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ABSTRACT:

The accurate estimation of canopy biophysical variables at sufficiently high spatial and temporal resolutions is a key requirement for
operational applications in the agricultural sector. In this study, recently available multispectral RapidEye sensor data were tested for
their operational suitability to estimate canopy biophysical variables in the Italian Campania region. For this purpose, two model
inversion methods and two commonly used vegetation indices were applied to estimate leaf area index (LAI), canopy chlorophyll
content (CCC) and leaf chlorophyll content (LCC) from a range of crops. The physically based approaches outperformed the
empirical methods, with a slightly higher retrieval accuracy of the look-up table (LUT) than of the neural network (NN) approach.
However, the NN method performs much faster, rendering it potentially more appropriate for application in large areas. The
empirical models showed dependencies of sensor and crops, but still performed reasonable in the estimation of LAI and CCC.
Results demonstrated the suitability of RapidEye sensor data to retrieve canopy biophysical variables of agricultural areas.

1. INTRODUCTION

1.1 Crop monitoring

The regular and accurate mapping of crop status is an important
requirement for a sustainable agricultural management. It
enables, for instance, the early detection of crop water stress or
nitrogen deficiencies, thus helping farmers to mitigate potential
crop damages while reducing environmental impacts. For this
purpose, frequent information of crop status at sufficiently high
spatial resolutions is required, being of particular importance
for heterogeneous agricultural regions, characteristic for
Southern Italy. Remotely sensed data from air- or space-borne
platforms offer an interesting alternative to cost and labour
intensive ground measurements. Earth observation (EO) data
with improved spatial and temporal resolutions, such as those
from the RapidEye constellation (http://www.rapideye.de/),
offer new opportunities for a sustainable agricultural
management.

1.2 Biophysical variables and retrieval techniques

In the present study, three of the key biophysical variables of
interest for precision farming applications were examined: leaf
area index (LAI) (e.g., Moran et al., 1995), leaf chlorophyll
content (LCC) and canopy chlorophyll content (CCC) (e.g.,
Baret et al., 2007). LAI, a key variable of vegetation,
characterizes the leaf surface available for energy and mass
exchange between surface and atmosphere (Moran et al., 1995).
Different definitions of LAI have been used in the literature
depending on vegetation type and measurements (Jonckheere et
al., 2004), such as green LAI (‘GLAI’, e.g. Migdall et al.,
2009), effective LAI (‘Le’, Chen and Black, 1992) or plant area
index (‘PAI’, Neumann et al., 1989).

Chlorophyll content was found to be directly related to nitrogen
(N) availability of the leaves (e.g. Evans, 1989). Therefore, the
sensitivity of the solar reflective domain to chlorophyll content
is usually used to quantify the plant nitrogen status. Baret et al.
(2007) demonstrated that the relationship between canopy
chlorophyll content and N is more robust over years and
development stages than the correlation at leaf level. Thus,
canopy chlorophyll content presents greater potential than leaf
chlorophyll content to detect vegetation stress and should be the
privileged variable to be retrieved.

A variety of methods have been proposed to estimate these
biophysical variables from remotely sensed data (Baret and
Buis, 2008). The majority of the studies have used (semi-)
empirical relationships between the biophysical variables of
interest and a combination of spectral bands, namely vegetation
indices (VI). These methods, successfully applied to a number
of applications (Glenn et al., 2008), are fast and easily
implementable at large data sets and thus suitable for
operational purposes. The Weighted Difference Vegetation
Index (WDVI) (Clevers, 1989), for instance, is being used for
operational retrievals of LAI in the context of Irrigation
Advisory Services in Southern Italy (De Michele et al., 2009).
Moreover, information on canopy chlorophyll content is being
routinely distributed to users through the MERIS Terrestrial
Chlorophyll Index (MTCI) (Dash and Curran, 2007). Currently,
MTCI is operationally available only at medium spatial
resolution, but it will be supplied by future ESA’s Sentinel-2
optical system at finer spatial resolution.
Despite the wide use of these approaches, VIs are limited in
their global estimation performance since calibration is mostly
required to account for changing conditions. This includes for
instance differences in sensor types and crop canopy
architecture, changing illumination and viewing geometries or
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varying soil backgrounds (Colombo et al., 2003). With the
advancement in developing radiative transfer models (RTM),
these aspects can be considered by means of physical principles.
Therefore, new perspectives have opened up for reliable and
accurate estimations of biophysical products in the context of
operational applications (Bacour et al., 2006).
However, these models have also limitations, such as the need
for parameterization and high computational demand.
Furthermore, the ill-posed inverse problem must be considered:
different parameter combinations may produce almost identical
spectra, resulting in significant uncertainties in the estimation of
biophysical vegetation variables (Atzberger, 2004). Even
though this problem affects as well empirical approaches, it is
often only discussed in the context of RTM model inversion.

