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Preface

These are the proceedings of the ISPRS Technical Commission VII Symposium that was held on July 5–7, 2010, at the
Vienna University of Technology, Austria. The proceedings consist of two parts: Part A collects all papers that were
accepted on the basis of peer-reviewed full manuscripts; Part B contains papers which have been selected based on a
review of the submitted abstracts.

The topic of the symposium was “100 Years ISPRS – Advancing Remote Sensing Science” to celebrate the foundation
of the International Society for Photogrammetry (ISP) on July 4, 1910, on the initiative by Prof. Eduard Doležal. The
Society changed its name to the International Society for Photogrammetry and Remote Sensing (ISPRS) in 1980, reflecting
the increasing integration of the two disciplines. In our modern digital age, photogrammetry and remote sensing have
virtually grown together, having as their common scope the extraction of reliable information from non-contact imaging
and other sensor systems about the Earth and its environment through recording, measuring, analysing and representation.

Given the particular occasion the themes of the symposium extended beyond the traditional realms of Commission
VII (“Thematic Processing, Modelling and Analysis of Remotely Sensed Data”) by inviting contributions from the other
ISPRS Commissions as well. Contributions that provided a comprehensive overview of the major research areas in
remote sensing, highlighting past achievements and identifying challenges for the future, were particularly welcome. The
conference topics were

• Multi-spectral and hyperspectral remote sensing
• Microwave remote sensing
• Lidar and laser scanning
• Geometric modelling
• Physical modelling and signatures
• Change detection and process modelling
• Land cover classification
• Image processing and pattern recognition
• Data fusion and data assimilation
• Earth observation programmes
• Remote sensing applications
• Operational remote sensing applications

We would like to take this opportunity here to sincerely thank the reviewers of both the full-papers and the abstracts for
their valuable time and expertise! Each paper within Part A was reviewed by at least two reviewers and revised according
to their comments. Only 60% of the submitted full papers finally made it through this review process. Also each abstract
was reviewed by two peers, most of them by even three of more peers. Without question, the reviewer’s effort was not
in vain as it has helped to raise the quality of the papers and has allowed us to put together a high-quality technical
programme.

Nevertheless, we also would like to add some self-criticism here. Within ISPRS the importance of a proper review
process is broadly recognised. Also, more and more ISPRS colleagues rightfully request that all papers published in the
International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences (such as those contained
in the current volume) shall be covered by prominent indexing and abstracting databases. Yet, there is no standard ISPRS
reviewing system, nor is there a professional editorial support and indexing service. Consequently, every organiser of an
ISPRS workshop, symposium or congress needs to reinvent the wheel by building up his/her own system for reviewing
and handling the scientific contributions and for producing the proceedings. Having never organised an event with more



than hundred people, the learning curve has been particularly steep for us. As a result, mistakes were unavoidable and
we would like to apologise with the authors and reviewers for any inconvenience that they may have experienced. We are
confident that together we will be able to solve this challenge for future scientific meetings to the benefit of our discipline.

Finally, we want to highlight the very positive fact that we have received many excellent papers from scientists from
developing regions. This suggests to us that ISPRS has been quite successful in stimulating the exchange of scientists
from around the world and diverse cultural background. This will become the ever more important as climate change,
continued population growth and shrinking natural resources have all become truly global problems that require, as one
small part of the solution, global observation capabilities to better understand of how we have to act locally.

Vienna, June 2010

Wolfgang Wagner Balázs Székely
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ABSTRACT:

During the last decade, there have been numerous scientific studies verifying the accuracy of digital elevation models (DEM) derived
from airborne laser scanning (ALS). Since ALS has increasingly been used for nationwide digital elevation model data acquisition,
optimizing ALS acquisition parameters is a topic of interest to national land surveys. In particular, the effect of the scanning angle
and biomass on elevation-model accuracy needs further study in heavily-forested areas. The elevation-model accuracy is affected by,
for example, the number of pulses hitting the ground, footprint size, terrain slope and, especially, vegetation. In order to better
understand the effect of the biomass and scanning angle on the penetration rate of ALS signal through canopy and give further
support to ALS studies, especially for scanning angles beyond 15 degrees of the nadir point, we conducted an indoor experiment
using small spruce trees to represent forest canopy. The indoor experiment allowed us to measure the biomass reference accurately.
We used manual thinning to produce various levels of biomass and scissor lift as the carrying platform. We measured the weight of
every tree and the total biomass of trees after each thinning phase. We removed the material homogeneously from the trees, starting
from the latest shoots. We used a FARO laser scanner in the experiment and attached it to the scissor lift. We scanned the
experimental plot from four altitudes (about 3, 5, 7 and 9 m) and at six biomass levels (about 0, 6, 9, 14, 20 and 25 kg). The results
show that signal transmittance through spruce trees is a function of biomass and scanning angle, but that the scanning angle only has
a minor effect on the results. Biomass is the major parameter in determining the quality of the elevation model. While the results
require further airborne experiments to be fully confirmed, they do imply that a scanning angle greater than 15 degrees can be
applied in regions having low and moderate biomass, and due to the significant effect of the biomass on the transmittance, the
airborne scanning missions must be carefully specified in heavily-forested terrain. We also found that terrestrial laser scanning
experiments performed in an indoor laboratory-type setting yielded a relatively good understanding of the basic behaviour of and
interaction between the target and laser scanning rather easily, but that it will be considerably more difficult to obtain similar results
in a real-life experiment due to limited accuracy when collecting the reference data.

1. INTRODUCTION

Airborne laser scanning has been used for topographic mapping
and forestry applications for many years. The accuracy of
Digital Elevation Models obtained over forested areas has been
described by, for example, Kraus and Pfeifer (1998), Hyyppä et
al. 2001), Ahokas et al. (2002), Reutebuch et al. (2003), Takeda
(2004), Sithole and Vosselman (2004), Hyyppä et al. (2005), Su
et al. (2006), Chasmer et al. (2006), and Morsdorf et al. (2008).
A detailed comparison of the filtering techniques used for DEM
extraction was made within an ISPRS comparison of filters
(Sithole and Vosselman 2004). Reutebuch et al. (2003) reported
random errors of 14 cm for clear-cuts, 14 cm for heavily-
thinned forest, 18 cm for lightly-thinned forest and 29 cm for
uncut forest, using TopEye data with 4 pulses per m2. The
variation in ALS-derived DEM quality with respect to date,
flight altitude, pulse mode, terrain slope, forest cover and
within-plot variation was reported by Hyyppä et al. (2005).
Ahokas et al. (2005) proposed that the optimization of the
scanning angle (i.e. field of view) is an important part of
nationwide laser scanning. Significant savings can be realized
by increasing the scanning angle and flight altitude. The initial
results obtained using scanning angle analysis showed that the
scanning angle had an effect on the accuracy of Digital
Elevation Models, but that other factors, such as forest density,
dominate the process. Scanning angles up to 15 degrees seem to
be usable for high-altitude laser scanning in the boreal forest
zone. High-altitude laser scanning yielded a precision
measurement of about ±20 cm (std), which is good enough for

most terrain models required in forested areas. Ahokas et al.
(2005) stressed that the effects of the scanning angle should be
studied further, since the maximum field of view for
commercial laser scanners can be up to 75 degrees.
Su et al. (2006) analyzed the influence of vegetation, slope and
the LiDAR sampling angle (the laser beam angle from nadir) on
DEM accuracy. Vegetation caused the greatest source of error
in the LiDAR-derived elevation model. It was also reported that
DEM accuracy decreased when the slope gradient increased.
Off-nadir scanning angles should be less than 15 degrees to
minimize the errors coming from high slope gradients. The
LiDAR sampling angle had little impact on the measured error.
Chasmer et al. (2006) investigated laser pulse penetration
through a conifer canopy by integrating airborne and terrestrial
LiDAR. They found that pulses with higher energy penetrate
further into the canopy. The authors suggest that future research
should concentrate on improving the understanding of how
laser-pulse returns are triggered within vegetated environments
and how canopy properties influence the location of the trigger
event. Morsdorf et al. (2008) assessed the influence of flying
altitude and scanning angle on biophysical vegetation products
(tree height, crown width, fractional cover and leaf area index)
derived from airborne laser scanning. Due to the small scanning
angle of the TopoSys Falcon II (±7.15 degrees), the dependence
of airborne laser scanning on the incidence angle is not so
evident. The incidence angle (angle to surface normal of the
horizontal plane) seems to be of greater importance for
vegetation density parameters than the local incidence angle
(the angle to surface normal in the elevation model). The local

___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________ ____
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topography is thus less important than the scanning angle. ALS
data from larger scanning angles should be used to study further
the effect of scanning angle on vegetation density products.
In order to separate the effects of vegetation and the scanning
angle on the accuracy of the elevation model, especially beyond
15 degrees of the nadir point (which has not yet been studied),
we carried out an indoor experiment. The controlled indoor
conditions eliminated the effect of slope from the possible
sources of error present in terrain measurements. In this test, we
took the number of laser beams that were emitted versus those
that were recorded hitting the ground and compared them using
various canopy densities and scanning angles. The basic
assumption of the study was that the number of laser hits
reaching the ground serves as the main source affecting
elevation model quality. Thus, we studied the transmittance
through the canopy as the function of biomass and scanning
angle. The laser beam size and triggering algorithm that we
applied differs from system to system and from terrestrial to
airborne systems, and, thus, the final results need to be verified
in future airborne tests.

2. MEASUREMENTS

2.1 Terrestrial laser scanning

The applied terrestrial laser scanner (TLS) was a FARO Photon
80, which is based on phase measurements that provide high-
speed data acquisition. The technical parameters of the scanner
include a maximum measurement rate of 120,000 points/s, a
wavelength of 785 nm, a vertical field of view of 320 degrees
and a horizontal field of view of 360 degrees, and a ±2 mm
systematic distance error at 25 m. A beam divergence is 0.16
mrad and a beam diameter at exit is 3.3 mm (circular)
(www.faro.com). The resolution setting that we used was 1/8 of
the full scanning resolution, which is to say 13.9 points/degree
or 0.072 degrees/point. The resolution is the same for the
vertical and horizontal directions. The phase-shift-based system
uses an amplitude-modulated laser beam. The phase shift
between the transmitted and the received signal is measured.
Ambiguity can be resolved by using the multi-wavelength phase
shifts (RP Photonics 2010, Kikuta et al. 1986). If the
continuous, multi-wavelength amplitude-modulated beam hits
multiple targets, the measurement range is not well-defined. The
ALS is typically a pulse-based system which gives multiple
returns. The phase-shift-based system can be used to
approximate the penetration rate of the ALS pulse-based
system, since ground return does not exist when several hits are
encountered. Thus, the phase-shift-based system gives a lower
bound (worst case scenario) for the penetration rate than the
pulse-based system does. Since the triggering algorithm of each
laser scanner is different, and is also affected by the laser beam
size and the sensitivity of the receiver, the results need to be
verified separately for airborne systems. The results can be used
to better understand the effect of the scanning angle in relation
to the biomass on elevation models.

For this study, we used a Genie GS3232 scissor lift, which has a
maximum platform level of 9.8 m. We attached the FARO
scanner to the front safety fence of the platform. The level and
the function of the scanner were controlled from the lobby floor.
Cf. Figures 1 and 2.

We scanned the experimental plot from four altitudes (about 3,
5, 7 and 9 m) and at six biomass phases (about 0, 6, 9, 14, 20
and 25 kg (Fig. 3)). The scanning angle is the angle between the
nadir point under the laser scanner, the laser scanner and the

point at which the laser beam hits the target. By changing the
scanning height, it was possible to record a larger scale of
scanning angles (from 6 to 38 degrees) over the test plot than by
using only one scanning height. The scanning angle categories
for 9, 7, 5 and 3 m heights were 6-15, 8-19, 11-26 and 17-38
degrees (Table 6).

Figure 1. Spruce trees and the FARO scanner in the lobby.
Thinning phase th0. Photo M. Kurkela.

Figure 2. The FARO scanner at the 9 m high position. Photo J.
Hyyppä.
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2.2 Reference data

We placed the spruce trees (Picea abies) on a base (base height
about 20 cm) on the floor of the Institute lobby at a point that
was high enough for us to take measurements from different
altitudes using a lift. We weighed every tree before
commencing with the experiment. We extracted the biomass
from the trees gradually by hand. We also weighed the thinned
parts of the trees (mainly branches) after every thinning phase.
We removed the latest shoots first, after which we removed the
rest of the parts of the trees at an even rate. Figure 3 shows the
decreasing amount of the total biomass. Our plan for cutting an
equal amount of mass at every phase was quite successful,
which is indicated by the almost linear curve for the diminishing
biomass.

Figure 3. Spruce biomass decreasing during the experiment.

The thinning phases can be described as follows: Th0 indicates
the untouched original biomass, when all the needles and
branches were still on the trees (Fig. 1); during phases th1 and
th2 some of the branches were removed (Fig. 4); during phase
th3 only minor branches and the tree trunks remained; th4
indicates a clear-cut situation and the final phase, th5, indicates
the cleaned plot area, when all the laser beams hit the ground
without encountering any obstacles.

Figure 4. Thinning phase th2.

2.3 Analysis

For the statistical analysis, we used the two-factor analysis of
variance. In the relevant literature, it is also called the complete
block design (Montgomery 1984). With this analysis it is
possible to find out whether the two factors differ from each
other. Test statistic F is defined as

, (1)

where =mean square of the factor
= mean square of the error

We compared test statistic F with the F distribution critical
value to determine its significance at the
significance level of α=0.05.  υ1 represents the degree of
freedom of the factor and υ2 the degree of freedom of the error. 
If F> , then there are statistically significant
differences within the factor. In this study, the biomass of the
trees was the first factor and the scanning angle was the second
factor. In Tables 7, 8, 10 and 12, P stands for the probability
that the result for the significance was purely a coincidence.

We determined the laser points transmittance as a ratio of the
ground points (H<20 cm above the floor) and the total number
of points in the plot. Using this height limit, we considered the
tree base points as ground points.
To study the effect of the scanning angle, we divided the entire
view of interest at each scanning height into three parts. For
example, we stratified scanning angles between 6 and 15
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degrees at the 9 m scanning height into 6-8, 9-11 and 12-15
degree categories. In a similar manner, we stratified the
observations from other scanning heights into three categories.
The mean values of each scanning angle category are presented
in Fig. 6 and 7. We examined the F statistics using all the
scanning angle categories (12=4 heights x 3 categories) within
the same scanning angle factor.

We analyzed the front edge of the test plot facing the scanner
side separately. In this region, the spruce trees have fewer
branches that prevent the laser beam from penetrating the
canopy. We have studied the effects from this phase of the
research by analysing the so-called front part angles separately.

3. RESULTS

Laser beams penetrate the original dense spruce stand poorly;
(Figure 5 and Table 6) their rate of transmittance to the ground
level is about 1-2%. After the thinning at phase th1, the
transmittance rate was 5-6%. The next thinning phase increased
the transmittance rate to 20-31%. The giant leap in the amount
of transmittance after that is the result of leaf area loss when
the branches are cut off.

Figure 5. Transmittance through the canopy to the ground at
different scanning heights and thinning phases.

Biomass (kg),
thinning
phase

T(%),
9 m,
6˚-15˚

T(%),
7 m,
8˚-19˚

T(%),
5 m,
11˚-26˚

T(%),
3 m,
17˚-38˚

24.84 (th0) 1 1 1 2
19.76 (th1) 5 5 5 6
13.88 (th2) 31 28 23 20
8.76 (th3) 90 89 86 82
5.68 (th4) 95 94 93 91
0 (th5) 100 100 100 100

Table 6. Transmittance T as a percentage of the laser beams
reaching the ground from four altitudes. Minimum and

maximum scanning angles in degrees.

