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ABSTRACT:

In this paper, a damage assessment system of GIS-objects such as roads and buildings after natural disasters is presented. The main
contribution is the integration and exploitation of multi-temporal imagery leading to a more robust assessment of infrastructural objects.
In addition, the chronological development of the assessedobjects is investigated. The multivariate alteration detection method is used
to detect changes between different time points in conjunction with the classification of different changes realized via Gaussian mixture
models. Further accessorily introduced information are derived from GIS, in particular DEM belief functions. The strategy of the
proposed approach is the combination of the computed probabilities using individual appropriate methods. The goal of the system is
the assignment of GIS-objects into different damage assessment categories as intact or not intact/destroyed using thefused information
from multi-temporal multi-sensorial data. The system is tested at a test scenario assessing roads concerning their trafficability. The
results show the improvement of the damage assessment system after the integration of multi-temporal information.

1. INTRODUCTION

In this paper, an assessment system of GIS-objects is presented
using multi-sensorial and multi-temporal imagery after natural
disasters. The focus of this article is the multi-temporal com-
ponent, because the integration of imagery from different time
points into an assessment system has several advantages: Firstly,
multi-temporal images provide the opportunity to monitor natu-
ral disaster chronologically during a period of time, not only at a
specific time point. Secondly, the assessment of the GIS-objects
at the time pointt2 can be improved using the results from time
point t1.

Another focus of this article is the automatic information retrieval
from imagery being relevant for rescue teams after natural disas-
ters. Information on the status of the infrastructure afterdisasters
is essential to guarantee an effective and fast disaster manage-
ment. Therefore, the emphasis of this article is the development
of automated methods assessing infrastructural objects such as
roads concerning their functionality.

The precondition ensuring an effective disaster management is
the near-realtime supply of information, because time is the cru-
cial parameter. Therefore, great efforts have been made in order
to speed up the workflow from satellite tracking and data acquisi-
tion to the point of map generation (Voigt et al., 2007). The whole
workflow can generally be passed within 24 hours. Data analy-
sis consisting of information extraction, damage assessment, the-
matic analysis and change detection plays a decisive role inthe
processing chain of the workflow (Bamler et al., 2005). Up to
now a lot of data analysis tasks are done manually which is very
time consuming. Therefore, automation is required to substitute
the manual interpretation. The difficulty is the development of
methods minimizing wrong decisions to avoid fatal consequences
in emergency actions. Possibilities to achieve a low error rate are
semi-automated approaches.

A given fact is the variability of available imagery and GIS data
in case of emergency. For this reason, a basic characteristic of the
presented system is the handling of different input data sources.
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In this article, a modular system is presented which is able to
deal with varying data sources and provides the embedding ofall
available information.

In Section 2. existing up-to-date damage assessment systems are
presented and categorized inarea-andobject-based systems. In
addition, data fusion techniques with regard to disaster manage-
ment are discussed. Hereupon, the basics of Gaussian mixture
model and a the change detection methods are introduced since
these methods are key elements of the assessment system, which
is described in Section 3. In Section 4. the general system isap-
plied to a test scenario, the shown results are evaluated concern-
ing their quality measure. Finally, further investigations and fu-
ture work is pointed out.

2. STATE OF THE ART AND BASICS

2.1 Damage Assessment Systems

In case of natural disaster it is reasonable to differentiate between
object-basedandarea-baseddamage assessment systems. The
focus ofobject-based systemsis the assessment of infrastructural
objects such as roads or buildings concerning their functionality.
In recent years several systems have been developed estimating
the extent and type of destruction on various buildings. Thedam-
age assessment was realized using different kind of sensorssuch
as LIDAR (Rehor et al., 2008) or satellite images (Chesnel et
al., 2007). But there is a lack of methods assessing transportation
lifelines after natural disasters (Morain and Kraft, 2003). In (Frey
and Butenuth, 2009) a near-realtime assessment system of roads
using GIS-objects and multi-sensorial data is presented. The road
objects are classified into different states and are visualized using
the ample paradigm proposed by Förstner (Förstner, 1996). In
this article, the system is extended by the multi-temporal compo-
nent using change detection methods.

On the other handarea-based systemsfocus on the affected re-
gions. Typical examples are the generation of flood masks de-
rived from different sensors. Besides optical imagery, particu-
larly radar images are suitable for the extraction of inundated ar-
eas. Martinis (Martinis et al., 2009) uses a split-based automatic
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thresholding method to detect flooded areas from TerraSAR-X
data in near real-time.

