the class of interest (Sanchez-Hernandez et al., 2007). 
Moreover, the accuracy of SVDD classification was 
considerably higher than that derived from a conventional 
multi-class parametric classification (e.g., Maximum 
Likelihood) and popular alternatives (e.g. feedforward neural 
networks) (Sanchez-Hernandez et al., 2007).  
In this paper, SVDD is employed to track road on VHR images 
for the first time. Particularly, once training samples are 
provided from the reference template derived from road 
initialization, SVDD is trained and used to identify road pixels 
in sub-windows generated in moving of reference template, and, 
subsequently region adjacency graphs (RAG) is employed to 
eliminated the image noises contained by road surfaces in the 
classified sub-windows, and template matching is utilized to 
determine the optimal road direction for road tracking.  
 
 

2. RELATED COMPUTER ALGORITHMS 

One-Class Classification by SVDD 
Road is the only specific class of interest in road mapping from 
VHR imagery, and a range of approaches exist to classify a 
specify class of interest, including reconstruction methods (e.g. 
Pizzi et al., 2001), density methods (e.g. Fumera et al., 2000), 
and boundary methods (e.g. Zhou et al., 2007). However, 
reconstruction methods and density methods require extensive 
knowledge and large amount of information about the data set 
of interest. Fortunately, boundary methods are more feasible in 
that they do not require the extensive knowledge of the data set, 
as they concentrate on the boundary that fits around the class of 
interest (Tax, 2001). This benefit makes the boundary methods 
very attractive to use in remote sensing applications (Sanchez-
Hernandez et al., 2007). Boundary methods are largely based 
the statistical learning method (Vapnik, 1995) and the 
principles of SVMs (Song and Civco, 2004), and the recently 
developed SVDD is comparable to SVMs. The basic idea of 
SVMs  binary classifier that seeks to fit an optimal separating 
hyperplane or decision boundary between the classes; however, 
the SVDD searches for a closed boundary around the training 
data, namely a hypersphere, instead of looking for a hyperplane 
(Tax and Duin, 2004). 

The hypersphere may be defined by 2),( RORF = , where 

O  is the centre  and R  is the radius. Therefore, the problem 
SVDD attempts to solve is to find the hypersphere with the 

constraints that all the training data ix  are within 2R . Figure 
1 shows the geometrical interpretation in a two dimensional 
case. The problem can be formulated as follows: 

Minimize )),(( 2RORF =  

subject to .,|||| 2
ii ROx ∀≤−           (1) 

In order to allow the possibility of outliers in the training set, 
the distance from ix  to the center O  should not be strictly 

smaller than 2R  but larger distance should be penalized. In 
this sense, slack variables 0≥iε must be introduced into the 
error function and, correspondingly, the above optimization 
problem changes into: 

Minimize )),,(( 2 ∑+=
i

iCRORF εε  

subject to iiii ROx ∀≥+≤− ,0,|||| 2 εε     (2) 

where C  is a known and given coefficient that makes a trade-
off between the volume of the description and the 
misclassification errors. 
Using the technique of Lagrange multipliers, this optimization 
problem can be formulated into the following quadratic 
programming problem: 

εγα ,,, OR
MinMax −+= ∑

i
iCRORL εεγα 2),,,,(  

)}||||2||(||{ 222 OOxxR iii
i

i +⋅−−+×∑ εα

i
i

iεγ∑−  
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 subject to 0≥iα , 0≥iγ , 1=∑ iα , O =∑
i

ii xα , C -

iα - iγ =0, i∀ .      (3) 

where iα , iγ  are Lagrange multipliers respectively, and 

εγα ,,, OR
MinMax  means ),,,,( εγαORL  should be minimized 

with respect to R , O , ε  and maximized with respect to 
α ,γ .  Substituting the last three constraints into the target 
function will give the following simplified formula: 

Maximize )()(
,

jij
ji

iii
i

i xxxxL ⋅−⋅= ∑∑ ααα  

subject to Ci ≤≤α0 , 1=∑ iα , i∀     (4) 