When we treated each of the scanning heights as a single-angle
category (data from Table 6), the biomass served as a
significant factor in transmittance change at the α=0.05
significance level whereas the scanning angle did not (Table 7).

Factor F P Fcrit
Biomass 1635.55 5.73E-20 2.90 *
Scanning angle 2.79 0.08 3.29

Table 7. F statistic for one scanning angle category per scanning
height. Significance level α=0.05. *=factor statistically
significant.

When we divided the scanning angles into three equal parts at
each scanning height, the scanning angle factor contains a total
of 12 angle categories to study instead of only 4, as in Table 7.
Table 8 also shows that the scanning angle now becomes a
significant factor affecting the rate of transmittance through the
spruce canopy.
We also examined the three angle categories per each height
separately. The F statistic is presented in Table 10.

Factor F P Fcrit
Biomass 668.43 6.43E-48 2.38 *
Scanning angle 4.76 4.2E-05 1.97 *

Table 8. F statistic for all scanning angles (12 categories).
Significance level α=0.05. *=factor statistically significant.

Figure 9. Transmittance through the canopy of trees at different
scanning angles (from 7 to 35 degrees). We stratified the

scanning angles into three parts at each height. The angle value
presented is the mean value of each part.

Height
(m)

Factor F P Fcrit

3 Biomass 95.08 4.24E-08 3.33 *
Scanning angle 10.82 3.15E-03 4.10 *

5 Biomass 173.38 2.23E-09 3.33 *
Scanning angle 3.63 0.07 4.10

7 Biomass 249.01 3.73E-10 3.33 *
Scanning angle 3.45 0.07 4.10

9 Biomass 148.79 4.74E-09 3.33 *
Scanning angle 2.34 0.15 4.10

Table 10. F statistic for every scanning height when scanning
angles were divided into three parts. Significance level α=0.05.

*=factor statistically significant.
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The scanning angle was only significant during observations at
the scanning height of 3 m at the α=0.05 significance level. At
that height, the variability in scanning angles was 17-38
degrees, making it significantly larger than at other heights.
Furthermore, the biomass was a significant factor at all scanning
heights.

The laser beam transmittances through the canopy and the
scanning angles in front of the test plot facing the scanner are
depicted in Figure 11. The scan (mean angle=20.5 degrees)
taken at the height of 3 m differs from the other scans.

Figure 11. Transmittance through the canopy of trees at
different scanning angles. Only the front part angles are

presented for each scanning height (9, 7, 5 and 3 m).

If we omit the front part angles (with mean values of 7, 9.5,
13.5, and 20.5 degrees) from the scanning angle factor and
examine the F statistics using all the remaining scanning angles
in the angle factor, then the scanning angles are no longer
statistically significant at the α=0.05 significance level. A
significantly larger test plot would have helped to eliminate this
effect caused by the front part angles.

Factor F P Fcrit
Biomass 990.39 1.23E-36 2.49 *
Scanning angle 2.11 0.07 2.29

Table 12. F statistic when front part scanning angles were
extracted. Significance level α=0.05. *=factor statistically

significant.

4. DISCUSSION

The scanning angle had only a minor effect on the results
compared to changes in the biomass. Dense canopy was the
main source of transmittance deterioration as well as elevation-
model accuracy deterioration. From the point of view of
specifying ALS DEM quality, the results confirm the initial
assumptions by Hyyppä et al. (2005) and Su et al. (2006) that
the canopy is the main source for errors in the DEM accuracy.
In order to be able to specify DEM quality, one has to know the
properties of the forest canopy or be able to accurately specify
the necessary accuracy for certain biomass or forest-condition
levels. Thus, it is not feasible to specify acceptable rates for
DEM accuracy without knowing the forest biomass.

In this study, we used a terrestrial laser scanner instead of an
airborne scanner, since we needed to achieve an accurate
reference. If there are multiple reflections from the target area,
the distance given by the phase measurement method is not
well-defined. Thus, this system exaggerates the effect of the
scanning angle and diminishes the amount of ground-reflected
points. Since the transmittance rate through the forest can be
only a matter of a few percentage points, even a reasonable
increase in the number of transmitted laser beams does not
necessarily help in reaching acceptable DEM accuracy rates.
We, therefore, believe that the results give valuable guidelines
for pulse-based ALS, even though the beam size and different
triggering algorithm varies from system to system, meaning that
the results need to be verified through airborne experiments.
Based on this experiment as well as prior research on forested
conditions, we recommend using a number of pulses per square
metre as a feasible criterion in specifying the laser scanning
missions and making offers comparable rather than trying to
obtain sufficient elevation model accuracy by specification,
which requires a priori knowledge of forest conditions.

The authors believe that the most valuable contribution of this
study is that it demonstrates how laboratory-type indoor
terrestrial laser scanning experiments can be used to study the
basic behaviour of the target and laser scanning interaction,
which would be far too complicated to carry out via commercial
ALS experiments. In this case, the number of sensors providing
large scanning angles was limited (consisting only of Leica
sensors), and it was very difficult to carry out enough accurate
biomass measurements for all scan angles and biomass classes.
Therefore, we urge researchers to conduct more laboratory-type
studies in the future, which will provide better understanding of
the basic interaction of laser beams with the target. Within the
scientific community, acceptance of ALS has proceeded at a
much faster rate than supporting research. Therefore, small
laboratory-type experiments, such as the one depicted in this
paper, can provide a quick and basic understanding of the
phenomena with lower costs. The final conclusion can then be
more easily confirmed using airborne experiments.

5. CONCLUSION

Results show that laser-beam transmittance through a small
canopy of spruce trees is a non-linear function of biomass. The
scanning angle has only a minor effect on the results compared
to changes in the biomass. Scanning angles up to 38 degrees
proved feasible for elevation mapping through this indoor
experiment. Thus, airborne experiments which have a scanning
angle greater than 15 degrees still need to be performed,
especially in areas with low and moderate levels of biomass.
Dense canopy was the main source of transmittance
deterioration and, thus, of elevation model accuracy
deterioration.

We showed by way of a light experiment that laboratory-type
indoor terrestrial laser scanning experiments can be used to
study the basic behaviour of and interaction between the target
and laser scanning, which confirms previous results from
airborne experiments and suggests new possibilities for
extending the scanning angle for ALS surveys of areas with low
and moderate levels of vegetation.
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ABSTRACT: 
 
The temporal evolution of vegetation activity on various land cover classes in the Spanish Pyrenees was analyzed. Two time series 
of the normalized difference vegetation index (NDVI) were used, corresponding to March (early spring) and August (the end of 
summer). The series were generated from Landsat TM and Landsat ETM+ images for the period 1984-2007. An increase in the 
NDVI in March was found for vegetated areas, and the opposite trend was found in both March and August for degraded areas 
(badlands and erosion risk areas). The rise in minimum temperature during the study period appears to be the most important factor 
explaining the increased NDVI in the vegetated areas. In degraded areas, no climatic or topographic variable was associated with the 
negative trend in the NDVI, which may be related to erosion processes taking place in these regions. 
 
 

                                                                 
*  Corresponding author 

1. INTRODUCTION 

Maps of active erosion areas and areas at risk of erosion are of 
great potential use to environmental agencies (governmental 
and private), as such maps allow erosion prevention efforts to 
be concentrated in places where the benefit will be greatest. 
There is no single straightforward method for assessing erosion, 
as erosion is highly dependent on the spatial scale and the 
purpose of the assessment (Warren, 2002). Methods for 
evaluating erosion risk at catchment and regional scales (10-
10,000 km2) include the application of erosion models, or 
qualitative approximations using remote sensing (RS) and 
geographic information system (GIS) technologies. RS and GIS 
techniques have been shown to be of potential use in erosion 
assessment at regional scales, including the identification of 
eroded surfaces, estimation of factors that control erosion, 
monitoring the advance of erosion over time, and investigating 
vegetation characteristics and dynamics (Lambin, 1996). 
Various studies have identified changes in vegetation dynamics 
at continental, regional, and local scales in recent decades. Most 
changes have been caused by human activity, particularly 
deforestation and forest fires (Riaño et al., 2007), but land 
marginalization and rural abandonment have contributed to 
natural revegetation processes in some regions (Vicente-
Serrano et al., 2004). However, numerous reports have found a 
general increase in vegetation activity in various ecosystems of 
the world, suggesting that the principal causes of changes in 
vegetation dynamics are variations in precipitation and/or 
temperature (Delbart et al., 2008). 
Changes in vegetation in the Mediterranean region have 
followed very different patterns. In general, vegetation growth 
tends to be favored by increased temperature in areas where 
water is not a limiting factor (Martínez-Villalta et al., 2008). 
Studies in the Spanish Pyrenees (Lasanta and Vicente-Serrano, 
2007) have investigated spatial and temporal variations in 
vegetation cover at regional and local sc ales to i) assess 
changes in the vegetal cover in the last 50 years; ii) detect 
trends in the global vegetation biomass; iii) explore changes in 
leaf activity in forest regions; iv) detect the climate drivers 
(temperature and precipitation) and spatial patterns of aridity; 

and, v) to determine the effects of human land uses. All 
previous studies have focused on well-vegetated areas, and very 
few reports have analyzed spatial and temporal variations in 
vegetation cover on active erosion areas and erosion risk areas, 
where vegetation is sparse. Badlands are usually defined as 
intensely dissected natural landscapes where vegetation is 
scanty or absent. Alatorre and Beguería (2009) identified active 
erosion and erosion risk areas in a badlands landscape of the 
Spanish Pyrenees using RS techniques. The presence of bare 
soil surfaces and the large size of badlands enabled good 
discrimination using RS data. However, the erosion risk areas 
surrounding badlands, coinciding with the transition zone from 
badlands to scrubland or forest, were characterized by poor 
vegetation cover (10-50%). For this reason, the analysis of 
vegetation dynamics on active erosion and erosion risk areas is 
very relevant to the design of measures for the mitigation and 
remediation of soil erosion and sediment transfer. 
The objectives of this study were i) to obtain time series of 
vegetation activity during two contrasting periods of the growth 
cycle (early spring and the end of summer) for various land 
cover classes, including both well-vegetated and degraded 
areas; ii) to determine the extent by which climate controlled 
vegetation activity in the various land cover classes, and to 
define temporal trends; and, iii) to analyze the spatial 
distribution of trends in vegetation activity on erosion risk 
areas, as indicators of recovery and degradation, and to quantify 
the effects of various topographical factors on such trends.   
 
 

2. STUDY AREA 

The study area, located at 620-2,149 m altitude approximately 
23 km north of the Barasona Reservoir (Spanish Pyrenees), is 
an integrated badlands landscape orientated 
northwest−southeast and developed on Eocene marls (Fig. 1A 
and B). A land cover map based on the supervised maximum 
likelihood method (Alatorre and Beguería, 2009) showed that 
the study area is occupied by five principal land cover 
categories: badlands, 19 km2 (8.0%); coniferous forest, 65 km2 
(28.0%); deciduous forest, 21 km2 (9.0%); grassland, 32 km2 
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(13.0%); and scrubland, 99 km2 (42.0%). The spatial 
distribution of land cover showed that the areas occupied by 
scrub and the grass border areas could be classified as badlands 
(Fig. 1C). This spatial distribution suggested that a progressive 
transition between eroded areas and forest (Fig. 1C). In the 
same study, a map of the active erosion (badlands) and erosion 
risk areas was obtained, with the surface areas of these classes 
comprising 17 km2 and 49 km2, respectively (Fig. 1D). The 
surface area of the active erosion region was the same as that 
obtained from a land cover map generated using the supervised 
maximum likelihood method. The badlands system comprises a 
group of typical hillside badlands developed on sandy marls 
with clay soil, and is strongly eroded over convex hillsides with 
moderately inclined slopes. Visual comparison of maps showed 
that the erosion risk areas corresponded principally to the 
scrubland class (and in some cases the grassland and conifer 
classes) bordering the badland areas. These areas had spectral 
characteristics intermediate between badlands and scrubland, 
indicating either a mixture of classes within a pixel or an 
intermediate level of degradation (for more details of the study 
area please see, Alatorre and Beguería, 2009). 
 

 
 

Figure 1. A) Location of the study area: i) subset area indicates 
the location of badland areas on marls (236 km2); ii) the gray 

zone indicates the area of the Landsat scene; iii) the black 
squares indicate the location of meteorological observatories of 
the National Agency of Meteorology. B) Digital terrain model 
(DTM). C) Land cover map based on supervised classification 

using the maximum likelihood method and the maximum 
probability classification rule (Alatorre and Beguería, 2009). D) 

Erosion risk maps (Alatorre and Beguería, 2009). 
 
 

3. DATA AND METHODS 

3.1 Data selection and preparation 

A database of Landsat TM and Landsat ETM+ images for the 
period 1984-2007 was used. The database comprised 28 images, 
16 of which were from a summer time series and 12 from a 
spring time series. The two time series were used to identify 
possible differences in vegetation dynamics as a function of 
seasonal differences in vegetation activity, and to assess with 
more robustness any spatial and temporal patterns in vegetation 
activity. Table 2 shows the dates of the images used in each 
time series. The database was processed using a procedure that 

included calibration and cross calibration of the images (for 
more details please see, Alatorre and Beguería, 2009). The 
procedure allowed accurate measurements of physical surface 
reflectance units to be obtained. The correction applied to the 
images guaranteed the temporal homogeneity of the dataset, the 
absence of artificial noise caused by sensor degradation and 
atmospheric conditions, and spatial comparability among 
different areas, given the accurate topographic normalization 
applied. Details of the correction procedure applied to the 
images, and a complete description of the dataset and its 
validation have been described by Vicente-Serrano et al. 
(2008). 
Time series of the normalized difference vegetation index 
(NDVI) were obtained from the original Landsat TM and 
Landsat ETM+ images, for the purpose of monitoring 
vegetation activity. The NDVI was computed as (Rouse et al., 
1974): 
 

  
RIR

RIR

ρρ

ρρ
NDVI

+
−=   (1) 

 
where ρIR is the reflectivity in the near-infrared region of the 
electromagnetic spectrum and ρR is the reflectivity in the red 
region. Several studies have demonstrated a strong relationship 
of the NDVI to the fraction of photosynthetically active 
radiation, the vegetation biomass, the green cover, and the leaf 
area index. Hence, high NDVI values are indicative of high 
vegetation activity. A land cover map comprising the major 
vegetation types in the study area was also used, as well as a 
map of active erosion areas (badlands) and areas at erosion risk 
(Alatorre and Beguería, 2009). 

 
March August 

Acquisition date Sensor Acquisition date Sensor 
03/11/1989 TM 08/20/1984 TM 
03/30/1990 TM 08/07/1985 TM 
03/06/1993 TM 08/13/1987 TM 
03/09/1994 TM 08/02/1989 TM 
03/28/1995 TM 08/24/1991 TM 
03/17/1997 TM 08/10/1992 TM 
03/20/1998 TM 08/29/1993 TM 
03/23/1999 TM 08/03/1995 TM 
03/17/2000 ETM+ 08/24/1997 TM 
03/10/2003 ETM+ 08/14/1999 TM 
03/07/2005 TM 08/08/2000 ETM+ 
03/13/2007 TM 08/26/2001 ETM+ 
  08/30/2002 ETM+ 
  08/27/2004 TM 
  08/18/2005 TM 
  08/01/2006 TM 

 
Table 2. Dates for the Landsat 5 TM and 7 ETM+ images used 

in the study. 
 