The objective of this study is to evaluate the performance of
RapidEye sensor data to estimate LAI, leaf chlorophyll content
and canopy chlorophyll content. Two model inversion
techniques, i.e. look-up tables (LUT) and neural networks (NN),
are applied for this purpose. In order to evaluate the
performance of current operational VIs, the analysis is extended
to the estimations of LAI and canopy chlorophyll content by
using pre-calibrated equations based on WDVI and MTCI. The
suitability of the data and the retrieval techniques are discussed.

2. MATERIAL AND METHODS

2.1 Field Campaign

The data used in this study are based on satellite acquisitions
and a ground measurement campaign at the “Piana del Sele”
study site (Lat. 40.52 N, Long. 15.00 E), which is one of the
largest agricultural areas of the Italian Campania region,
Southern Italy. The area is characterized by irrigated agriculture
(mainly forages and fruit trees) with an average field size of
about 2 hectares (De Michele et al., 2009).
A total number of 36 LAI and leaf chlorophyll measurements
were acquired simultaneously at different sites and for a range
of crops, including fruit trees (such as peach and apricot),
maize, cereals and different vegetables. LAI measurements were
carried out by means of the Plant Canopy Analyzer LAI-2000
instrument (LICOR Inc., Lincoln, NE, USA). Due to its
measurement principle, the sensor does not distinguish
photosynthetically active leaf tissue from other plant elements,
such as stems, flowers or senescent leaves. Moreover, the
clumping effect, i.e. non-random positioning of canopy
elements, is neglected. Thus, the here used term ‘LAI’ stands
for effective PAI (‘PAIe’) (Darvishzadeh et al., 2008).
Measurements were performed in order to cover an Elementary
Surface Unit (ESU) of approximately 400 m2 geolocated by
means of a GPS device (accuracy 3-5 m). The average value of
LAI, resulting from a set of 20 above and below canopy
readings, was considered to be representative for the respective
ESU. The standard deviations of the measurements were kept as
a measure of uncertainty.
Leaf chlorophyll content was measured by using a SPAD-502
Leaf Chlorophyll Meter (MINOLTA, Inc.). At each ESU, 30
measurements of leaves in different layers were randomly
performed and averaged to a final representative value. Crop
specific calibration functions (peach tree: Marchi et al., 2005;
maize: Haboudane et al., 2001; other crops: SPARC, 2004)
were applied to convert the SPAD values into leaf chlorophyll
content [m cm-2]. The total canopy chlorophyll content [g m-2]
was finally obtained by multiplying leaf chlorophyll content
with the corresponding LAI of each ESU.

2.2 Remote Sensing data

Multispectral remote sensing data from RapidEye sensor were
acquired on 17th August 2009 (at 10:35 UTC). This recently
launched constellation (August 2008) of five identical EO
satellites records radiance in five broad bands corresponding to
blue, green, red, red-edge and near-infrared (NIR) part of the
electromagnetic spectrum. The sensors provide a spatial
resolution of 5 m and are therefore potentially very suitable for
agricultural applications.
Four images, acquired within a few seconds, with a maximum
across-track incident angle of 5° were adequate to cover the
study site (about 560 km2). Radiometrically calibrated Level 3A
data were provided with a geometric accuracy of 13.95 m (root
mean square error, RMSE = 6.50 m). Further geometric
correction was performed using Ground Control Points (GCPs),

resulting in a final geolocation accuracy of about 3 m.
The first image tile was atmospherically corrected by using
ATCOR-2/3 (Richter, 1998). The spectral reflectance of known
reference targets (i.e., asphalt, sea water, concrete and sand) was
used for the retrieval of atmospheric properties. Subsequently,
an empirical line method was applied to correct the other three
images. For this purpose, uniform areas in the overlapping
regions between adjacent images were considered: twenty zones
of about 200 m2 representing dark and bright surfaces were
selected for each image and correction functions were derived
for each spectral band.
To account for the accuracy of geometric correction and ground
biophysical variable measurements, the final mosaicked image
was resampled to a spatial resolution of 15 m.