2.2 Data fusion

In general, the performance of the damage assessment systemcan
be improved by adding additional imagery and data sources. The
additional benefit depends on the way of how the data is com-
bined. Pohl (Pohl and Van Genderen, 1998) differentiate between
three different levels of image fusion: pixel level, feature level
and decision level. The combination of different data sources,
e.g. vector and image data, was discussed in several other contri-
butions, e.g. (Butenuth et al., 2007). Particularly, the integration
of GIS information combined with imagery improves the results
and simplifies the decision makings enormously (Brivio et al.,
2002). Wang (Wang et al., 2002) presents a method for map-
ping flood extend combining optical imagery and DEM. In the
approach, for each data source an individual flood mask is gen-
erated. The final flood mask consists of the set union of the indi-
vidual masks. Considering the DEM as an image this approach
belongs to the decision level image fusion as defined in (Pohl
and Van Genderen, 1998). The presented approach in this arti-
cle combines imagery and DEM, too, to detect flooded areas. In
contrast to the discussed approaches, the aim is the combination
based on probabilities derived from the input data.

2.3 Change Detection: Multivariate Alteration
Detection (MAD)

Change detection algorithms are widely used investigatingthe ex-
tent and damage of natural disasters. A comprehensive review
about change detection methods is given in Lu (Lu et al., 2004).
However, many methods are restricted to specific sensors charac-
teristics. The efficient response in case of natural disaster requires
a change detection method which is able to deal with various
sensors containing a different number of channels. Furthermore,
the influence of changing atmospheric conditions should be min-
imized. The multivariate alteration detection method (MAD) is
invariant to linear transformations which implies the insensitiv-
ity to linear atmospheric conditions or sensor calibrations at two
different times. In addition, the handling of different numbers of
channels is given (Nielsen et al., 1998).

The MAD transformation is based on the canonical correlation
analysis (CCA). The CCA investigates the intercorrelationbe-
tween two sets of variables unlike the principal component anal-
ysis, which identifies patterns of relationship within one set of
data. LetF = {F1, F2, ..., Fn} andG = {G1, G2, ..., Gm} be-
ing two images with n or m channels(n ≤ m). A linear combi-
nation of the intensities for all channels leads to the transformed
imagesU andV:

U = ~a F = a1F1 + a2F2 + . . .+ anFn

V = ~b G = b1G1 + b2G2 + . . .+ bmGm.
(1)

The goal of the transformation is to choose the linear coefficient
~a and~b minimizing the correlation betweenU andV. This leads
to the result that the difference image between the transformed
imagesU andV will have maximum variance. Due to the fact
that multiples ofU andV would have the same correlation a rea-
sonable constraintvar(U) = 1 andvar(V ) = 1 is chosen:

var(U − V ) = var(U) + var(V )− 2cov(U, V )

= 2(1− cov(U, V )). (2)

Using CCA, the linear coefficients~a and~b are determined and the
MAD variatesMi can be calculated (Nielsen et al., 1998):

Mi = Ui − Vi for i = 1 . . . n. (3)

An extension to the MAD transformation is the iterative reweight-
ed MAD (IRMAD) method. Similar to boosting methods in data
mining, an iteration schema focuses on observations whose change
status is uncertain (Nielsen, 2007). Since the MAD or IRMAD
variates can only being interpreted in a statistical mannerthere
is a need to assign semantic meaning to the MAD variates. In
Canty (Canty and Nielsen, 2006) an unsupervised classification
method is proposed based on the MAD variates to cluster pixelin
no-change and one or more change categories.