To analyze climate effects on the vegetation activity we used a 
database consisting of three daily rainfall series from the 
National Agency of Meteorology, comprising data since 
January 1984 (Fig. 1A). To guarantee the quality of the dataset 
the series were checked using a quality control process that 
identified anomalous records and analyzed the homogeneity of 
each series (for more details see Vicente-Serrano et al., 2009). 
Daily temperature data were obtained for the same period from 
the Serraduy station (Fig. 1A), and these were also checked for 
possible temporal inhomogeneities. The time series of 
precipitation totals and maximum/minimum temperature 
averages were computed from the original daily series by 
aggregating the original daily values over the period 
immediately before the images were taken. Thus, climatological 
series were computed for the following time periods prior to the 
date of the image: 15 days, 30 days, 3 months (January, 
February and March for the March images; June, July and 
August for the August images) and 6 months (October to 
March, and March to August, respectively). A series of 
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topographical variables was also analyzed to assess their effects 
on vegetation activity. This involved use of a digital terrain 
model (DTM) with a spatial resolution of 20 m to derive the 
slope gradient (m m-1), as some studies have shown that this can 
be a major factor explaining rates of vegetation recovery 
(Pueyo and Beguería 2007). We also derived a model of the 
incoming solar radiation (MJ m-2 day-1) to assess topographic 
control of the energy balance, using an algorithm that includes 
the effect of terrain complexity (shadowing and reflection) and 
the daily solar position (Pons and Ninyerola, 2008). 
  
3.2 Statistical analysis 

The temporal series of NDVI for each land cover class was 
checked for temporal trends using the Spearman’s correlation 
test against time. This enabled analysis of the vegetation 
dynamics in terms of increased (positive correlation) and 
decreased activity (negative correlation). The significance of 
the trends was checked using the p value associated with the 
Spearman’s rho statistic.  
 
The Spearman’s test enables detection of temporal trends in the 
NDVI series, but does not identify the driving factors involved. 
To determine the control exerted on vegetation activity by 
climate, and to isolate climate from other factors, we performed 
a multivariate regression analysis of the average NDVI values 
in March and August for the various land cover classes against 
the climatic variables. As a preliminary step we undertook a 
correlation analysis to determine the most appropriate time span 
for the climatologic time series. For both the March and August 
images we found that the climatological series computed for the 
3 months prior to the images had the greatest correlation with 
the NDVI. Therefore, we used the time series of cumulative 
precipitation and average maximum/minimum temperature for 
the 3 months before the acquisition date as covariates in the 
regression analysis. 
As the acquisition date of the images did not coincide among 
years, which could have affected the NDVI (especially in 
March, which is very close to the start of the growing period), 
we also introduced the Julian day of the image as a covariate. 
To check for temporal trends in the NDVI values that were not 
explained by variability of the climatic factors and the 
acquisition date of the images, we also incorporated the year of 
acquisition of the image as a covariate. 
We used a backward stepwise procedure based on the Akaike’s 
information criterion statistic (AIC), as implemented in the 
function stepAIC in the R package for statistical analysis (R 
Development Core Team, 2008). This function aided 
identification of the significant explanatory variables for the 
time evolution of the NDVI for the various land cover classes. 
The data analysis was based on the goodness of fit and 
statistical significance of the regressions, the explanatory 
variables selected, and the beta (standardized) regression 
coefficients. 
To provide a spatially distributed analysis, the multivariate 
regression analysis was repeated on a pixel-by-pixel basis for 
the erosion risk areas alone. This enabled mapping of the spatial 
distribution of NDVI trends not explained by climatologic 
factors, and thus identification of areas undergoing processes of 
degradation or recovery. Finally, a correlation analysis was 
performed on the NDVI trends against various topographical 
factors (elevation, slope gradient and potential incoming solar 
radiation), and a bootstrap procedure was used to determine the 
statistical significance of the correlations. Thus, 1,000 
repetitions of the correlation analysis were performed on 
random samples containing approximately 1% of the pixels 

belonging to the erosion risk class, and the resulting 
significance statistics (p values) were averaged. This enabled 
avoidance of a sample size effect that would arise if all the 
pixels of the erosion risk class (approximately 45,000) were 
introduced together in the analysis, causing the significance test 
to become over sensitive and thus unreliable. 
 
 

4. RESULTS AND DISCUSSION 

4.1 Temporal variation of the NDVI over all land cover 
categories, 1974-2007. 
 
The temporal variation of the mean NDVI values in March and 
August was assessed for each land cover category (Fig. 2, Table 
2). In both time series there was a clear difference between the 
vegetated categories (deciduous and coniferous forests, 
grassland and scrubland) and degraded areas (badlands and 
erosion risk areas). The vegetated areas had higher NDVI 
values, and the greatest average NDVI values occurred in 
August. The NDVI values in March showed positive temporal 
trends (i.e., the average NDVI increased with time) for all 
vegetated classes, particularly for deciduous and coniferous 
forests where the trends were almost significant at the α = 0.05 
level. Nevertheless, the increase in the NDVI was not constant, 
and in some years (e.g., 1997 and 2003) a decrease in the 
average NDVI was detected relative to the general trend (Fig. 
2). The NDVI values in August did not show significant 
temporal trends for any vegetation class. These results suggest 
an increase in vegetation activity during the study period, 
especially in March, when the conditions for growth are best. 
The degraded areas (badlands and erosion risk areas) had the 
lowest average NDVI values, which differed little between 
March and August because of the very low vegetation cover 
(Table 2). The NDVI trends were negative in both March and 
August, and were stronger in the erosion risk areas, for which 
statistical significance was found in the August time series. This 
may indicate the presence of a degradation process, such as soil 
erosion, in these areas. 
These results suggest that the occurrence of contrasting 
temporal trends in the overall area depends on the nature of the 
land cover, with well-vegetated areas undergoing an increase in 
vegetation activity and degraded areas suffering a process of 
further degradation. However, the time variability of the NDVI 
may also be explained by the evolution of climatic conditions, 
as discussed below. 
 
4.2 Regression analysis of NDVI versus climatic variables 
 
Regression analysis helped explain the observed NDVI 
temporal patterns of the various land cover classes. The 
regression models generally fitted the observed NDVI values 
well, although for pastures, badlands, and erosion risk areas in 
March, the model results were slightly below the confidence 
level (Table 3). A better fit was obtained in March for well-
vegetated areas (pine and deciduous forests, and scrubland) than 
for less vegetated regions (pastures, badlands, and erosion risk 
areas), as shown by the lower R2 values. In August the 
goodness-of-fit was similar for all land use classes (Table 6). In 
all models one or more climatic variables were identified as 
significant, indicating that climatic conditions were important in 
explaining the evolution of vegetation activity. 
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 March August 
 NDVI NDVI trend NDVI NDVI trend 
Land cover class mean sd rho p-value Mean sd Rho p-value 
Deciduous forest 0.63 0.10 0.517 0.0862 0.65 0.11 0.321 0.224 
Conifers 0.56 0.12 0.573 0.0538 0.61 0.12 0.168 0.520 
Grassland 0.49 0.11 0.336 0.281 0.55 0.15 -0.0265 0.926 
Scrubland 0.50 0.11 0.294 0.348 0.52 0.13 -0.0899 0.741 
Risk erosion areas 0.48 0.11 -0.196 0.543 0.50 0.14 -0.594 0. 0173 
Badlands 0.42 0.12 -0.0420 0.904 0.41 0.16 -0.250 0.349 

 
Table 3. NDVI values and temporal NDVI trends (Spearman’s 
rho correlation with time and significance) for each land use 

category for March and August. 
 

 
Figure 4. Temporal evolution of the mean NDVI values for 

March and August between the categories of land cover map 
and erosion risk areas. 

 
 Pine 

forest 
Deciduous 
forest 

Scrubland Pastures Erosion 
risk 

Erosion 
(badlands) 

R2 0.743 0.779 0.615 0.424 0.467 0.547 
p-value 0.002 0.001 0.045 0.084 0.150 0.082 
Residual standard error 0.561 0.520 0.728 0.839 0.856 0.789 
Beta coefficients:       
 Precipitation -0.317 -- -0.298 -- -- -- 
 T max -- -- -- -- -- -- 
 T min 0.683 0.678 0.371 1.11 0.701 0.716 
 Julian day -- -0.310 -0.326 -- -0.377 -0.457 
 Time (year) -- -- -- -0.705 -0.845 -0.719 
Temporal trend (change 
in NDVI): 

      

 per year -- -- -- -
0.00216 

-0.00433 -0.00326 

 period 1989-
2007 

-- -- -- -4.03% -7.91% -6.02% 

 
Table 5. Regression analysis of NDVI values for March in 

relation to climatic conditions. 
 
 Pine 

forest 
Deciduous 
forest 

Scrubland Pastures Erosion 
risk 

Erosion 
(badlands) 

R2 0.599 0.591 0.663 0.640 0.681 0.663 
p-value 0.028 0.031 0.004 0.005 0.003 0.004 
Residual standard error 0.739 0.747 0.649 0.671 0.632 0.649 
Beta coefficients:       
 Precipitation -0.325 -0.421 -- -- -- -- 
 T max -1.59 -1.45 -1.66 -1.62 -1.23 -1.50 
 T min 1.31 1.34 1.21 1.09 0.806 1.42 
 Julian day -- -- -- -- -- -- 
 Time (year) -0.481 -0.507 -0.688 -0.646 -1.000 -0.789 
Temporal trend (change 
in NDVI): 

      

 per year -
0.00197 

-0.00247 -0.00241 -
0.00244 

-
0.00363 

-0.00210 

 period 1984-
2006 

-4.43% -5.53% -5.40% -5.46% -8.02% -4.72%  

 
Table 6. Regression analysis of NDVI values for August in 

relation to climatic conditions. 
 
However, there were differences between March and August, as 
well as between land cover classes. In March the average 
minimum temperature was the most important explanatory 
factor, as evidenced by the fact that this parameter had the 

largest (standardized) beta coefficient. The effect of the 
minimum temperature was positive in all cases, with high 
minimum temperatures yielding elevated NDVI values. This 
reflects the importance of relatively warm weather at the end of 
winter/early spring, at the start of the growing period. The 
maximum temperature was not a significant explanatory factor 
for any land use class, and cumulative precipitation was 
significant in only a few cases (pine forest and scrubland). 
Counter-intuitively, cumulative precipitation had a negative 
effect on the NDVI (i.e., greater precipitation resulted in lower 
NDVI), as shown by the negative signs of the beta coefficients. 
The time of acquisition of the image (variable = ‘day’) was 
significant in March for all land cover classes except for pine 
forest and pasture, suggesting the relevance of the phenological 
state of vegetation at this time of the year. In August the 
average minimum temperature was also significant (positive) 
for all land cover classes, but the most important explanatory 
factor was the average maximum temperature. This showed the 
highest absolute beta coefficient and a negative effect in all 
cases, meaning that a warm summer resulted in lower NDVI 
values. Cumulative precipitation was significant only for the 
pine and deciduous forests, where it also had a negative effect 
on the NDVI. The time of acquisition of the image had no 
significant effect for any land cover class. 
Having thus explained the climatic and phenological effects on 
NDVI, we proceeded to identify temporal trends in NDVI 
values for some land cover classes (Tables 3 and 4). Negative 
time trends were found only in March, for pastures, badlands 
and erosion risk areas, representing a decrease in the NDVI of 
4-8% in the period 1989-2007. Negative time trends were found 
in August for all land cover classes, and showed a similar range 
in the period 1984-2006. The magnitudes of the negative trends 
were similar for all land cover classes with one exception. 
Erosion risk areas showed the highest values (around 8%) in 
both March and August. 
The results of regression analysis enabled interpretation of the 
observed temporal patterns in the NDVI (Fig. 2). The apparent 
upward trend in the NDVI in well-vegetated areas in March can 
be explained by a similar trend in the average minimum 
temperature. A downward trend in the NDVI in erosion risk 
areas was also evident, but was not clearly related to the 
temporal evolution of any climatic variable. 
These results are in agreement with the evolution observed in 
the western Spanish Pyrenees. Vicente-Serrano et al. (2004) 
found a general positive trend in the NDVI for forests and well-
developed vegetated areas, which was related to an increase in 
annual mean temperature, and to patterns of land abandonment 
and natural revegetation processes. In the present study we also 
found a positive trend in the NDVI for vegetated areas, and 
showed that the maximum and minimum temperatures in the 3 
months before the Landsat images were taken exerted an 
opposite influence on the NDVI, and that this effect varied 
during the year. 
The finding that cumulative precipitation had a negative effect 
on the NDVI was puzzling; a positive effect was expected. This 
anomaly can be explained by the facts that i) water availability 
is not a limiting factor for vegetation growth in the study area, 
which receives an average of around 900 mm year-1, 
predominantly in winter and spring; and, ii) the amount of 
precipitation is well-correlated with cloud cover in the region, 
with rainy periods resulting in reduced incoming solar 
radiation, which rises on clear days. It is well known that 
precipitation level ceases to be a limiting factor for vegetation 
growth in humid regions, where competition for space and solar 
radiation is more important. Several studies have documented 
saturation of the NDVI in relation to precipitation in humid 
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areas (Santos and Negrín, 1997). In such regions the typically 
nonlinear relationship between precipitation and vegetation 
activity could explain the absence of a significant positive 
effect, but not the presence of a negative effect, as found in our 
study. However, the second explanation (cloud cover) could 
assist in an explanation of our data. Unfortunately, neither 
cloud cover nor terrestrial incoming radiation time series was 
available, so this hypothesis could not be tested. 
In studies of smaller areas, similar NDVI trends in vegetation 
evolution have been observed, but human impact has been 
included among the explanations. The presence of a residual 
temporal trend in NDVI values following removal of climatic 
influences is usually considered to constitute evidence that 
other factors, such as human land use practices, are affecting 
vegetation activity. In the present study we found significant 
downward trends in all land cover classes in August. Given the 
low intensity of land use in the region, attribution of these 
trends to human causes is difficult. Additionally, positive NDVI 
trends were found in March, which can be explained by the 
positive evolution of minimum temperatures. Thus, an early 
start to the growth period, plus increased vegetation activity 
during spring and early summer, could cause greater stress on 
vegetation in August. Following exclusion of climatic effects, 
downward trends in the NDVI were found in March and August 
for pastures and badland areas, particularly in erosion risk 
regions. This could be a sign of degradation in such areas 
because a decrease in the (already low) vegetation activity in 
the study area has been correlated with soil erosion processes 
(Alatorre and Beguería, 2009). In erosion risk areas the relative 
effect of the temporal trend was greater than the effect of any 
climatic variable, and consequently this land cover type was the 
only class exhibiting an overall downward trend in the NDVI. 
As this land cover class includes very sensitive areas that are at 
risk of loss of all vegetation cover, thus becoming badlands, we 
focused further on factors that have contributed to this 
degradation.  
 