2.3 Radiative Transfer Modelling

The well-known and widely used coupled PROSPECT+SAILH
model (‘PROSAIL’, Jacquemoud et al., 2009) was chosen for
the study. PROSAIL is a combination of the leaf model
PROSPECT–4 (Feret et al., 2008) and the canopy model
SAILH (Verhoef 1984, 1985; Kuusk 1991). It calculates the bi-
directional reflectance of homogeneous canopies as a function
of several structural and biophysical variables (see Table 1), soil
reflectance, illumination and viewing geometry.

2.3.1 Model inversion with look-up tables (LUT)

Even though it is a relatively simple method, the look-up table
(LUT) approach is one of the most robust and accurate model
inversion strategies. It has been applied in combination with the
PROSAIL model by a number of studies (e.g. Darvishzadeh et
al., 2008; Richter et al., 2009; Weiss et al., 2000), successfully
retrieving biophysical variables of different crop types and at
different sites.
To set up the inversion, a synthetic data base was established
with the PROSAIL model simulating RapidEye spectral band
configuration using the specific band sensitivity functions. A
LUT size of 100000 different combinations of variables was
chosen according to Weiss et al. (2000). The variables and
model parameters were randomly sampled using uniform
distribution laws and according to typical ranges found in the
literature for agricultural land use (Table 1). Model inversion
was performed using a simple cost function calculating the
RMSE between measured and simulated spectra. The solution
was regarded as the average of the variable combinations found
within less than 20 % of the lowest RMSE value (e.g. Richter et
al., 2009).
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2.3.2. Model inversion with neural networks (NN)

Neural networks were included in this study as an alternative
mean to (rapidly) invert RTM over large areas. The synthetic
data base generated for the LUT approach was used to train the
network. Training permits a net to learn the intrinsic relation
between some input variables (here the canopy reflectance
spectra) and one or more output variables (here the sought
biophysical variables). Setting up the network structure and
network training may be a time consuming process. However,
once trained, the sought biophysical variables can be retrieved
immediately.
To prevent overfitting and overspecialisation several measures
were taken. First, the network was kept compact using a single
hidden layer with only five neurons. Second, three variables
were modelled at the same time to avoid over-specialisation:
LAI, leaf chlorophyll content and soil reflectance scaling factor
(αsoil). Finally, the early stopping technique was applied to
further improve network generalization. For this purpose, the
patterns generated with PROSAIL were divided into two
subsets. The first subset (75 % of the pattern) was used for
updating the weights and biases of the network (training
dataset). The error on the test dataset (the remaining 25 %) was
monitored during the training process. The training was stopped
automatically when the error in the test dataset started to rise as
this indicates network overfitting.

Model Variables Units Range
PROSPECT

N Leaf structure index unitless 1.3-2.0
Cab Leaf chlorophyll

content
[µg cm-²] 10-70

Cm Leaf dry matter
content

[g cm-²] 0.004-
0.007

SAILH:
LAI Leaf area index [m² m-2] 0-6
ALA Average leaf angle [degree] 35-70
HotS Hot spot parameter [m m-1] 0.01-1
soil Soil reflectance

scaling factor
unitless 0.6-1.4

s Sun zenith angle [degree] 28

v View zenith angle [degree] 5

 Sun – sensor
azimuth angle

[degree] 71

Table 1. Range of model input variables used to establish the
synthetic canopy reflectance data base for NN and LUT based

model inversions.

2.3.3. Empirical model: vegetation indices (VI)

The WDVI is based on the reflectance in the NIR and red
wavelength ranges. Calculation of WDVI requires information
of the soil line slope, which can be directly derived from the
imagery. A logarithmic relationship was used to estimate LAI
from WDVI, which was calibrated during several field
campaigns in the study site in the last years (R2=0.64) (D’Urso
and Belmonte, 2006).
The MTCI (Dash and Curran, 2007) was calculated from NIR,
red edge and red spectral bands. A linear equation calibrated
using ground data (R2=0.80) (Dash at al., 2010) was adopted in
this study to estimate the canopy chlorophyll content. Detailed
description of the indices can be found in D’Urso and Belmonte
(2006) and Dash and Curran (2007), respectively.