Note that the magnitude of the Lagrangian multiplier iα  
varies with the position of the case relative to the hpersphere. 
Figure 1 shows a case within the hypersphere where iα =0; a 

case on the hypersphere boundary where 0< iα < C ; and a 

case outside the hypersphere where iα = C . Moreover, only 

the samples with 0< iα < C  are the support vectors of the 
description (Sanchez-Hernandez et al., 2007), which are 
essential for the calculation of the optimal hypersphere with 
centre O  and radius R .  
The solution of SVDD is given by: 

O =∑
i

ii xα .       (5) 

While the decision function for the SVDD classification is 
given by: 

2||||)( Oxxf −= 2R≤      (6) 
For the non-linear case, as with SVMs, noticing the training 
data appeared in the optimization problem in the form of dot 
products, a mapping φ  of the data using the kernel functions 
(Commonly-used kernel functions refer to Song and Civco, 
2004) may be firstly denoted as: 

)()(),( jiji xxxxK φφ ⋅= .      (7) 

 

(a)         (b) 
Figure 1. Support vector data description. (a) Hypersphere con-

taining the target data. The shaded objects on the edge of the 
sphere are the support vectors. (b) Magnitude of the two La-
grange multipliers for cases inside, on the boundary, and out-

side the hypersphere. 
 
In this paper, a human operator will provide the training data 
for the SVDD classifier by a reference template, as being 
introduced in the next section, and the classification will be 
performed on a patch of the image. Moreover, in the SVDD 
classification, the polynomial-degree function kernel of free 

parameter value two and C = 0.01 was selected as done by 
(Sanchez-Hernandez et al., 2007).  
Noise Removal by RAG 
The above SVDD classification procedure produces a patch of 
binary image, which labels pixels belonging to road class as 1 
while the other non-road pixels as 0. Some parts of road 
surfaces may be misclassified into non-road class due to the 
various types of image noises such as occlusions of vehicles, 
shadows of trees and buildings, as shown in Figure 3. If we 
suppose that any image primitives, belonging to non-road class, 
contained in road class polygons are road class primitives, 
these primitives should be reclassified into road class. Herein, 
RAG, as shown in Figure 3, is employed to do the topological 
analysis and reclassify the noises on road surfaces into road 
class, which will significantly decrease the side-effects of the 
image noises. Figure 3 illustrates that the road surfaces are 
dilated and the noises are eroded after the RAG analysis, which 
decrease the negative effects of noises. 
 
 

3. SYSTEM FRAMEWORK 

In our semi-automatic system, a human operator is required in 
the road extraction process where computer algorithms are 
utilized to assist the operator performing measurement tasks. 
From the user’s point of view, the procedure is as follows: the 
operator first inputs three seed points that detect a short 
segment of a road which serves as initialization for computer 
algorithms, and then the proposed algorithms are launched and 
automatically track the road axis as long as possible. Whenever 
the internal evaluation of the algorithms indicates that the 
tracker might have lost the road centreline, the system needs 
intervention of the user. Then the operator has to confirm the 
path finder (tracker) or he/she must edit the extracted road and 
put the tracker back the road again. Concretely, the system is 
based on the following road model and the main procedures.  
Suppose a road model is represented as a queue of road 
centreline points that is denote as: 

),,{( 000 θyx , ),,( 111 θyx ,K , ),,( iii yx θ ,K , )},,( nnn yx θ  

where ),( ii yx  are the planar coordinates of the ith road 

centreline point while iθ is the corresponding direction of the 
above road point, and the relationship between the ith point and 
the (i-1)th point can be expressed as: 

=
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where Lstep is the suitable step size of the increment (i.e., the 
distance between two consecutive points on the road axis), and 
Lstep is set to road width in this paper. As a result, if 

),,( 000 θyx is known, then the automatic road tracking is 
equivalent to searching the optimal direction for each road 
point. Particularly, the semi-automatic tracking is divided into 
the following steps.  
 