4.3 Spatial distribution of positive and negative NDVI 
trends in erosion risk areas 
 
The downward trend in NDVI for erosion risk areas in March 
and August could not be explained by climatic factors, and 
suggested the involvement of degradation processes including 
active erosion or lateral expansion of existing badlands. This 
possibility motivated a detailed assessment of the spatial 
distribution of NDVI trends in erosion risk areas. 
Following removal of climatic influences, the spatial 
distribution of positive and negative trends in the NDVI of 
erosion risk areas was similar in March and August, indicating 
that the process is quite consistent and not merely attributable to 
seasonal effects (Fig. 7). Negative NDVI trends predominated 
in both images, indicating the occurrence of degradation 
processes in these areas. However, there were regions in which 
positive trends dominated, especially in the March image. The 
proportion of statistically significant trends increased in August, 
because of an increase in stress conditions, which predominated 
in this month. 
Mapping of trend values on a pixel-by-pixel basis enabled 
assessment of the importance of particular topographical 
conditions on the presence of degradation or recovery 
processes. In March a positive but not statistically significant (p 
= 0.283) relationship was found between the NDVI trend and 
elevation (Fig. 8). This may be related to the location of the 
badland areas; these predominate in the bottom of the Eocene 
depression, in contrast to forested areas, which are mainly 
found on slopes. A negative but not significant (p = 0.364) 

correlation was found between the NDVI trend and the slope 
gradient, suggesting an association of steeper slopes with more 
negative trends. This association could be related to the known 
positive influence of slope gradient on the activity of erosion 
processes. Similar results were obtained with the August images 
(Fig. 4), although the relationships with elevation and slope 
gradient were weaker (p = 0.447 and p = 0.416, respectively). 
 

 
 
Figure 7. Spatial distribution of the NDVI trends for March and 

August in erosion risk areas after climatic forcing was 
accounted for: sign of temporal trend (above) and significance 

(below). 
 

 
 
Figure 8. Correlation between the NDVI trends for March and 

August in the erosion risk areas and topographic variables (after 
climatic forcing was accounted for). Results are shown for a 

random sample containing 10% of the original pixels. The black 
dots indicate pixels with statistically significant trends. 

With respect to the potential solar radiation, stronger positive 
correlations with NDVI trends were found in both the March (p 
= 0.133) and August (p = 0.0345) image series, suggesting that 
degradation processes were preferentially occurring on shady 
(north-facing) slopes. This is consistent with previous research 
on the topographical signature of badlands in the Spanish 
Pyrenees, which has revealed that such regions occur 
predominantly on shady slopes (Alatorre and Beguería, 2009), 
and are associated with mechanical weathering processes 
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related to frost and thawing cycles, which are stronger on north-
facing slopes (Nadal-Romero et al., 2007). Our results show 
that the topographic influences on recovery processes are 
opposite in well-vegetated areas compared to regions 
undergoing erosion processes. 
 
 

5. CONCLUSIONS 

We analyzed the temporal evolution of vegetation activity on 
vegetated and degraded surfaces in a small area of the central 
Spanish Pyrenees over the period 1984-2007. Two map series 
of the normalized difference vegetation index (NDVI) were 
obtained from a series of homogenized Landsat TM and 
Landsat ETM+ images for the months of March and August. 
This enabled analysis of the spatial and temporal dynamics of 
vegetation activity in well-vegetated areas (forests and dense 
scrubland) and degraded areas affected by erosion processes 
(badlands and risk erosion areas). Temporal NDVI trends were 
identified for each land cover class using multivariate 
regression analysis, which incorporated the time evolution of 
climatic factors (precipitation, and minimum and maximum 
temperature). Seasonal differences were expected in the spatial 
pattern of vegetation activity and vegetation recovery 
processes, as a consequence of the climatic seasonality of the 
region and the large differences in water availability between 
spring and summer (vegetation in the latter season is commonly 
affected by a high level of water stress). The results obtained 
could have been affected by the heterogeneity of land use and 
the nature of land covers selected, because this mountainous 
area is complex and exhibits great spatial diversity. 
Nevertheless, at the Landsat image spatial resolution (30 m), 
both land cover and land use were well-represented in the maps. 
Assignment to class based on the most representative category, 
by surface area, in a 30 m pixel size could introduce some 
errors, but it was necessary to guarantee an effective spatial 
comparison between the NDVI dataset and categorical 
information. Moreover, the results were spatially consistent, 
and clear NDVI patterns that coincided with the spatial 
distribution of land use and land cover were evident. In 
summary, this study demonstrated that, in a representative 
mountainous area of the central Spanish Pyrenees, there has 
been a significant increase in vegetation activity in the last 24 
years, which is largely explained by an increase in the 
minimum temperature. Conifers and deciduous forest have 
shown the greatest increase in vegetation activity, whereas the 
increase in activity of grasslands and scrublands has been 
moderate. Moreover, in active erosion and erosion risk areas, 
extreme environmental conditions, which accelerate erosion 
processes, have restricted vegetation recovery processes over 
this time period. 
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ABSTRACT:

The work aimed at testing a methodology which can be applied to low spatial resolution satellite data to assess inter-annual crop area
variations on sub-pixel to regional scales. The methodology is based on the assumption that within mixed pixels land cover variations are
reflected by changes in the related hyper-temporal profiles of the Normalised Difference Vegetation Index (NDVI). We evaluated if
changes in the fractional winter crop coverage are reflected in changing shapes of annual NDVI profiles and can be detected by using
neural networks. The neural nets were trained on reference data obtained from high resolution Landsat TM/ETM images. The proposed
methodology was applied in a study region in central Italy to estimate winter crop areas between 1988 and 2002 from 1 km resolution
NOAA-AVHRR profiles and additional ancillary data readily available (CORINE land cover). The accuracy of the estimates was
assessed by comparison to official agricultural statistics using a bootstrap approach. The method showed promise for estimating crop area
variation on sub-pixel level (cross-validated R2 between 0.7 and 0.8) to regional scales (normalized RMSE: 10%). The network based
approach proved to have a significantly higher forecast capability than other methods used previously for the same study area.

1. INTRODUCTION

There is a growing concern for large-scale environmental issues
such as global warming, loss of biodiversity and food security.
Remote sensing is the only practical source of environmental data
with global coverage. Moderate to coarse spatial resolution
satellite sensors such as NOAA-AVHRR or SPOT VGT provide
synoptic information at a high temporal resolution while the
amount of data is still manageable. Due to their coarse resolution,
however, most pixels contain a mixture of land cover classes,
referred to as sub-pixel mixing (Atkinson et al., 1997).

Knowledge of the spatial distribution of crop types is important
for land management and trade decisions, and is needed to
regularize the inversion of radiative transfer models for mapping
crop biophysical and biochemical variables (Atzberger, 2004;
Richter et al. 2009). However, in regional to global agricultural
studies, mixed spectral signatures are common (Lobell & Asner,
2004). For example, small field sizes (1 - 10 ha) are typical for
many agricultural systems in the developing world, but also in
Europe. Thus, methods are required that allow the mapping of
fractional coverages from coarse resolution imagery (Foody et al.,
1997). If suitable methods could be developed, the analysis of
archived images would also allow tracing back the development of
the landscapes to the early eighties, when the first global data sets
became available.

To un-mix coarse resolution imagery, many studies rely on the
assumption of a linear relationship between end-member
signatures and the composite signature (e.g. Quarmby, 1992).
However, mixing is often non-linear and end-member spectra are
sometimes difficult to obtain.

To overcome these problems, Foody et al. (1997) proposed an un-
mixing approach based on neural nets. The approach makes no
assumptions about the nature of the mixing and does not require
end-member spectra. Relative to a conventional classification
oriented approach, the areal extent of classes was generally more
accurately estimated from (single date) AVHRR data after the
application of the unmixing procedure.

Neural networks (NN) were also used together with mixture
modelling and fuzzy classification by Atkinson et al. (1997) for
mapping sub-pixel proportions of land cover classes in U.K.
Again, it was found that neural networking was the most accurate
technique, but its successful implementation depended on accurate
co-registration of the 5 band AVHRR image with a high
resolution SPOT HRV image. The availability of an accurate
training data set was also very important.

A probabilistic temporal unmixing (PBU) using MODIS
reflectance data was proposed by Asner & Lobell (2004). Landsat
data was used to identify pure pixels for the extraction of temporal
endmembers. Sub-pixel fractions of crop area were modeled by
using linear un-mixing. Performance of the mixture model varied
from 50 to 80 % depending on the scale of comparison.

NDVI time series from NOAA-AVHRR was used successfully by
Remold & Maselli (2004; 2006) for estimating inter-annual crop
area changes in Tuscany (Italy). The study used an approach based
on the Spectral Angular Mapping (SAM). For model calibration,
test data derived from high resolution Landsat TM and ETM was
used. Albeit relatively accurate inter-annual crop area changes
could be achieved, the results were strongly dependent on the
quality of the satellite images. Useful results for winter crops
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Figure 1. Study area Tuscany, Italy. The sample image is from
AVHRR (top left: 44o 42’-8o 19’, lower right: 42o 00’-13o 21’)

could be provided only by end of September, reducing
considerably the timeliness of the area change information.

The use of neural nets for estimating sub-pixel land cover from
temporal signatures was investigated by Verbeiren et al. (2008).
Monthly MVC of SPOT-VGT (between March and October) were
used to model the area fraction images (AFI) of eight classes in
2003 for Belgium. Relatively good results were obtained
especially if the initial (pixel-based) results were aggregated to
higher regional levels. The portability of the trained networks
across growing seasons was investigated by Bossyns et al. (2007)
in an accompanying paper on the same data set. The NNs were
trained on data of one growing season and than applied to SPOT-
VGT of the training year and three other seasons. High and stable
accuracies of the estimated AFI’s were obtained when the trained
network was applied on the imagery of the training year. For
example, at regional level, the R2 for winter wheat was ~0.8 (0.67-
0.87) for the training years. However, on average, this values
decreased by 0.45 units when the trained networks were applied to
different seasons, probably because of a too high inter-annual
variability of the temporal signatures.

The objectives of the present study were:

 to test if NNs can be used with low resolution NOAA-
AVHRR imagery and additional ancillary information to
accurately estimate winter crop surfaces at sub-pixel to
regional scales between 1988 and 2002

 to evaluate the impact of ancillary land use information
(CORINE) on the estimation accuracy as well as the
influence of an improved smoothing of the AVHRR
time series

 to determine the optimum prediction dates for early-
season forecasts of winter crop surfaces

2. MATERIAL

The methodology was tested using data for the Tuscany region in
Central Italy. The choice was driven mainly by the availability of
both satellite imagery and agricultural statistics. The region is
covered by a consistent NOAA-AVHRR data time series taken in
the period from 1986 to 2003, when also several Landsat
TM/ETM+ scenes were acquired. An area frame sampling method
has been regularly applied since 1988 to measure the extent of the
main crops in Tuscany (Carfagna et al. 1998).

Figure 2. NDVI profiles of pure winter and “summer crops”. The
dekads used for modelling are shown in green

2.1 Geography and environmental features of the study area

Tuscany is situated between 9°- 12° East longitude and 44°- 42°
North latitude, covering circa 2 x 106 hectares (figure 1). From an
environmental point of view, Tuscany is peculiar for its extremely
heterogeneous morphological and climatic features. The
topography ranges from flat areas near the coast-line and along the
principal river valleys to hilly and mountainous zones towards the
Apennine chain. The climate in Tuscany ranges from typically
Mediterranean to temperate warm or cool according to the
altitudinal and latitudinal gradients and the distance from the sea.

The land use of Tuscany is predominantly agricultural where the
land is flat and mixed agricultural and forestry in the hilly and
mountainous areas. The main agricultural cover types are cereal
crops in the plains and olive groves and vineyards on the hills. The
upper mountain zones are almost completely covered by pastures
and forests. Cropland is spread over the coastal zones and the
inner plain and hilly areas cover approximately 25% of the land
surface. The prevalent cereal is durum wheat, with an average
planted area of 112 000 ha and with a mean growing cycle from
November to the end of June (figure 2).

2.2 Data

2.2.1 Reference information on winter crop areas: The land
cover classification of Tuscany produced by the CORINE project
was used as reference map (Annoni & Perdigao, 1997). Wheat
area estimates for the period 1988-2002 were obtained from the
AGRIT project (Consorzio ITA, 1987). These statistics are
produced annually through an area frame sampling method, which
guarantees high estimation accuracy (error < 10 %) at the regional
scale (Carfagna et al., 1998). From the available data, 1994 has
been excluded because of the insufficient quality of the AVHRR
data. In what follows, we use the term “winter crop area” as a
synonym for the wheat area.

2.2.2 High resolution images: The high resolution images were
necessary to spatialize the statistical information provided by the
AGRIT statistics (2.2.1). The high resolution data set consisted of
8 Landsat frames (192/30), 6 taken by the Thematic Mapper (TM)
(1988, 1991, 1992, 1995, 1997 and 1998) and 2 by the Enhanced
Thematic Mapper (ETM+) (2000, 2001). All of them were
acquired during the month of August and were cloud free over the
main agricultural areas. The Landsat TM/ETM+ scenes were first
geo-referenced by a nearest neighbor resampling algorithm using
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Total winter crop
surface (Tuscany)

Sub-pixel winter crop
surfaces, i.e. spatialization

Year
AGRIT

[ha]
NNcv
[ha]

RMSEcv
(RMSE)

R2cv
(R2)

1988 133795 147543 9,6 (8,8) 0,70 (0,80)
1991 184024 152491 10,8 (8,8) 0,79 (0,78)
1992 112450 96053 8,3 (9,0) 0,71 (0,79)
1995 145999 170981 8,8 (8,9) 0,81 (0,79)
1997 167000 136426 10,3 (8,8) 0,72 (0,80)
1998 174296 168462 9,0 (8,8) 0,79 (0,79)
2000 183356 183569 9,8 (8,9) 0,82 (0,77)
2001 154510 201407 10,6 (8,9) 0,77 (0,79)

Xmed 160755 160477 9,4 (8,9) 0,79 (0,79)

Table 3. Cross-validated results obtained with the neural network
for the eight years for which reference information was available.

The results for the training data are given in parentheses

about 120 control points selected on a CORINE-based land/water
mask. Bands 4 (nIR) and 3 (Red) were corrected for atmospheric
effects and converted into reflectances from which high resolution
NDVI images for every training year were calculated.

2.2.3 Low resolution images: JRC-MARS owns the most
elaborate archive of NOAA-AVHRR 1km data over the pan-
European continent. In 2008, all historical data were re-processed
with new procedures, which resulted in an unique archive of 27
years. For this study, the AVHRR time series from 1988 to 2002
was used, fully encompassing the years for which high resolution
TM/ETM data was available (2.2.2).

3. METHODS

3.1 Generation of reference abundance maps

In a first step the CORINE land cover classes were grouped into
five environmentally meaningful categories (summing up to unity)
with more or less similar NDVI profiles. Besides the “arable land”
class, four other categories were derived: forests, pastures, tree
plantations and urban areas (Maselli, 2001). We assumed that the
broad land cover was stable between 1988 and 2002. In a second
step, the CORINE “arable land” class was split into winter crops
and summer crops using the available TM/ETM+ images of the
eight training years (2.2.2). For this purpose, each high resolution
NDVI image was thresholded. The threshold was determined so
that the summed high resolution winter crop surfaces equal the
AGRIT statistic (2.2.1). This operation was possible as winter
crop fields are almost bare in August, while other fields with
summer crops (maize, sunflower, etc.) but also fallows and
pastoral areas are in a “green” phase. This also implies that the
class “summer crop” is a mixture of typical summer crops with
other classes. Although the thresholding resulted in two masks per
image (one for the winter crops, the other showing the distribution
of summer crops), the latter was not further used.

The five categories identified in the eight training dates (four
CORINE categories plus winter crops) were spatially degraded by
pixel averaging to produce abundance images (i.e., AFI) with the

Total winter crop surface for Tuscany
Nobs R2 nRMSE

training years 8 0.77 7.9
validation years 6 0.35 12.4
pooled data 14 0.57 10.7

Table 4. Results obtained with the neural network trained on the
eight years for which reference information was available

same spatial resolution as the AVHRR images. Of course, out of
these images only the winter crop abundance maps were different
for each date. Hence, only the variations within the CORINE
“arable land” category were analyzed, without considering any
changes within the other categories.