3. RESULTS AND DISCUSSION

3.1 Retrieval of leaf and canopy variables

Estimations of LAI using the two inversion methods performed
well with a slightly higher accuracy from the LUT
(RMSE=0.64; R2=0.76) than from the NN method
(RMSE=0.72; R2=0.71). With the WDVI, a lower estimation
accuracy was achieved (RMSE=1.14; R2=0.57). Measured
against simulated LAI values are presented in Fig.1a-c.
For canopy chlorophyll content, a high retrieval accuracy was
obtained from the LUT (RMSE=0.39 g m-2 and R2= 0.78) and a
slightly lower from the NN (RMSE=0.43 g m-2 and R2=0.74).
Application of the MTCI achieved a lower accuracy than the
physically based approaches (RMSE=0.86 g m-2 and R2=0.73).
Correlations between estimated and measured canopy
chlorophyll content values are shown in Fig.1d-f.
In case of leaf chlorophyll content, all approaches failed to give
reliable estimates: by the LUT a RMSE of 15.1 g cm-2 and by
the NN a RMSE of 11.3 g cm-2 was achieved (not shown).
Regarding crop specific differences in retrieval accuracy (Table
3), LAI values were generally estimated best for fruit trees.
Estimation uncertainties may be explained by the non-linear
relationship between reflectance and LAI, leading to saturation
at higher LAI values, as visible in Fig. 1 for all approaches.
Moreover, a possible presence of clumped leaves may
strengthen the underestimation of higher LAI values (i.e., LAI >
3), especially in case of maize.
Canopy chlorophyll content was obtained with a reasonable
accuracy for maize and partly fruit trees using the model
inversion techniques.
The overall poor retrieval accuracy of leaf chlorophyll content
is also reflected in the crop specific RMSE. Only for maize, the
LUT achieved reasonable results with RMSE of 5.9 µg m-2.
The retrieval accuracy of leaf characteristics from canopy
spectra depends on the strength of the signal transmitted from
leaf to canopy level, which is mainly controlled by structural
variables such as LAI or leaf angle (Asner, 1998). Thus,
compensations between LAI and leaf chlorophyll content may
occur, leading to the well-known ill-posed inverse problem
(Combal et al., 2002). Strong improvements in the estimation
accuracy were also observed in other studies when using the
product between these two variables (Baret et al., 2007).
A further explanation for the poor estimation of leaf chlorophyll
content may be the presence of heterogeneous canopies (such as
fruit trees and maize), not corresponding to the turbid medium
assumption of the used model. The application of more complex
models, such as GeoSAIL proposed by Huemmrich (2001),
might improve the retrieval performance (Richter et al., 2009).
A further improvement may result from object-based inversion
strategies (Atzberger, 2004).
The lower retrieval accuracy of the VI confirms the need of
sensor-specific calibration, in particular for the MTCI, which
was specifically designed for narrow visible/NIR wavebands.
The red edge band originally used to calculate the MTCI is
based on MERIS spectral band characteristics with a spectral
bandwidth of about 10 nm (703.75 - 713.75 nm). RapidEye red
edge band is instead sampled in a spectral bandwidth of 40 nm
(690 - 730 nm). Therefore, adaptation of the equation to broad
band spectral characteristics, as for RapidEye sensors, might be
required. Further investigation is needed for this issue.
Results obtained with WDVI confirm that a sensor and crop
specific calibration is required.

In: Wagner W., Székely, B. (eds.): ISPRS TC VII Symposium – 100 Years ISPRS, Vienna, Austria, July 5–7, 2010, IAPRS, Vol. XXXVIII, Part 7A
Contents Author Index Keyword Index

283



A map of spatially distributed canopy chlorophyll content
(using the NN) is depicted in Fig. 4, representing the area of

“Piana del Sele” in the Italian Campania region. Such maps are
possible inputs in the context of precision farming applications.

Figure 2. Estimated versus measured biophysical variables of different crops (Piana del Sele, Italian Campania region). 1a: LAI with
LUT approach, 1b: LAI with NN approach, 1c: LAI from WDVI, 1d: canopy chlorophyll content (CCC) from LUT, 1e: CCC

estimated with NN, 1f: CCC from MTCI. Symbols correspond to: ‘·’ fruit trees, ‘o’ maize and ‘*’ other crops.
Error bars in 1a-c indicate standard deviations of the LAI measurement.