Step 1: Initialization by three seed points 

Similar to Vosselman and Knecht’s method (1995), the 
initialization is also accomplished by manually selected seed 
points. However, we take another strategy in which a three 
consecutive mouse clicks strategy is adopted to obtain the 
starting point, direction, width of the road, and the step size as 
well. This three seeds method is feasible for most of the roads 
on VHR images, and it is accomplished as follows (see Figure 
2): the human operator enters a road segment with two 

OR
0=iα

Ci =α
 

Ci <<α0
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consecutive mouse clicks on A’ and B with the axis joining the 
points defining one road sideline A’B, which indicates road 
9direction arctangent(A’B), then the following third click on C, 
on the other roadside, defines the width w of the road. w  is 
equal to the distance between the point C and the line A’B. As 
a result, the above three points can also derive a rectangle 
A’B’B”A” with width w  and length l . Particularly, the 
direction of A’B’ is equal to arctangent(A’B) while C is 
located on the side B”A”, and l = 2* w . Then a start point A, 
denoted as ),( 00 yx , of the road is derived from the middle 
point of A’ A”. The above information forms the first road 
centreline point ),,( 000 θyx  in the road model mentioned above 
where 

0θ = arctangent(A’B), and obtain the next road 

centreline point ),,( 111 θyx by Equation 8 where 
1θ = 0θ , add 

the above two points into the road queue sequentially. 
Simultaneously, the pixels in the template A’B’B”A” also 
serves as training samples for the SVDD classifier, and then a 
predict model is derived by training the SVDD classifier. 
 

 
Figure 2. Road initialization by three seed points 

 
Step 2: Acquire the next road axis candidate point 

Take the two latest road centreline points out from the current 
road queue, denoted as ),,( 111 −−− iii yx θ  and ),,( iii yx θ , 

respectively. Revolve around the pixel p ),( ii yx , and form a 
square (S ),( TopLeftTopLeft yxp , ),( tBottomRightBottomRigh yxp ) , where 

),( TopLeftTopLeft yxp  and ,( tBottomRighxp  )tBottomRighy are the top 

left corner and bottom right corner of the square respectively. 
Concretely, the coordinates of two corners are calculated by 
the following formula: 

TopLeftx = ix + 2 * l *cos(
1−iθ - π

4
3 )      

TopLefty = iy + 2 * l *sin(
1−iθ - π

4
3 )      

tBottomRighx = ix + 2 * l *cos(
1−iθ + π

4
3 )     (9)                

tBottomRighy = iy + 2 * l *sin(
1−iθ + π

4
3 )     

where l  is the length of the reference rectangle introduced in 
the first step. 
As mentioned above, the reference A’B’B”A” derives a predict 
model for the SVDD classifier, and then perform SVDD 
classification on the above obtained squared subset image. 
Subsequently, set the pixels of road subclass as 1, meanwhile 
set the pixels of any other subclass as 0, and then perform the 
RAG analysis on the binary image to reclassify the image 
noises on the road surfaces into road class, which will decrease 
the negative effects of various types of noises.  

Following, at each road centreline point p ),( ii yx , a rectangular 

template with width w  and height l is revolved on the 
classified image, and ),,,( phwT α is defined as the mean for 
the rectangular set of pixels of around pixel p  whose principal 
axis lies at an angle of α from the road direction 1−iθ . This 

measure is computed for a set of angles nαα K,0  at 

pixel p ),( ii yx . Angles nαα K,0  are with same intervalδ . 
At the point p , the mean of the template at each rotating angle 
forms a set of values 

),,,,({ 0 phwT α ),,,,( 1 phwT α )},,,(, phwT nαK , named as 
classified angular texture signature (CATS). Figure 3(a) shows 
a CATS with δ =5°. The direction of the significant maximum 
which has a minimal inclination with road direction 1−iθ  is 
taken as the real direction of current road axis point, and 
replace 1−iθ  with the optimal value.  
Step 3: Validate the above optimal point 
Once the above obtained point is added into the road model, 
check whether any stopping criterion is fulfilled as follows:  

 the change of the directions of two adjacent road seg-

ments is larger than predefined threshold T ; 

 the minimal mean value of the optimal template surpass 

1T ; 

 compactness of CATS polygon is larger than 2T ;  

 approaching an extracted road or border of the image. 
To find the relationship between the shape of the CATS 
polygon and corresponding pixel types, we plot the CATS 
values around the pixel under consideration with corresponding 
direction and link the last point to the first point. The resulting 
polygon is called the CATS polygon, and Figure 3(e) shows 
the calculated CATS for pixel p  with the CATS polygons. If 
the road has a good contrast with its surrounding objects, the 
polygon usually looks like an ellipse or ∞ -shape, or a circle in 
other cases. The compactness of CATS can be defined as the 
compactness of the CATS polygon using Equation (10):  