3.2 Smoothing of low resolution AVHRR data

Time series from AVHRR require a careful filtering/smoothing
before they can be applied within quantitative studies (Beck et al.,
2006). The standard maximum value compositing (MVC) only
corrects for major disturbances. To eliminate the negatively biased
noise typical for coarse resolution time series, the modified
Whittaker smoother was used (Atzberger & Eilers, 2010a; 2010b).
The filter was chosen because it is very fast, interpolates easily
and optimizes its smoothness parameter automatically.

3.3 Neural networking

A simple net with one hidden layer was used to map the winter
crop fraction from the profiles of coarse resolution NDVI images
and the ancillary data (e.g. five AFI related to arable land, forests,
tree plantations, urban areas and pastures). The output layer
represented the winter crop area fraction and had thus only one
neuron. In the standard setting, the number of input neurons was
21. This allowed to simultaneously input the 5 (inter-annually
constant) abundance values derived from the CORINE data plus
16 neurons describing the temporal NDVI profile (dekads 7 to 25,
excluding dekads 14 to 16). The three dekads were excluded
because winter and summer crop signatures strongly overlap
during this period (figure 2). The number of neurons in the hidden
layer was set to 3, resulting in a compact 21-3-1 network
architecture. For network training the resilient backpropagation
algorithm was used. To improve generalization of the net and to
prevent overfitting, the early stopping technique was applied
(Atkinson & Tatnall, 1997; Farifteh et al. 2007). For this purpose,
the training samples were split into three subsets with 50 %
(training), 25 % (test) and 25 % (validation) of the total available
pattern. Only the training set was used for computing the gradient
and up-dating the weights and biases. The training was stopped
automatically when the test error started to rise and the actual
weights were returned. To keep the methodology simple, other
more elaborated training strategies were not investigated.

4. RESULTS AND DISCUSSION

4.1 Spatio-temporal distribution of winter crops

To derive statistically sound results, a jacknife procedure was
selected. This means that 8 different training sessions were run,
each time using only 7 out of the available 8 years. The left-out
sample was than predicted by the trained network. The resulting
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Figure 5. Reference (left) and cross-validated NN-derived (right)
spatial distribution of winter crop surfaces for 2 contrasting years

Figure 6. Spatial distribution of the cross-validated correlation
coefficient (r) between AGRIT reference information and the

modeled results (right). The corresponding frequency distribution
is shown on the left. The histogram gives the frequency for all
pixels (in gray) and for those having a high inter-annual winter

crop area variability (in white)

winter crop surfaces for Tuscany are reported in table 3. The table
also lists two statistics describing the accuracy with which the
(spatial distribution) of the abundance images was modeled,
distinguishing between cross-validated results and training data.

On average, 79 percent of the observed spatial variability of the
(sub-pixel) winter crop area was explained by the net. However,
we also observe large variations from year to year with R2cv
ranging between 0.70 (1988) and 0.82 (2000). In general, the
cross-validated RMSE values of winter crop areas were around 10
%. As expected, cross-validated RMSE were higher than those
obtained on the training sample (< 9 %). Together, this indicates
that the spatial distribution of winter crops was quite well
modeled, however, with sometimes some significant offset.

Spatialized winter crop abundances are shown in figure 5 for the
two most contrasting years of the data set (1991 and 1992). A high
winter crop surface was reported for 1991. In 1992, the winter
crop surface dropped by almost 40 % as a reaction of new
European policies. The NN well depicted this general tendency.
The spatial distribution of winter crop surfaces was also well
modeled (figure 5) with, however, a noticeable bias.

Figure 7. Total winter crop area (1988-2002; 1994 excluded) for
Tuscany modeled by the NN against reference data (AGRIT). The
eight training years (filled circles) were used for network training

The cross-validated correlation coefficient (r) between reference
winter crop fraction (AGRIT) and the modeled value is shown in
figure 6 (right) for each AVHRR pixel for which CORINE
indicated at least 2 percent arable land. Two frequency
distributions are shown as well (left): (i) for all pixels with arable
land, and (ii) excluding those pixels having a low inter-annual
variability in winter crop area (STD < 5%). The figure shows that
the NN often performed well to estimate the inter-annual
variability of winter crop areas at this high dis-aggregation level.
The amount of inter-annual variance explained by the net
increased when stable pixels were excluded. However, low (or
even negative) correlations were frequently obtained in the plains
of Tuscany (blue colors). The net probably failed because the
“summer crop” signatures were too variable from year to year in
these areas.

We tested if an increased number of neurons in the hidden layer
could improve the results. This was not the case (Atzberger &
Rembold, 2009). Albeit it was possible to increase the accuracy
within the training set, the net could not generalize this
improvement for yielding better predictions on the left-out
samples.

4.2 Regional winter crop area estimates 1988-2002

To evaluate the capacity of the net to predict regional winter crop
surfaces of Tuscany for the entire AVHRR time series, the NN
was trained with all 8 years for which reference information was
available. The trained net was next applied to the full time series
(1988 to 2002). The results are shown in table 4 and figure 7.

Overall, the regional winter crop area was well modeled with a
normalized RMSE of around 10 percent. Noticeable, however, is
the strong decrease in performance for the six years not included
in the training set. For this data, only 35 percent of the inter-
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Assessment of CORINE and filtering impact
Dataset 1

(“standard”)
Dataset 2

(“no ancillary”)
Dataset 3

(“no filtering)
CORINE Yes No No
Filtering Yes Yes No
Inputs 21 16 16

R2 0.60 0.52 0.40
nRMSE 10.0 14.4 14.1

Nobs 14 14 14

Table 8. Statistics obtained on the pooled data set (14 years of data
– 1994 excluded) from which 8 years where used for network
training. The three data sets differ in the amount of ancillary

information (CORINE land cover) and the pre-processing applied
to the NOAA-AVHRR data. The statistics refer to the accuracy

with which the regional winter crop surfaces were modeled

annual variance was explained by the NN (compared to 79 percent
of the training years), mainly because 1996 was seriously
underestimated. This year was also not well modeled in the
precursor study using SAM (Rembold & Maselli, 2006). Until
now we were unable to indentify the exact reasons that led to this
outlier.

4.3 Impact of CORINE data and the smoothing of AVHRR
data

One of the study objectives was to evaluate the impact of the
ancillary data (CORINE) and the filtering of the AVHRR data.
Table 8 reports the main results referring to the regional winter
crop surfaces of the 14 years 1988-2002. The (positive) impact of
the CORINE data was strong. The R2 decreases from 0.60 to 0.52
when the five CORINE abundance maps were not used. At the
same time the normalized RMSE increased from 10 to more than
14 %. The R2 value further decreased if the original (unfiltered)
NDVI data were used instead of the filtered images.

4.4 Within-season predictions

Early (within-season) predictions of crop surfaces are of upmost
importance in any agricultural monitoring system such as MARS
(Lobell & Asner, 2004). To evaluate the possibility to estimate the
winter crop area of Tuscany already early in the season, 16
different nets were trained on the 8 reference years and applied to
the pooled data set (14 years). The nets solely differed by the
number of low resolution NDVI images used as network input.
Figure 9 summarizes the results, where the plot on the bottom
specifies the used (and excluded) NDVI data. The two bar charts
indicate the statistics obtained more or less early in the growing
season. Not surprisingly, the best results were obtained if NDVI
data from the full winter crop cycle (e.g., up to dekad 25) was
used for the modelling (R2 > 0.5, nRMSE < 11%). But already by
March-April some relatively accurate first predictions of winter
crop (and potential summer crop) areas were achieved. The
accuracy was substantially lower compared to the predictions
made at the end of the winter growing season, but could possibly
be useful. It has also to be noted that the analyzed data set still
contained the data from 2006 which was previously identified as
problematic (4.2).

Figure 9. Accuracy of the net to predict regional winter crop areas
(pooled data set; Nobs: 14). The two bar charts display the

statistical information. The third chart indicates which images
were used (left: early predictions; right: late predictions)

5. CONCLUSIONS

The study evaluated the performance of neural networks to map
(1) the spatial distribution of winter crops, and (2) the inter-annual
variation in regional winter crop surfaces. The nets were fed by
low resolution (NOAA-AVHRR) imagery and ancillary informa-
tion (CORINE). Reasonable results were obtained with a compact
standard backpropagation network (21 inputs, 3 hidden neurons).
The results were better than those obtained in a previous study
with the same data set using the SAM of temporal NDVI profiles
(Rembold & Maselli, 2006). Albeit the performance of the net de-
creesed when applied to different growing seasons, the drop in ac-
curacy was not as strong as in Bossyns et al. (2007). Hence, the
network generalized comparatively well. Considering the
spatialization of the winter crops, it has to be noted that the ac-
curacy of the reference (TM/ETM) images is unknown. Errors in
these reference maps will automatically deteriorate the training
process and fudge the accuracy assessment.

Using the same data set, the neural net gave relatively good results
much earlier than in our previous work (Rembold & Maselli,
2006). In the precursor study reasonable results were only
obtained after August, whereas in the present study first
reasonable results could already been achieved end of March,
making the proposed method more interesting for in-season crop
monitoring and area estimation.

The research clearly demonstrated the positive impact of using
ancillary information (CORINE) in the modelling. With the help
of this information (albeit known not to be perfect), the neural net
was able to better ‘learn’ the relation between the temporal
signatures and the corresponding area fraction images (AFI) of the
winter crops. This result looks plausible, as the proportion and
composition of non-arable classes within a pixel can vary
significantly. This will inevitably affect the resulting NDVI
profile. By providing the NN with ancillary information, more
specific mapping functions can be developed.

The main limitation of the proposed approach relates to the varia-
bility of signatures which are not winter crops (e.g., the “summer
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crops”). Indeed, an analysis of pixels with >90% arable land and
labeled as “summer crop” revealed signatures that were highly
variable in space and time (not shown). The consequences were
clearly seen in several plains of Tuscany where it is known that
the proportion, composition and phenology of summer crops have
a high inter-annual and spatial variability. To tackle this problem,
a follow-up study will try to “normalize” the NDVI profiles by
taking meteorological indicators and DTM information into
account. Likewise, one could try to improve network generali-
zation by providing the net with an additional output variable
indicating the area fraction of summer crops.

1996 was the year presenting the highest problems for winter crop
area estimation (figure 7). Further investigation is needed to
understand exactly what makes 1996 different from the other
years. The additional research should address both the quality of
the AGRIT statistics for this particular year and possible climatic
or agronomic factors. It is curious however to observe that the
same year was also the worst estimate in the precursor study,
indicating that independently from the methodology used, it is
difficult to explain Tuscany’s winter crop area of 1996 by using
low resolution NDVI data.

Considering the promising results obtained, it would be of interest
to test the proposed methodology for its robustness in other
geographical areas and larger regions as well as by using other
low or medium resolution NDVI time series such as SPOT VGT
or MODIS. The main requirements for further investigations in
this sense are the availability of:

 training data for the discrimination between winter and
summer crops, either based on high resolution data
analysis or on existing agricultural databases (e.g. high
resolution land use classifications or cadastral data;
Verbeiren et al., 2008);

 reliable crop area statistics for model validation,
possibly based on a high accuracy area frame sampling
approach, such as the one of the AGRIT project
(Consorzio ITA, 1987) at provincial or national level.
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ABSTRACT:

In this paper, we present an approach based on the transferable belief model for the detection and the classification of trees crowns
on very high resolution satellite images of forest scenes. The masses resulting from the high resolution image source don’t always
allow deciding between the classes of occupation satisfactorily. Forest context and information about the structure of the forest
species are two key elements in the forest scenes classification process. We expose in this paper the retained modelling of the context
concept and the approach of revising masses through a transfer of belief. Then, we give some experimentation that illustrates the
given approach.

1. INTRODUCTION

Remote sensing images classification is confronted to the
theoretical requirements of information sources fusion
approaches. The existing models offer an interesting theoretical
framework (J. Desachy and all, 2000). However, their
application often emphasizes the incapacity of these methods to
take into account the context. Context is traduced by
determinant expert’s knowledge and is considered in this paper
not as elementary information but rather as a contextual
constraint in the masses calculations specially those
corresponding to belief masses functions revision. Indeed,
analysis of the image pixel by pixel, often adopted as the basis
of the classification process does not take into account the
object to which the pixel belongs. But this information, that we
call "contextual information", may be important for the
classification process. It is the case of forest scenes images
where the trees crowns delimit a subset of classes of occupation.
The mass estimation of a scene point will thus have to take into
account if this point is inside or outside the crown.
This paper exposes an approach allowing taking into account
the context in the evaluation of the masses. We present also the
manner with which we modeled this problem. An application on
high resolution images (HRI) emphasized results very close to
the field reality.
The approach that we propose uses belief functions theory as
fusion formalism. We apply a beliefs transfer based on
contextual information. In the following section, we tried to
summarize the basic notions of both belief functions theory and
transferable belief model. These concepts are essential for the
explanation of the stages of our approach detailed in section 3.

2. BELIEF FUNCTIONS THEORY

The belief functions theory was named at the beginning with the
name of its authors: Dempster and Shafer (Shafer, 1990).

The origin of belief functions theory started with the works of
Arthur P. Dempster. Those works are related to the statistical
inference theory generalizing the Bayesian inference. G. Shafer
proposed belief functions as general framework of
representation of uncertainties, including the probabilities
theory like particular case. Extensions to the Dempster–Shafer
theory (DST) contributed to the enrichment of the belief
functions theory (Bloch 2005; Bloch 1996; Denoeux 2004).

Ph. Smets suggested a model named transferable belief model
(TBM) providing coherent non-probabilistic interpretation of
the DST and clarifying the concept subjacent with it (Smets,
1990).

The belief functions theory is one of the theories largely used
for information sources fusion considering the fact that it takes
into account simultaneously sources uncertainties and provided
information inaccuracy. It is reduced to the theory of
probability and the theory of the possibilities in particular cases
(Burrus 2003, Vannoorenberghe, 2003).

2.1 Information sources and power set

Each source of information being in general imperfect, it is
significant to combine several sources in order to have better
knowledge of the "world". We will consider in the continuation
that we have n sources of information iS with  ni ,,1 .

Those sources must make a decision on an observation x in a
whole of k decisions kCC ,,1  . Let

 kCC ,,1  being the frame of discernment composed

of k hypotheses (exclusive and exhaustive), 2 is the power

set (it is the set of parts of  (  
ii AA2 ) and the

iA are the events of 2 with   2,...,1i .
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2.2 Belief mass functions

The belief mass function )(Am (or simply mass function) of

an event A , is the confidence carried strictly in A without
being able to be divided onto the hypotheses composing A .

The focal elements are the elements of 2 of non null masses.
If the source is perfect, information is precise and sure, there is
thus a single hypothesis iC such as   1)( iCm .
The mass functions are then defined on each subset of the set of

disjunctions of 2 to values in [0,1]. The distribution of mass
is written according to (1) :

)(
]1,0[2:

AmA

m





(1)

Dempster proposes a conjunctive rule of combination between
sources called orthogonal sum. This combination causes to
assign the masses to propositions of which the number of
elements is less than that of the original propositions. For two
sources 1S and 2S , one writes the orthogonal sum  , in the
following form (2):

21 SS mmm  , which is written for an event A like:





ACB

SS CmBmAm )()()( 21 (2)

Evidential modelling makes it possible to represent at the same
time the inaccuracy and uncertainty through two functions of
credibility and plausibility, derived from the mass functions.
The decision is done by maximization of one or the other of
these two functions.