2.4 Combination of Probability Functions: Gaussian Mix-
ture Model (GMM)

Since the radiometric characteristics of infrastructuralobjects of
the same type could vary strongly, single probability functions
are not able to describe the complex scenes sufficiently. There-
fore, mixture models which combines single functions to a more
complex probability function are used. The resulting probability
functionp(y|θj) is simply a weighted sum of the initial functions
p(y|θj):

p(y|θ) =
k∑

j=1

αjp(y|θj). (4)

Eachθj describes the set of parameters defining thej th compo-
nent,α1 . . . αj are the weights called mixing probabilities and
y = [y1 . . . yd]

T represent one particular outcome of a d-dimen-
sional random variableY = [Y1 . . . Yd]

T. If Y is normal dis-
tributed, Gaussian are typically used. The mixing probabilities
have to fulfill following equations:

αj ≥ 0, j = 1 . . . k, and
k∑

j=1

αj = 1. (5)

The expectation maximization (EM) algorithm is used to deter-
mineαj andθj . A detailed description of mixture models can
be found in McLachlan (McLachlan and Peel, 2000). The min-
imum message length criterion (MML) is one possibility to find
the number of centersj and is used in our system (Figueiredo and
Jain, 2002).

3. ASSESSMENT SYSTEM

In this Section, the general assessment system is presentedus-
ing multi-sensorial multi-temporal imagery and further available
data. The goal is the assessment of GIS-objects categorizing them
into different states.

3.1 System

The design of the system has a modular and very flexible struc-
ture to cope with varying raw data being available in emergency
cases (cf. Fig. 1). Nevertheless, there are some prerequisites
to apply the system. The GIS-objects which should be assessed
concerning their functionality must be given. It is conceivable to
extract the GIS-objects using imagery before the natural disas-
ter takes place or, alternatively, from a GIS. However, in view of
the performance of automatic extraction methods, objects from
a given GIS-database with a guaranteed quality are better suited.
The result of the assessed GIS-objects depends strongly on the
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Figure 1: General damage assessment system.

available input information. Besides the imagery, DEM and fur-
ther GIS-information can be embedded into the system. Here,
this data is called input data.

For multispectral imagery Gaussian mixture models are applied.
Belief functions are introduced to derive probabilities from GIS-
information. If multi-temporal imagery are available change de-
tection methods such as the MAD algorithm are used to derive
probabilities. The combination of the different input datais car-
ried out in the probability level. All the individual methods and
the combination of the probabilities are realized at pixel level. In
contrast, the subsequent assignment of GIS-objects to the cate-
goriesintact, possibly intactor not intact/destroyedusing a max-
imum likelihood estimation is object-based (cf. Fig. 1).

3.2 Methods and Combination of Probabilities

For each input data individual methods have to be applied to de-
rive individual probabilities if the infrastructural objects are intact
or not (cf. Fig. 1). Given multispectral imagery as input data a
multispectral classification is carried out. The infrastructural ob-
jects are classified to different classes relating to the categories
intact, possibly intactand notintact/destroyed. Since a lot of
classes like roads have no consistent radiometric characteristic
as shown in Figure 2 and Figure 3, GMM are used to deal with
the different subgroups of the classes. The resulting probabilities
from the mixture modelpimg are combined with probabilities
from further input data (cf. Fig. 1).

The availability of images at different time points enablesthe us-
age of change detection methods exploiting additional assessment
criteria. The IRMAD algorithm enables the detection of changes
caused by natural disasters. The resulting IRMAD-variatesare
classified using a supervised multispectral classification. For the
different change-classes, i.e. ’intact⇒ destroyed’ probability
functions are generated. These probabilitiespmad are embedded
into the assessment system. In Figure 4(c) three IRMAD vari-
ates are shown as an RGB-color image obtained from IKONOS-
images at timet1 (cf. Fig. 4(a)) and timet2 (cf. Fig. 4(b)). In
this example of a flood event the changed areas from flooded to
not flooded are illustrated in pink, the gray color stands forno
change (cf. Fig. 4(c)).

Figure 2: Two-dimensional probability density functions of the
classes forest, water and a combined class road. Exemplarily vi-
sualized via the infrared and green channel.

Figure 3: Two-dimensional probability density functions of the
classes forest, water and separated road-classes (city road, coun-
try road, path and motorway). Exemplarily visualized via the
infrared and green channel.

Additional GIS-information such as DEM is often available hav-
ing the opportunity to enhance the assessment system. Since
the combination of the input data is based on the probability
level, also from the GIS-information probabilities have tobe de-
rived. Belief functions can be generated depending on the GIS-
information. In Figure 5 an example is shown, which depicts the
probability that an object is flooded depending on the altitude.
The combination of the probabilities derived from the different
input data is defined as following (cf. Fig. 1):

ps1 = ps1,img ⊗ ps1,gis ⊗ . . .⊗ ps1,mad

ps2 = ps2,img ⊗ ps2,gis ⊗ . . .⊗ ps2,mad

...
psi = psi,img ⊗ psi,gis ⊗ . . .⊗ psi,mad.