2scompactnes
4CATS

P
A⋅

=
π        (10) 

where A and P are the area and perimeter of the CATS polygon, 
respectively. It is employed to check whether the shape of the 
CATS polygon looks like a circle. A circle-like CATS polygon 
usually indicates that the tracker is no longer fit for tracking the 
road ahead. Note that our program will calculate the 
compactness of CATS at regular intervals to verify whether the 
CATS is still suitable for tracing a road. 
If any of these conditions is encountered, exit the tracking 
procedure and go to Step 4). Otherwise, obtain the next road 
centreline point ),,( 111 −−− iii yx θ  by equation (8) and add this 
point into the road queue, and go to Step 2 again. 
Step 4: Stop the automatic following 

If no rule can be made to continue the tracking procedure, the 
system will stop tracking, report the reason, and offer an 
appropriate choice of user interaction. The user can then 
modify the traced path with the aid of common GIS-
functionalities, manually digitize complex roads, update the 
reference template (occurrence of change of the number of 
lanes, or significant change of spectral characteristics due to 
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different ages, construction materials, illumination angles, etc.), 
or restart the tracking process from the next specified location. 

(a) A rotating rectangular template and its resulted sub-
windows 

    
(b) Resulted sub-window    (c) Classified image by SVDD 
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(d) Image noises removal by RAG  (e) A CATS polygon 
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(f) Values of  the CATS in image (a) 

Figure 3. Road direction determination by SVDD and RAG 
 
 

4. EXPERIMENTS AND PERFORMANCE 
EVALUATION 

A prototype system, based on our proposed method and 
rectangular template matching (Kim et al. 2004) is developed 
in VC++6.0 IDE under Win-XP OS. Note that the 
implementation SVDD is based on Tax’s code in matlab 
environment (Tax, 2001) and the standard one-class SVM in 
LibSVM (Chang and Lin, 2001).  
Two airborne images in urban areas were tested to verify the 
capabilities of each road tracker. The roads on the above two 
images are disturbed by various types of image noises such as 
zebras, occlusions of vehicles, material change, and the 
extracted results are shown in Figure 4 and Figure 5, 
respectively. For the first image, the existing rectangular 
template matching method is feasible, but it failed at the sharp 
turning and the intersection, and it also failed to track the ring 
road around the stadium in the second image due to large 
change of radiometric characteristic of the road. Fortunately, 
the proposed method succeeds to extract the accurate 
centrelines of roads in the above two images. The above two 
tests suggest that our proposed method is more robust to 
various types of image noises such as sharp turnings, road 
intersections, zebras, vehicles and material change etc. 

 
(a) Result of rectangular template matching 

 
(b) Result of our method 

Figure 4. Extracted roads at an intersection 
 
 

5. CONCLUSIONS 

This paper presents a semi-automatic system for road tracking 
from VHR remotely sensed imagery. Once a human operator 
input three seed points that derive a reference template, the 
system adopts a new combination strategy to automatically 
track the road networks. Particularly, in the automatic tracking 
process, SVDD classifier is employed to produce a patch of 
classified binary image based on the reference template, RAG 
is utilized to erode the various types of image noises and 
enhance the road feature space on the binary image, and 
template matching using mean of the values of the pixels in a 
target template is used to search the optimal road direction and 
next road centreline point. The above procedure is repeated 
until a whole road is tracked. At the same time, a human 
operator is retained in the tracking process to supervise the 
extracted results, to response to the program’s prompts. 
Experiments are performed to extract roads from aerial/satellite 
imagery. The results show that our proposed road trackers can 
more robustly extract most of the main roads than other typical 
road trackers, which have significant practical applications. 
Future work will also include the optimization of the 
algorithms to speed up the calculations.  
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Figure 5. The extracted ring road of a stadium by our proposed 
method (Note that the rectangular template matching method 

failed on this image) 
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