2.3 Transferable Belief Model

In this model, two levels can be distinguished: the credal level
where the beliefs are modelled and revised, and the pignistic
level in which the belief functions are transformed into
probability functions, known as pignistic ( BetP ), for the
decision-making (Smets, 1990).
Maximum of pignistic probability is generally considered with

singletons hypothesis jC because of the additivity of

probabilities. With singleton hypotheses we obtain the
following equation (3):
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With K is the conflict between sources expressed usually as
the mass of the empty set  like illustrated equation (4):
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The name “Transferable Belief Model” (TBM) comes from the
transfer of belief allocated initially in a proposition towards a
more specific subset of it. So, the dynamic part of the TBM is
related to belief revision (here belief transfer) following the
awareness of new information.
The transfer of belief in the TBM satisfies the rule of

conditioning of Dempster. Let B an event of 2 , we consider
for example that we have a new information which implies that

all solutions of the problem are in B . The conditional mass

 (.)Bm (the hooks represent conditioning) is given by not
normalized rule of conditioning of Dempster according to
equations (5):
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:)or(
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(5)

and   1)( BBm

3. PROPOSED APPROACH

The proposed classification system consists of three stages: First
of all, the masses distribution calculation for each point of the
image according to a classification based on spectral
information, and then the beliefs transfer on the basis of
contextual information (interior or external crown). Finally, a
stage of fusion with the structural source of information
provides a new distribution of combined masses.

3.1 Spectral classification based on belief functions theory

Classification by belief function theory requires, at the outset,
an estimation of belief mass functions for the calculation of the
resulting decision functions (credibility, plausibility or pignistic
probability) on which the classification process decisions are
based. We proposed in previous papers (Ben Dhiaf and all,
2007; Ben Dhiaf and all,2008-a), two methods of belief masses
estimation based on grey levels histograms of learning zones.
The first is a method that passes through a distribution of
possibilities and the second directly reveals a belief mass
estimation.

3.2 Integration of contextual information

In (Ben Dhiaf and all, 2008-b), we proposed a mean of conflict
management by determining the subset of sources to use for
each context. This approach reduces complexity since we
consider, for each context, only a subset of sources validated by
contextual variables. In this paper, we propose another method
taking advantage of the context and allowing reducing the
possible classes set for a given context.

Each context is determined according to contextual variables

jz and is described by a vector that we note Context. Each

element iα of the vector Context is a boolean value. It

expresses if the class iC is possible for this context or not. i

= 1, if iC is possible in the considered context, else 0i

( iC belongs to an impossible class along with the considered

context : ContextCi  ).
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Let  pzzzZ ,, 21  , the space of all the possible

contexts, composed of p contexts jz with  pj ,,1 .

We will describe each context with a row vector

 kαααContext 21 ,  1,0i . The size of
this vector is equal to the cardinality of the frame of
discernment  . Contexts can be written in the following form
(6). Each row of the matrix corresponds to a context
(determined according to contextual variables).
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22221

11211
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(6)

Consider some examples of contextual variables: Altitude,
Crown and Structure.

Altitude can take the values: high, average, low;

Crown can take the values: interior of a crown, exterior of a
crown;

Structure can take the values: circular, rectangular, ellipsoidal.

In our application, we consider the contexts: Crown (interior of

a crown) and Crown (exterior of a crown). Some classes
(non forest classes) cannot belong to interior of a crown for
example. The idea is then to transfer the mass associated with
the impossible classes towards the possible classes.

We propose a transfer of beliefs according to the context
crowns. We will call the masses obtained after beliefs transfer
"contextual masses". We write the distribution of contextual
masses in the following form (7) :

ii xCm )(
(7)

10  ix )(crownif contextCi 

and 0ix )c(crownif ontextCi 

3.3 Integration of structural information

In this section we are interested in the integration of structural
information in the fusion process. The indices of forms being
able to be used are varied: area, perimeter, circularity,
rectangularity, ellipticity. We retain for this application the area
(surface) of the crowns as structural measure.

The distribution of mass that we propose for the structural
source is inspired from distances calculations. Thus we write
the structural mass of a crown as illustrated by equation (8):

1)(
D

d
Cm i

icrown


 (8)

With id is the normalised distance (between areas) between

the considered crown and the average area of the class iC :

norm

aa
d i

i


 with

   
)(min)(max

,...,1,...,1 i
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i
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aanorm




 





ki

idD
,...,1

)(

a : Area of the considered crown,

ia : Average area of the crowns of iC ,

 
)(max

,...,1 i
ki

a


: Maximum of the average areas of all classes,

and
 

)(min
,...,1 i

ki
a


: Minimum of the average areas of all the

classes.

In the end of the proposed classification process, we propose to
combine structural information relevant to a crown (described
by the structural masses distribution) with the spectral
information of pixels of the same crown (described by the mass
distribution after transfer of beliefs based on contextual
information: contextual masses distribution).

4. APPLICATION

This section illustrates the application of our approach on a
window of the PIR band of high resolution Quickbird satellite
image of an area at the north of Tunisia (Cf. figure 1). The
forest inventory corresponding to the same scene of the image
emphasizes four classes: Algerian oak, cork oak, naked soil, soil
with little coverage.

We propose first to explain the general principle of the
algorithm of trees crowns delimitation (extraction) by Brownian
motion (paragraph. 4.1). After, we present results of spectral
classification based on pignistic probabilities functions
maximisation. The belief masses distribution is deduced from
histograms of learning areas corresponding to classes of the
image (paragraph. 4.2). Revision of this masses distribution on
the basis of contextual information (cf. paragraph 3.2) provides
a new one (paragraph 4.3). The last step of our approach allows
combining with structural information (paragraph 4.4).

Figure 1. A window of the PIR band of the QuickBird image
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4.1 Extraction of trees crowns by Brownian motion

The trees crowns extraction algorithm by Brownian motion
(ECBM) can be divided into four steps: Pretreatments,
extraction of local maxima, delimitation of trees crowns and
definition of borders (Erickson, 2004).
As first pre-treatment, ECBM algorithm eliminates everything
that is different from tree (naked soil, rocks... etc), then it
calculates the distance to the background and performs a
Gaussian smoothing.
The local maxima represent the tops of the trees. ECBM
algorithm determines local maxima by application of a mask on
the smoothed image.

The phenomenon of the Brownian motion represents the
random movement of a suspended particle in a fluid. Then, for
each local maximum detected, the ECBM algorithm applies a
Brownian movement to a particle initialized to the top to reach
the crown of the tree. Position of the particle after N stages is
equal to the sum of N random vectors of displacement of the
particle. The limitation of the borders corrects the effects due to
crowns overlapping. This limitation permits to obtain
independent crowns ready to be classified.
The image of figure 3 is the binary image resulting of the
application of the ECBM algorithm on the image of figure 1.
Figure 3 illustrates the efficiency of this algorithm by
superposing the limits of the detected crowns on the image of
figure 1.

4.2 Spectral classification

Figure 4 illustrates the result of the image classification while
being based on the maximum of the masses estimated on the
basis of supervised training (Ben Dhiaf and all, 2007; Ben
Dhiaf and all,2008-a),.

This result reveals a great confusion between forest and non
forest species. Although the value of Kappa coefficient (0.81)
and the mean of the values of confusion matrix diagonal
(85.92) shows that our spectral classification isn’t bad, a
confusion essentially between class 2 is and the other classes 1
and 3 (cf. Table 5) needs to be reduced.

1C

2C

3C

4C

(a)

(b)

Figure 4. (a) : Legend of classes, (b) : Spectral classification
based on maximization of pignistic probabilities functions.

C1 C2 C3 C4

C1
C2
C3
C4

Figure 2. Extraction of trees crowns by Brownian motion
algorithm

Figure 6: Result of classification after revisionFigure 3. Result of matching of the Quickbird image
window and the corresponding image of crowns

Table 5. Confusion matrix of the spectral classification
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4.3 Transfer of beliefs and new classification

Figure 7 illustrates the result of belief transfer applied on the
basis of contextual information on the spectral mass
distribution. We note that this transfer reduces considerably the

presence of forest species pixels in classes 3C and 4C and

concentrated the presence of the classes 1C and 2C in interior
pixels of the trees crowns. At this step, the classification of
figure 4 still leaves a great confusion between the two classes

1C and 2C .

4.4 Fusion with structural information

Figure 8 shows the relevance of the integration of structural
information (surface of the crowns). Indeed the figure shows a

better distinction between the classes 1C and 2C in
comparison with figure 3 and 4.

The following step consists on unification of classes assigned to
pixels belonging to the same tree crown. The result shown in
figure 8 converges to the field reality (comparison made
relatively to the forest inventory and after discussion with the
experts of the ministry for agriculture of Tunisia-direction of the
forests). Table 9 presents an evaluation of tree crowns
classification. The percentage of well classified tree crowns is
satisfactory (94% for C1 and 88% for C2).

C1 C2
Tree crowns number 57 43
Misclassified crowns number 3 5
Well classified crowns number 54 38
Percentage of well classified crowns 94% 88%

5. CONCLUSION

We presented in this paper an approach which makes it possible
to integrate contextual information for the transfer of belief
dedicated to the classification of the forest images. The taking
into account of the context and expert knowledge in the revision
of the masses enabled us to manage the conflict between the
forest species. The results confirm well the importance of this
choice. The advantage of this approach brings a double
advantage: Separability between the forest species and a
reduction of calculations complexity of the belief masses since
contextual information enables us to filter combinations of
classes not validated by the contextual assumptions.
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ABSTRACT: 
 
Many researchers have reported comparisons between the error propagation properties of direct orientation and indirect orientation 
(aerial triangulation using ground control points).  The results of these comparisons have shown that direct orientation has the 
potential for use in projects requiring all but the highest accuracy.  However, all of these empirical comparisons are specific to the 
particular configuration of the image block and sensor systems and do not provide an explicit analytical comparison of the general 
case.  In this paper, we present an analytical comparison of the ground point precision obtained from direct and indirect orientation 
methods within the framework of a block-bundle adjustment in a stochastically constrained Gauss-Markov Model. 
 
 

1. INTRODUCTION 
Accurate and reliable sensor orientation is a pre-requisite for 
virtually all digital photogrammetric products including 
georeferenced orthoimages, digital terrain models and 
(increasingly common) three-dimensional models of man-made 
surface features.  Until very recently analytical aerial 
triangulation (AT) was the most common method of sensor 
orientation.  Modern methods of AT rely upon the bundle block 
adjustment, in which possibly large numbers of tie points are – 
often automatically via correlation or least-squares matching – 
measured across two or more images and used to estimate the 
six orientation parameters of each image in the block.  Ground 
control points are integrated into the adjustment as weighted 
observations and provide datum information to accurately geo-
reference the block.  As Heipke et al. (2002) and others have 
remarked, AT is particularly advantageous because the control 
information resides near the ground features of interest and is 
therefore largely an interpolation problem.  Exterior orientation 
parameters can be considered nuisance parameters. In fact, AT 
is often considered a ground control densification process**.   

Not long after the Global Positioning System became 
operational, differential positioning technologies enabled the 
direct observation of camera exposure centers.  The flexible 
bundle adjustment allowed these additional observations to be 
seamlessly integrated as weighted observations into the AT 
solution.  This reduced, but did not eliminate, the need for 
ground control points for datum definition*** and 
georeferencing.  However, tie points were still required for the 
estimation of the rotation matrix from each camera frame to the 
model frame.  

In the late 1990’s, Inertial Measurement Systems (IMU’s) made 
it possible to directly observe a sensor’s orientation relative to 
the ground.  Direct observation of the exterior orientation using 
integrated GPS and IMU systems now allow sensor orientation 
without manual or automated measurement of either tie points 
or ground control points – albeit with potential reliability issues 
because of the lack of redundancy.   Many of the original 
researchers – among them Skaloud and Schwarz (1998), Toth 
(1998), Burman (1999), Colomina (1999), Grejner-Brzezinska 
(1999), and Cramer et al. (2000) – demonstrated ground 
accuracies at the decimeter level without ground control.  
However, unlike AT solutions in which ground control points 
provided georeferencing information, these solutions involved 
extrapolation of control at the sensor to the ground.  
Furthermore, because the orientation parameters were no longer 
nuisance parameters, their correlation with each other and fixed 
interior orientation parameters could not be used 
advantageously by the adjustment to compensate for poor or 
variable calibration. 

The extrapolation and reliability problems lead to the inclusion 
of all observations, GPS/IMU, ground control points and tie 
points into the bundle adjustment in a process popularly known 
as integrated sensor orientation, or ISO.  In particular, as 
reported by Heipke et al. (2002), ISO may be used to more 
accurately estimate IMU boresight and GPS phase center offsets 
in a calibration step, but is also useful in a traditional AT role.  
In fact, the OEEPE Integrated Sensor Orientation tests (Heipke 
et al., 2002b) demonstrated mean deviations from independent 
check points of ± (5-10) cm in planimetry and ± (10-15) cm in 
height at a 1:5000 image scale.  This compared to same-block 
accuracies from the AT solution of ± (2.0-2.8) cm in planimetry 
and ±3.2 cm in height.  This, and other more recent experiences, 
clearly demonstrate that direct orientation, while inferior to 
more labor intensive AT in this case, is sufficient for many 
lower accuracy projects.  At scales of 1:10,000 results showed a 
similar planimetric accuracy but ±7 cm height accuracy 
compared to ± (3 – 13.4) cm planimetric accuracy in the direct 
orientation solution.  The wide range of results is due in part to 
the different system calibration parameters and adjustment 
coordinate frames.  
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The 2002 OEEPE tests were flown with a dual-frequency GPS 
receiver and very high quality IMU (Heipke et al., 2002).  The 
tests do not, and were not intended to, shed light on the 
capability of other integrated sensor systems. With the variety 
of GPS/IMU configurations available, from low-cost systems to 
exceedingly capable and expensive systems (cf. Mostafa and 
Hutton, 2005), the need exists for an analytic relationship 
among the three orientation solutions – direct orientation, 
indirect orientation with ground control points, and integrated 
sensor orientation.  The analytic solution should provide insight 
into the precision required of a pure direct orientation solution 
(with a boresight-calibrated GPS/IMU system) to achieve 
ground coordinate precisions equal to a similarly configured 
indirect AT solution.  In this paper we derive inequalities within 
the framework of a constrained block bundle adjustment.  While 
we do not address ISO explicitly (as did Habib and Schenk, 
2002, though using a different approach), the developed 
framework is suitable for this orientation method as well.  
Section 2 describes the partitioned bundle block model 
constrained by pseudo-observations on the parameters (also 
known as “stochastic constraints”).  Section 3 describes how 
orientation constraints enter the normal equations and affect 
parameter estimates.  These results are then demonstrated at 
different image scales in Section 4 using a simulated numerical 
example.  We discuss possible extensions to the analytical 
relationships in Section 5. 