(6)

The probabilitiespsi are the combined probabilities of one status
si. In the easiest case the set of states could beintactor not intact.
But it is also possible to think of different kinds of destruction
states. In addition, weights are introduced since the information
content of the different input data varies:

psi = w1psi,img ⊗ w2psi,gis ⊗ . . .⊗wdpsi,mad. (7)

The number of input data is denoted asd. Finally, the object is
categorized to the statesi with the largest probability.
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(a) IKONOS-scene of flooded area at timet1

(b) IKONOS-scene of flooded area at timet2

(c) Three MAD-variates depicted as an RGB-color image

Figure 4: Change detection using MAD-algorithm.
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Figure 5: Belief functions depending on altitude: area is flooded
(blue), area is not flooded (gray).

4. RESULTS AND DISCUSSION

The presented damage assessment system is applied to a specific
flood scenario. In real case scenarios the availability of input data
is the crucial factor. The derivation of the probabilities given in
Equation 6 is not always possible depending on the availabledata.
On the other side often additional information exist which are
useful to generate additional rules. In real applications the combi-
nation of probabilities is embedded into a rule-based framework
which can differ from case to case.

4.1 Test Scenario

Test scenario is the flooding of the river Elbe (Germany) in the
year 2002. The available input data for the damage assessment
system consists of two IKONOS-scenes (cf. Fig. 4(a) and 4(b))
acquired at the 21th and 26th of August, and a DEM. The peak
of the water level was measured at the 19th of August. The scene
at the timet1 shows almost the maximum inundated area. In the
second scene at timet2 the flooding receded strongly and only
a small area is covered by water (cf. Fig. 4(b), top right). In
addition to the images, a DEM is available with a 10m x 10m
grid with an geometric accuracy of +/- 1m. In this test scenario
road objects given from a GIS-database are assessed concerning
their trafficability.

4.2 Workflow of Rule-based Classification

A detailed workflow of the rule-based assessment system is de-
picted in Figure 6, the input data are illustrated by gray paral-
lelograms. Below these parallelograms the derived probabilities
from the input data are attached in gray rectangles. The combina-
tion of the probabilities is realized in the blue boxes. The goal in
this scenario is the assessment of road segments concerningthe
trafficability at timet2. In addition to the imagery and the DEM
described in Section 4.1, the assessed road segments at the time
t1 are given. They are obtained by means of the described as-
sessment system using very strict parameters. Alternatively, also
a manual generated reference at timet1 could be used. The as-
sessed road segments at timet1 and additional information as the
water level lead to the rule-based framework built on the combi-
nation of the probabilities. The probabilitypimg derived from the
imagery is partitioned into three different probabilitiesbelonging
to a specific class: waterpwater, roadproad, forestpforest. As
shown in Figure 3 the class road is subdivided into subclasses of
roads using GMM. Using a maximum likelihood estimation fol-
lowed by a threshold operation the segment is categorized into
the three statestrafficable, possibly floodedandflooded.

4.3 Evaluation

The obtained results are compared to a manually generated ref-
erence. The information for the generation of the referenceis
only the image at timet2. Therefore, it is not a comparison
with the real ground truth, but it is the comparison of the au-
tomatic approach with the manually interpretation of an human
operator. The reference is also categorized into three different
classestrafficable, possibly floodedandflooded. Since the cat-
egorization of the automatic system consists of the same states
the following four different assignment criteria are determined:
’correct assignment’, ’manual control necessary’, ’possibly cor-
rect assignment’ and ’wrong assignment’. The category ’correct
assignment’ means that the manually generated reference isiden-
tical with the result of the automatic system. In the case of ’man-
ual control necessary’ the automatic approach leads to the state
possibly floodedwhereas the manual classification assigns the
line segments tofloodedor trafficable. The other way around
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Figure 6: Workflow of Rule-based Classification.

denotes the expression ’possibly correct assignment’. ’wrong as-
signment’ means that one result categorize the segment toflooded
and the other totrafficable. The enhancement of the automatic
system by the combined interpretation is shown in Table 7.