Crop
type

LAI
[m2 m-2]

CCC
[g m-2]

LCC
[µg m-2]

LUT NN VI LUT NN VI LUT NN

Fruit
trees(1) 0.35 0.61 0.95 0.34 0.25 0.7 18.3 8.7

Maize 0.89 0.91 0.82 0.50 0.70 1.18 5.9 10.4

Others (2) 0.93 0.72 2.03 0.31 0.28 0.7 13.1 19.4

Combined 0.64 0.72 1.14 0.39 0.43 0.86 15.1 11.3

(1) includes peach, apricot, kiwi and plum trees
(2) includes aubergines, alfalfa, pepper, artichokes and cereal

Table 3. Crop specific (and combined) RMSE between
measured and estimated biophysical variables using LUT,

NN and the two VI approaches (MTCI for CCC and WDVI
for LAI estimation).

3.2 Operational suitability

An important issue for the use of physically based retrieval
techniques in the context of operational applications is the

time required for inverting RTM over large areas. Both
inversion methods perform rather fast in comparison to
traditional approaches, such as iterative optimisation
techniques. However, the NN method outperforms clearly the
LUT in this regard.
In pixel-based inversions, redundant LUT searches are being
performed since many signatures are similar. Therefore, in
order to render the LUT inversion procedure more effective
and faster, an unsupervised classification was applied to the
imagery before further processing, grouping the reflectance
spectra into a certain number of classes. This number
depends on the heterogeneity of the region and sensitivity
analyses must be carried out to obtain the optimal number of
classes, reducing redundancy without losing important
spectral information. For the study area, 2000 classes were
chosen, reducing the computational load almost 850 times
(original number of pixel 1.7 mil.). The ISODATA clustering
method of the Erdas Imagine software, which uses minimum
spectral distance formula, was applied. Maximum number of
iterations was set to ‘6’ and the convergence threshold to
‘0.95’.
Each of the 2000 input spectra was calculated as the average
of all spectra contained in one class. Processing of the LUT
inversion was then performed as described in sect. 2.3.1.
In this way, the speed of the LUT based inversion was
comparable with the NN based approach. However, the
resulting estimation accuracy decreased significantly (LAI:
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RMSE=0.8, LCC: RMSE=17.4 g cm-2 and CCC:
RMSE=0.46 g m-2) despite this high number of classes. This
lower estimation accuracy in comparison to the pixel based
approach may be due to the loss of spectral information,
especially affecting high values of LAI. Enhancing the
number of classes may increase the accuracy, but also the
computation time.
Although the neural nets may be more suitable for such fast
operations, a drawback relates to their reduced availability.
For the current work, the networking was performed under
the Matlab processing environment (The Mathworks, 2007).
Unfortunately, standard image processing software does not
yet include this mapping technique. To foster the use of
physically based approaches, providers of image processing
software should add modules for direct and inverse
modelling.

Figure 4. Spatial distribution of canopy chlorophyll content
in the “Piana del Sele”, Italian Campania region, derived

from the neural network (white zones correspond to urban
areas or greenhouses).

4. CONCLUSIONS

Recently available multispectral RapidEye data were tested
for their operational suitability to estimate canopy
biophysical variables in an agricultural area of Southern Italy.
The physically based retrieval approaches outperformed the
empirical methods, whereas the retrieval accuracy of the LUT
was slightly better than the neural networks approach.
However, the latter, already used in operational applications
for coarse resolution data (Bacour et al., 2006), is much
faster rendering it more suitable in this context. An
unsupervised classification of the imagery prior to the RTM
inversion was applied to reduce calculation time, as proposed
by Baret and Buis (2008), but results were less accurate than
pixel based procedures.
Generally, the canopy based variables (LAI and canopy
chlorophyll content) could be estimated with much higher
accuracy than variables on leaf level (leaf chlorophyll
content), confirming previous findings of the literature (Baret
et al., 2007). This might be a drawback for certain
applications, where properties of the leaves are required. For
general precision farming applications, however, information

at the canopy level can be sufficient or even of advantage
over the leaf level (Baret et al., 2007).
Conclusively, RapidEye sensor provides useful data to derive
biophysical variables for operational applications in the
agricultural sector. Such applications may include, for
instance, the modelling of crop water requirements, needing
LAI as input, or the assessment of plant nitrogen status,
requiring the information of canopy chlorophyll content. The
use of physically based approaches to estimate these
variables is suggested. Further validation work is required to
test the applicability of these techniques for different areas
and crops.
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