2.  THE PARTITIONED BUNDLE BLOCK MODEL 

The bundle block adjustment is the standard for 
photogrammetric aerial triangulation because of its 
comprehensive solution and flexibility.  Observations consist of 
image tie-point measurements, independent ground control 
point measurements (2 image measurements per point and up to 
3 ground coordinate measurements) and the direct observation 
of exterior orientation parameters with GPS/IMU 
measurements.  If, at first, we only consider observations in the 
form of image measurements of ground control and tie points, 
an appropriate stochastic model for the linearized bundle block 
adjustment (unless additional distortion terms are carried as 
parameters) is the Gauss-Markov Model (GMM), 

2 1 ,         e ~ ( , )oξ σ −= +y A e 0 P ,                                            (1) 

in which  

• y is a n x 1 random vector of incremental changes to image 
coordinate observations,  

• A is an n x m non-random design matrix of rank q = m - 7, 
representing the Jacobian matrix of the observation 
equations with respect to the unknown parameters thereby 
defining a local differential relationship between 
parameters and observations, 

• ξ is the m x 1 non-random incremental parameter vector of 
the linearized observation equations and 

• e is the n x 1 random error vector with first and second 
moments given. The weight matrix P is usually treated as a 
known value (typically it is assumed to be the identity 
matrix unless image point measurements are of different 
precision), and the variance component (or reference 
variance) 2

oσ   is considered as the scale factor for the 

variance of the image point measurements.  If 2
oσ is chosen 

to be 1 a priori, then the full observation covariance 
information is contained in 1−P .   

Note that in the absence of geo-referencing information from 
ground control points (i.e. indirect orientation) or direct 
observations of exterior orientation (i.e. direct orientation), A is 
rank-deficient and the multiple solutions for ξ represent the 
multiple coordinate frames in which the block can be 
positioned. 

To reduce the computational requirements for solving large 
photogrammetric blocks, it is common practice to partition 
design matrices to achieve a particular sparse block-diagonal 
configuration (cf. Kraus, 1993).  We follow this practice 
because it will later facilitate comparison between direct and 
indirect orientation, and partition the Gauss-Markov Model as 
follows: 

2 1
1 1 2 2 3 3    ,     ~ ( , )oξ ξ ξ σ −= + + +y A A A e e 0 P ,                   (2) 

in which 

• A1 is a n x (6 * number of   photos) matrix containing 
partial derivatives with respect to the exterior orientation 
parameters, and 1ξ  contains the incremental changes to the 
initial approximations of exterior orientation parameters; 

• A2  is a n x (3 * number of gcp points) matrix containing 
partial derivatives with respect to the three coordinates 
(X,Y,Z) of the potential ground control points, and 

2ξ contains the incremental changes to the initial 
approximations of ground coordinates; 

• A3 is a n x (3 * number of tie points) matrix containing the 
partial derivatives of the  image coordinate observations 
with respect to the three ground coordinates of the tie 
points, and 3ξ  contains the incremental changes to the 
initial approximations of tie-point ground coordinates.  
Check points could be incorporated into this partition as 
well. 
 

Absolute orientation information may enter the model through 
stochastic constraints on 1ξ  (direct orientation), 2ξ   (indirect 
orientation), or both.  The stochastic constraints required for 
direct orientation: 

( )2 1
1 1 1 1 1               ~ , oz ξ e e 0 Pσ −= + ,                                      (3) 

provide additional information about the exterior orientation 
elements.  Note that we use the same variance component as in 
(2) which may, for 2 1oσ = , imply that the full GPS/IMU 

observation covariance is contained in 1
1
−P .  Likewise the 

stochastic constraints required by indirect orientation 
(observation of ground control points): 

( )2 1
2 2 2 2 2                 ~ , oz ξ e e 0 Pσ −= + ,                                 (4) 

provide additional information about ground control point 
coordinates in 2ξ .  
 
Since the quality of the triangulation is evaluated by the 
precision (and accuracy) of points on the ground, one measure 
of the relative quality achieved by each orientation method may 
be evaluated by the post-adjustment covariance matrix, Q3, of 
the estimated tie-point coordinates in 3ξ .  In the next section we 
explicitly express this covariance matrix in terms of both P1 and 
P2. We assume that tie points are measured automatically in the 
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direct method (but with no control points measured) and in the 
indirect method (with measured control points).  A2 and A3 are 
therefore invariant with respect to the method of georeferencing 
(and thus to the added stochastic constraints).  Furthermore, in 
the direct method, the ground coordinate parameters contained 
in 2ξ are treated as unknowns (i.e. as tie points). 

3. CONSTRAINED NORMAL EQUATIONS OF THE 
PARTITIONED MODEL 

The partitioned rank-deficient normal equations for (2) are 
obtained as 

111 12 13 1

21 22 22

31 33 33

ξN N N c
N N 0 ξ c
N 0 N cξ

⎡ ⎤⎡ ⎤ ⎡ ⎤⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ =⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦

$

$

$

                                              (5) 

with , ,T T
ij i i jN c A P A y⎡ ⎤⎡ ⎤ =⎣ ⎦ ⎣ ⎦ , and may be augmented with (3) 

to provide absolute orientation information through direct 
orientation 

111 1 12 13 1 1 1

21 22 22

31 33 33
0

ξN P N N c P z
N N 0 ξ c
N N cξ

⎡ ⎤+ +⎡ ⎤ ⎡ ⎤⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ =⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦

$

$

$

,                            (6) 

or augmented with (4) to provide absolute orientation 
information via indirect orientation 

111 12 13 1

21 22 2 2 2 22

31 33 33

ξN N N c
N N P 0 ξ c P z
N 0 N cξ

⎡ ⎤⎡ ⎤ ⎡ ⎤⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥+ = +⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦

$

$

$

                           (7) 

Note that the zero blocks in the normal equations (5)-(7) 
indicate that no observation equations contain both tie and 
control point coordinates. This is strictly true only in the 
absence of additional observations in the form of, for example, 
known distances between a tie and control point. In both cases 
the addition of sufficient stochastic constraints resolves the 
rank-deficiency of the normal equations in (5).  However, the 
precision with which the coordinate estimates of the tie-points, 

3ξ̂ , are determined depends upon the structure of the normal 
equations. Again, since we are concerned with the precision of 
the ground coordinates in the triangulation, we will examine the 
effects of (6) versus (7) on the dispersion of 3ξ̂ .  The covariance 
matrix (or cofactor matrix, if we do not use the a-priori value 
for the variance component) of all adjusted parameters is 
contained in a generalized inverse of the normal equations 
matrix. It can be shown that a reflexive, symmetric generalized 
inverse of the normal matrix in (5) is given by 

11 12 13

21 22

31 33
1 1

12 22 13 33
1 1 1 1 1 1

22 21 22 22 21 12 22 22 21 13 33
1 1 1 1 1 1

33 31 33 31 12 22 33 33 31 13 33

N N N
N N 0
N 0 N

S S N N S N N

N N S N N N S N N N N S N N

N N S N N S N N N N N S N N

−

− − − − −

− − − − − − − − −

− − − − − − − − −

⎡ ⎤
⎢ ⎥ =⎢ ⎥
⎢ ⎥⎣ ⎦
⎡ ⎤− −
⎢ ⎥
⎢ ⎥− +
⎢ ⎥
− +⎢ ⎥⎣ ⎦

                                                                                                 (8) 

with 1 1
11 12 22 21 13 33 31S N N N N N N N− −= − − . Here −S  denotes any 

reflexive, symmetric g-inverse of S (Magnus and Neudecker, 
1999, pg. 12).  The lower right block is the covariance matrix of 
the tie-point coordinate estimates and, thus, the matrix that the 
users would like to see minimized.  The pseudo-observations, 
whether from direct or indirect information, affect Q3 through 
S.  If geo-referencing information is provided directly through 
calibrated GPS/IMU observations, the pseudo-observations in 
(6) create the, now full-rank, matrix 

1 1 1
1 11 1 12 22 21 13 33 31S N P N N N N N N− − −= + − −                             (9) 

instead of S, and we may write the tie-point cofactor matrix in 
terms of the inverse of S1 as 

(1) 1 1 1 1
3 33 33 31 1 13 33Q N N N S N N− − − −= + .                                        (10) 

The superscript (1) is used to indicate that the tie point 
coordinate estimates are obtained via the direct method.  
Alternatively, if the georeferencing information is provided 
indirectly, through ground control points only, the pseudo-
observations in (7) create the full-rank matrix 

( ) 1 1
2 11 12 22 2 21 13 33 31S N N N P N N N N− −= − + − .                  (11) 

  The covariance matrix of the tie-point coordinates achieved 
through indirect orientation may thus be written as 

(2) 1 1 1 1
3 33 33 31 2 13 33Q N N N S N N− − − −= +                                          (12) 

In this case the superscript (2) indicates that the estimates were 
obtained via the indirect method.  Now we are ready to 
analytically relate the tie-point precision to the orientation 
information contained in P1 or P2, respectively.  
If (1) (2)

3 3 Q Q≤ , then direct orientation leads to a better tie-
point precision than indirect orientation; for details of this 
comparison see Marshall and Olkin (1979).  From (10) and (12) 
we see that this inequality holds if and only if 1 2S S≥ .  This is 
to be expected since from (8) we know that the inverses of S1 
and S2 are the respective covariance matrices of the exterior 
orientation elements if constrained by direct and indirect 
observations, respectively.  By substituting (9) and (11) into this 
inequality it can be shown (see Appendix A for details) that 

( ) 1(1) (2) 1 1 1 1
3 3 1 12 22 22 2 22 21Q Q P N N N P N N

−− − − −≤ ⇔ ≥ + .         (13) 

This expression provides us with a measure to determine the 
weight matrix (or the covariance matrix) of the direct stochastic 
constraints that is required to achieve, at least, the same 
precision as an indirect adjustment with a given ground control 
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configuration (which is contained in 22N and 12N ) and precision 
(contained in P2).  Continued manipulation of (13) can likewise 
isolate P2 , leading to the equivalence 

( )

(1) (2)
3 3

111 1 1
21 11 12 21 11 1 11 21

2 22 22
1

21 11 21 22            

Q Q

N N N N N P N N
P N N

N N N N

−−− − −

−

≤ ⇔

⎛ ⎞⋅⎜ ⎟≤ ⎜ ⎟⎜ ⎟⋅ −⎝ ⎠

.         (14) 

The inequalities (13) and (14) are satisfied when direct 
orientation provides uniformly higher precision estimates of the 
tie point coordinates.  It is important to note that the tie point 
configuration, which is assumed to be invariant between the two 
geo-referencing methods, does not affect the comparison.  
Therefore, these inequalities also hold for any number of tie 
points included in the adjustment. Furthermore, ground point 
coordinates computed by intersection apart from the bundle 
adjustment (as in DEM generation and feature extraction) 
benefit from the chosen orientation method quite similarly to tie 
points used in the adjustment.  This is true because S1 and S2 
(the weight matrices of the estimated exterior orientation 
parameters) are used directly in the estimation of the precision 
of subsequent ground points. Also, we assume that the image 
coordinates of the ground control points are included in the 
adjustment, regardless of the orientation method, and simply 
serve as additional tie points in the direct method if they appear 
in multiple images.  

More details about the matrix inequalities used throughout the 
preceding analysis can be found in Appendix B.  In the next 
section we use the key results (13) and (14) in an example 
involving simulated fifty-six-image aerial blocks at two 
different scales. 

4.  COMPARISON IN A SIMULATED BLOCK: AN 
EXAMPLE 

To demonstrate how the analysis above might be practically 
used, we consider two blocks, each composed of four strips of 
seven images each.  One block is to be acquired at a scale of 
1:4,800, the other at a sale of 1:24,000.  Details of each block 
are given in Table 1 and the network configuration is shown in 
Figure 2. The ground control points for both blocks are assumed 
to be collected with GPS techniques yielding a horizontal 
coordinate variance of 0.0025 m2 and a vertical coordinate 
variance of 0.0225 m2 with (assumed) zero correlation among 
the coordinates.  Also, the exposure center coordinates and 
orientation parameters are assumed to be observed with 
GPS/IMU devices yielding coordinate variances of 0.01 m2 in 
the horizontal and 0.09 m2 in the vertical, again without 
correlation.  Orientation angles can be observed with a variance 
of 0.0001 degrees2 in omega and phi, 0.01 degrees2 in kappa 
with zero correlation.  These variances reflect results achieved 
from calibrated systems (Heipke et al., 2002). 

Block Over 
–lap 
(%) 

 Side-
lap 
(%) 

B/H 
Ratio 

Focal 
Len. 
(mm) 

Format 
(mm) 

1:4,800 60 30 % 1:1.6 150  235 x 235 
1:24,000 60  30 % 1:1.6 150 235 x 235 

Table 1. Acquisition parameters of the simulated block. 

 

Figure 2. Configuration of the simulated block.  Ground points 
used as control are shown in red. 

A simulated trial consists of an aerial image block generated 
from the “true” values of both exterior orientation and ground 
points (both tie and control) as follows: 

Direct orientation, simulated dataset: 

1. Image point coordinates (x,y) are generated by perturbing 
the “true” values (generated by the collinearity equations 
using the “true” values of exterior orientation and ground 
points) with normally distributed random errors with a 
standard deviation of ±0.005 mm. 

2. Initial estimates of the exterior orientation parameters are 
generated by perturbing the “true” values with normally 
distributed random errors with a standard deviation 
consistent with the assumptions in the preceding 
paragraph. 

3. Initial estimates of the ground point coordinates (including 
ground control points) are intersected using the image 
coordinates developed in the first step and the exterior 
orientation values developed in the second step. 

4. Pseudo-observations are added to the exterior orientation 
parameters per equation(3). 

 

Indirect orientation, simulated dataset: 

1. Image point coordinates (x,y) are generated as in the direct 
case. 

2. Ground control point coordinates are perturbed with 
normally distributed random errors with a standard 
deviation consistent with the assumptions in the preceding 
paragraph. 

3. Initial estimates for the horizontal coordinates of the 
exposure station are generated by solving a two-
dimensional similarity transform between image 
coordinates and ground control points (2 in each image of 
the block).  Exposure station Z-coordinate is assigned the 
flying height.  The orientation angles phi and omega are 
assumed to be zero, kappa is assumed zero degrees in 
strips 1 and 3 and 180 degrees in strips 2 and 4. 

4. Initial estimates of the tie points are intersected using the 
image coordinates developed in step one and the exterior 
orientation parameters developed in step 3. 

5. Pseudo-observations are added to the ground control points 
per equation (4). 
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These results show that networks of a larger scale tend to yield 
comparable accuracies between the two orientation procedures, 
although horizontal accuracy appears to improve substantially 
with indirect orientation.  The results also confirm our 
expectations that, as the photo scale decreases, both accuracy 
and precision are more drastically improved by indirect 
orientation procedures as compared to direct orientation 
procedures.   Note that in both blocks the difference between 
the horizontal accuracies is somewhat larger than the difference 
between the vertical accuracies. 

 Direct 
(±m) 

Indirect 
(±m) 

Direct 
(±m) 

Indirect 
(±m) 

Horz 
RMS 0.18 0.09 0.48 0.16 

Total 
RMS 0.27 0.26 0.69 0.31 

|ΔX| 0.13 0.06 0.28 0.10 

 |ΔY| 0.10 0.05 0.33 0.11 

 |ΔZ| 0.23 0.17 0.43 0.24 

3σX 0.33 0.21 1.03 0.49 

3σY 0.33 0.21 1.12 0.47 

3σZ 0.68 0.61 1.70 1.16 
Table 3. Mean tie point coordinate results of 100 trials.  RMS 
values compare estimated tie point coordinates with their “true” 
values.  Sigma values are derived from variances propagated 
through the orientation adjustment. 