t2 t2, DEM t1,2, DEM t1,2,c, DEM

correct 68.40 68.45 69.60 87.14

manual 27.88 27.77 27.48 10.96

possibly 2.64 2.72 2.52 1.79

wrong 1.08 1.06 0.40 0.11

Table 7: Evaluation (percentage shares)

The first column in Table 7 represents the result using only the
imaget2 without any further information. The result with about
1% of ’wrong assignements’ and about 68% ’correct assignment’
is almost identical if an additional DEM as input data is used
(cf. Table 7: t2, DEM ). The reason for the lack of improve-
ment could be ascribed to the bad accuracy of the used DEM.
The influence of the height information is discussed in (Freyand
Butenuth, 2009). The evaluated road segments are depicted in
Figure 8(a). Green road segments correspond to ’correct assign-
ment’, yellow to ’manual control necessary’, cyan to ’possibly
correct assignment’ and red or blue belongs to ’wrong assign-
ment’. If the systems assigns a road segment to the categorytraf-
ficablebut the referencce isfloodedthe road segment is colored
in red. Blue road segments are assigned tofloodedby the system
andtrafficableby the reference.

In Figure 8(b) the result of the third column from Table 7 is vi-
sualized which includes the additional scene at time pointt1 as
input data. The additional scene and the resultant calculated prob-
ability pmad derived from the described MAD method leads to an
improvements of the results. Several red road segments disappear
whereas the ’correct assignments’, the assignments to ’manual
control necessary’ and the ’possibly correct assignments’remains
almost constant.

In Figure 8(c) the results exploiting an additional manually gen-
erated reference from scenet1 are plotted. The numerical eval-

(a) Detail of evaluation using imaget2 and DEM

(b) Detail of evaluation using imaget2, imaget1 and DEM

(c) Detail of evaluation using imaget2, imaget1 with correctly assessed
roads and DEM

Figure 8: Evaluation of assessment system: green=’correctas-
signment’, yellow=’manual control necessary’, cyan=’possibly
correct assignment’, red=’wrong assignment’[system =traffica-
ble, reference =flooded], dark blue = ’wrong assignment’ [sys-
tem =flooded, reference =trafficable].

uation is presented in the forth column of Table 7 (t1,2,c,DEM ).
The results are by far better then the previous obtained results.
The ’correct assignments’ arise from 69% to 87% and the ’wrong
assignments’ decrease from 0.4% to 0.1%. But it is importantto
point out, that a correct reference at the time pointt1 has to be
generated. Nevertheless, it has no influence of the fact thatthe
system is near-realtime since the time consuming generation of
the reference can be done before.

4.4 Result after Data Fusion

The final obtained result using the described damage assessment
system is depicted in Figure 9. All road segments are divided
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into four different categories. Besides the already mentioned cat-
egoriestrafficable(green),possibly flooded(yellow) andflooded
(red) an additional categoryflooded to trafficable(blue) is intro-
duced by means of the change detection algorithm. This addi-
tional category is very useful for rescue teams since it shows the
areas which are again trafficable after flooding.

Figure 9: Detail of result of damage assessment system usingall
available input data: imaget1, imaget2, DEM and manual gener-
ated reference at timet1. (green =trafficable, yellow = possibly
flooded, red =flooded, dark blue =flooded⇒ trafficable).

5. CONCLUSIONS

In this article, the general framework of a damage assessment
system and the benefit of the included data fusion is shown. The
improvement of the results by adding additional available data
is demonstrated in the test scenario. The integration of multi-
temporal imagery leads to an enhancement of the damage assess-
ment system concerning the correctness of the assessed objects
and concerning the additional temporal information which can
provide the rescue teams in emergency actions. Combining this
basis with rule-based approaches which are strongly dependent
on the natural disasters and available input data the overall sys-
tem leads to useful results with a very little rate of ’wrong assign-
ments’.

In future work, the generic system will be tested at more testsce-
narios with different sensors. In particular, the combination of
optical images and radar images should be investigated in more
detail. In addition, the influence of the DEM accuracy has to be
investigated in future work. Besides the radiometric exploitation
of the optical imagery also the geometric features should bein-
troduced as an additional evidence of destructions. A distinction
between different regions of global context should improvethe
results as well. Depending on the global context the required pa-
rameter can be chosen. The automatic setting of the parameters in
the system is currently not included in this paper. Further investi-
gations have to be done to learn suitable parameters automatically
depending on the available data.
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