From the point of view of the network designer, equation (13) 
is most useful in that it tells what modifications to the direct 
observations of the exterior orientation parameters are required 
to achieve the precision of the indirect method.  We, therefore, 
consider the normal equations formed from the “design” values 
of the tie points, ground control points, and exterior orientation 
used to generate the simulations.  The matrix norms of the 
partitioned normal equations and pseudo-observation weight 
matrices are shown in Table 3.   Note that from these 
measurements we may determine the decrease of variance of 
each parameter estimate (the entries in the diagonal matrix P1) 
required to achieve precisions equal to orientation with ground 
control points with variances reflected in P2.   According to row 
3 in Table 3, the exterior orientation parameters would have to 
be observed with, on average, 1.9 times higher precision in the 
1:4,800 scale block, and with 5.4 times higher precision in the 
1:24,000 scale block. 

Although each trial is developed from the same true values, 
each is unique due to the added random perturbations.  Both the 
direct and indirect trials are consistent with standard operational 
procedures for providing initial approximations.  The mean 
results of 100 trials are detailed in Table 3.   All RMS values 
are considered accuracy measures in that they show mean 
deviations from the “true” values.  The sigma values are 
propagated errors form the orientation procedures. 

Partitioned 
matrices (eq.14) 

Frobenius Norm 
1:4,800 

Frobenius Norm 
1:24,000 

P1 92.8 x 106 92.8 x 106 
Eq. 13 338.0 x 106 2688.0 x 106 

P2 283 283 
Eq. 14 4690 493 

Table 4.  Matrix norms of the partitioned matrices. 

 1:4,800 1:24,000 
Frobenius Norm P1 9.2x107 9.2x107 

Frobenius Norm 
RHS (14) 3.37x108 2.687 x109 

P1 scaling required  3.640 28.945 
Direct Observation 
Variance Decrease 
Factor 

0.275 0.0345 

Table 5.  Scaling of the weight matrix for direct orientation 
required to achieve a precision equal to the indirect method  

5. CONCLUSIONS AND OUTLOOK 

The framework developed in this paper has been used to derive 
an analytic relationship between two differently constrained 
bundle adjustments – direct and indirect – and is a step towards 
a more general method to compare various weighting methods 
for bundle adjustments.  The framework may also be extended 
to include 1) the ISO method and 2) and integrated LiDAR 
observations, thereby following similar lines as Burman (2000) 
and Csanyi and Toth (2007). 
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APPENDIX A. DERIVATION OF COVARIANCE 
RELATIONS 

For the direct method to achieve equivalent or better ground 
point accuracies, 1 2S S≥ .  Using expressions (13) and (14) 
then 

( )

1 1
11 1 12 22 21 13 33 31

1 1
11 12 22 2 21 13 33 31

N P N N N N N N

N N N P N N N N

− −

− −

+ − − ≥

− + −
  

must hold with respect to the precision of the competing 
orientation methods. We may obviously eliminate the term 
containing tie-point information because it is invariant with 
respect to the orientation method and obtain     

( )
( )

( )

11
1 12 22 21 12 22 2 21

11
1 12 22 21 12 22 2 21

11 1 1 1 1 1
1 12 22 21 12 22 21 12 22 22 2 22 21

P N N N N N P N

P N N N N N P N

P N N N N N N N N N P N N

−−
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−− − − − − −
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If 21N has full-row rank, then we may further rearrange the 
expression to obtain the following equivalent statements 
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leading finally to 
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APPENDIX B. MATRIX NORMS AND LÖWNER’S 
PARTIAL ORDERING OF MATRICES 

Given two matrices of equal size, G and H, a partial ordering 
according to Löwner (cf. Marshall and Olkin,1979) can be 
defined through G H> if and only if G – H is positive-
definite, or slightly more generally, G H≥ if and only if  G – H 
is positive-semi-definite.  In the case that G itself is positive-
definite and H is, at least, positive-semi-definite, we may 
conclude G H≥ if and only if the maximum eigenvalue of the 
positive-semi-definite matrix 1−G H is less than one.  

A justification for this is related to the relative size of a 
quadratic function of the two matrices.  For details see Caspary 
(1987).  Instead of comparing the matrices themselves, we may 
compare certain scalar-valued functions of them; for instance, 
the trace of G with the trace of H.  Another possibility is the 
(weighted-) Frobenius norm, defined as ( )2 T

w
tr=G G WG  for 

some positive-definite matrix, W.  For ≡W I , this norm is 
equal to the sum of squared eigenvalues of G and can be 
thought of as a measure of the “hyper-volume” of the positive 
semi-definite matrix G.   The weighted Frobenius norm 
provides a simple composite measure that can be used to scale 

the norm of G to that of H.  For example, if 1w

w
r

G
H

= ≤  then 

by this measure at least, G is “smaller” than H by a factor of r. 
r may be applied as a scale factor to the norm of G 

then, ( ) ( ) ( )T T Tr tr tr r r trG G G G G G= =  so that the 

norm of matrix G is now equal to that of H. 
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ABSTRACT: 
 
With the growing research on image segmentation, it has become important to categorise the research outcomes and provide readers 
with an overview of the existing segmentation techniques in each category. In this paper, different image segmentation techniques 
applied on optical remote sensing images are reviewed. The selection of papers include sources from image processing journals, 
conferences, books, dissertations and thesis out of more than 3000 journals, books and online research databases available at UNB. 
The conceptual details of the techniques are explained and mathematical details are avoided for simplicity. Both broad and detailed 
categorisations of reviewed segmentation techniques are provided. The state of art research on each category is provided with 
emphasis on developed technologies and image properties used by them. The categories defined are not always mutually 
independent. Hence, their interrelationships are also stated. Finally, conclusions are drawn summarizing commonly used techniques 
and their complexities in application 
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1. INTRODUCTION 

Image segmentation in general is defined as a process of 
partitioning an image into homogenous groups such that each 
region is homogenous but the union of no two adjacent regions 
is homogenous (Pal and Pal, 1993). Efficient image 
segmentation is one of the most critical tasks in automatic 
image processing (Pavlidis, 1988; Haralick and Shapiro, 1985; 
Pal and Pal, 1993; Zhang, 1997; Cheng et al., 2001). Image 
segmentation has been interpreted differently for different 
applications. For example, in machine vision applications, it is 
viewed as a bridge between low level and high level vision 
subsystems (SpirKovska, 1993), in medical imaging as a tool to 
delineate anatomical structure and other regions of interest 
whose a priori knowledge is generally available (Pham et al., 
2000) and in statistical analysis, it is posed as a stochastic 
estimation problem, with assumed prior distributions on image 
structure, which is widely used in remote sensing (Kerfoot et 
al., 1999). In remote sensing, it is often viewed as an aid to 
landscape change detection and land use/cover classification. 
Aforementioned examples state that image segmentation is 
present in every kind of image analysis. This constitutes a 
plethora of literature on the image segmentation. This 
necessitates the organized categorisation of them. In order to 
present an organized review on image segmentation techniques, 
this review paper limits its analysis to optical remote sensing 
image analysis. This is essential because radar image 
segmentation is another horizon in remote sensing image 
analysis. From now onwards, remote sensing image would refer 
only to optical satellite remote sensing images.  
 
Optical remote sensing imagery has been to a paradigm shift in 
the decade after year 1999. Landsat 7 launched in 1999 (with 
Multispectral (MS), 30m spatial resolution; Panchromatic (Pan), 
15m spatial resolution), IKONOS launched in 1999 (MS, 4.0m; 
Pan, 1.0m), Quickbird launched in 2001 (MS, 2.44m; Pan, 
0.61m), WorldView-1 launched in 2007 (Pan, 0.5m), GeoEye-1 

launched in 2008 (MS, 1.65m; Pan, 0.42m), and WorldView-2 
launched in 2009 (MS, 1.8m; Pan, 0.46m) are evidence of this 
shift. The spatial resolution has been changed so considerably 
that pixel size has become smaller than a size of car which was 
earlier bigger than two or three buildings. This led to research 
on new classification algorithms for high and very high 
resolution remote sensing images because traditional pixel 
based analysis was proved to be insufficient due to its 
incapability to handle the internal variability of complex scenes 
(Schiewe, 2002; Blaschke and Strobl, 2001; Carleer et al., 
2005). These also propelled object based approach or Object 
Based Image Analysis (OBIA) for very high resolution image 
segmentation (Hay and Castilla, 2006). Detailed applications 
and discussion on the development trends of OBIA can be 
found in Blaschke (2010). However, in this paper applications 
based on OBIA are not the concern. This paper deals with 
technological aspect of image segmentation, which concern 
about identification of objects but not much related to further 
analysis of the object. Still object analysis is required for 
assessment of segmentation accuracy. 
 
According to the aforementioned definition of segmentation, the 
major thrust is on determining the suitable homogeneity 
measure which can discriminate the objects from each other. 
Some examples of the measures may be spectral, shape, texture 
and contexture. Most of the methods applied on remote sensing 
imageries are imported from other fields (Color image 
segmentation, Medical Image segmentation etc) and they work 
well because the underlying principal is same. For example, 
Cheng et al. (2001) extended the application of monochrome 
(single band) segmentation method, which was originally used 
on medical imagery, to colour image segmentation (three 
bands).  
 
With the numerous recent developments of new segmentation 
methodologies, the requirement of their categorisations based 
on successful applications have become essential. Therefore, the 
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first objective of this paper is to categorise the technologies of 
image segmentation by conceptualising the implementation 
details. Image segmentation techniques which are applied on 
optical remote sensing image segmentation are included 
whereas those applied on active remote sensing satellite 
imagery like SAR imagery are excluded because of the reason 
already mentioned. However, in order to state the technological 
development some of the non-remote sensing applications are 
stated too. The second objective of this paper is to give an 
insight to the readers about the state of art of technological 
aspects of image segmentation and aid in deciding the 
mathematical form for image segmentation.  
 
The rest of the paper is organized as follows. Section 2 
discusses about the development of segmentation as per the 
existing review papers on image segmentation. Section 3 
describes the categorisation of image segmentation from broad 
to fine level. Section 4 states the conclusion of the performed 
review. In order to state the development in a particular 
technology, similar methods are grouped and presented in a 
paragraph in rest of this literature. 
 
 

2. DEVELOPMENT OF SEGMENTATION 

One of the early application of image segmentation on remote 
sensing points to ECHO (Extraction and Classification of 
Homogeneous objects) classification by Kettig and Landgrebe 
(1976). This states that association of segmentation with remote 
sensing imagery was not much later than the operation of the 
first remote sensing satellite Landsat-1 in 1972. There have 
been many developments in remote sensing image processing 
techniques after that. Haralick and Shapiro (1985), Reed and 
Buf (1993), Spirkovska (1993) and Pal and Pal (1993) did 
extensive review on early stage of image segmentation 
techniques existed used in various applications along with 
remote sensing. Developments of image segmentation 
algorithms for remote sensing imageries have been drastically 
increased after the availability of high resolution imagery 
(Schiewe, 2002; Blaschke, 2010). This is obvious with the 
failure of pixel based techniques on high resolution imageries as 
discussed in the introduction section. Further, the commercially 
available software eCognition, since 2000 based on Fractal Net 
Evaluation Approach (FNEA), incorporating similarity of 
objects at hierarchical scale, has revolutionised the research on 
image segmentation and is still influencing the research very 
substantially (Baatz and Schäpe, 2000; Blaschke, 2010). This is 
why most of the review papers before the period of the year 
2000 don’t specifically cover remote sensing applications. After 
that we do have a few good review papers. For example, 
Schiewe (2002) categorised the available remote sensing 
technologies for high resolution imagery, Carleer et al. (2005) 
evaluated qualitatively some of the most widely used image 
segmentation technologies for very high spatial resolution 
satellite imagery, Shankar (2007) presented various techniques 
with mathematical details of image segmentation techniques 
and Blaschke (2010) on OBIA. 
 
 

3. CATEGORISATION OF SEGMENTATION 

The abundance of literature on image segmentation makes the 
categorisation both necessary and challenging. The approach of 
categorisation in this paper is supplementary to some earlier 
review papers mentioned in section 2. (Reed and Buf, 1993; Pal 
& Pal 1993; Spirkovska, 1993; Schiewe, 2002; Shankar, 2007). 
Most of the earlier literatures have categorised them as a) Edge 

based b) Point/Pixel based c) Region based and d) Hybrid 
approach. Guo et al. (2005) categorised them as colour based 
and texture based algorithms. However, a more clear delineation 
is required considering the techniques which are used to achieve 
segmented objects.  

 
A more general method of categorisation based on approach 
towards image analysis and applicable even beyond image 
segmentation domain are the bottom-up and top-down 
approaches. In image segmentation domain, they are often 
stated as model driven (top-down) and image driven approach 
(bottom-up) (Guindon, 1997). In this paper, this approach is 
stated as first stage of categorisation. It can also be stated as 
segmentation control based categorisation. However, in 
eCognition/Definiens developer software top-down and bottom-
up approach refers to hierarchy of segmentation (eCognition 
Elements User Guide, 2004). It can be said that bottom-up 
approach forms object by combining/merging pixels or group of 
pixels whereas top-down approach moves from splitting the 
whole image into image objects based on heterogeneity criteria 
(Benz et al., 2004). However, this is not the only definition. 
 

The second stage of categorisation points to features or 
homogeneity measures based approaches used to delineate 
image objects.  The third stage of categorisation is based on 
operations on image used to generate image objects. These are 
edge detection, region growing/splitting and may be both of 
them. It is important to note that these stages are highly 
interrelated and generally developed methods pick up one or 
more methods from the list at different stages to perform final 
segmentation. For example, Beveridge et al. (1989) used 
thresholding object/background model for generating initial 
regions and region merging algorithm with spectral, shape and 
connectivity as homogeneity measures. Tilton (1996) used both 
region growing and edge detection for Landsat TM data. A 
detailed description of the categorisations and their inter-
relationships are stated in the subsequent sections. Apart from 
aforementioned categorisation, image segmentation can also 
have supervised and unsupervised approach. Unsupervised 
segmentation holds its proximity to feature extraction and 
clustering whereas supervised segmentation incorporates 
segmentation accuracy as an addition to unsupervised scheme.  

 
3.1 Image Driven approach 

Image driven approach operates directly on the image pixels 
and detects objects solely based on the image features 
(Maxwell, 2005). Image driven approach extracts object based 
on the statistical features of the image derived from the pixels. 
This includes most of the solely edge based segmentation 
techniques. Edge based techniques detects edges and then closes 
the regions by contour generating algorithms (Schiewe, 2002). 
Canny Deriche operator is considered as good edge detector for 
remote sensing purposes (Carleer et al. 2005). However, 
different algorithms can also be tried. For example, Chehdi et 
al. (1993) used zero crossing of second derivative along four 
major directions to detect edge points and consequent closing of 
edges to generate regions of SPOT image. Edge detection is 
now more used for feature extraction in remote sensing and in 
segmentation of medical imagery (Pham et al., 2000). However, 
watershed transform is the current edge based segmentation 
technique being utilised in segmentation (Carleer et al., 2005).  
 
3.2 Model Driven approach 

Model based approach assumes that objects in an image are 
present in a certain pattern. Interested readers can look into 
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Rosenfield and Davis (1979) for more understanding of image 
models and segmentation. A list of models generally used for 
image segmentation are a) Object Background/Threshold 
Model, b) Neural Model, c) Markov Random Field Model, d) 
Fuzzy Model, e) Fractal Model, f) Multi-resolution and g) 
Transformation model namely Watershed model and Wavelet 
model. MRF model, Fuzzy model, Fractal model and Neural 
model have been widely studied previously (Pal and Pal, 1993; 
Reed and Buf, 1993). Therefore, the newly developed model 
comprises Watershed model and multi-resolution model. Fractal 
model has not much significant application in remote sensing 
and wavelet model is inherited in multi-resolution model. 
Hence, except fractal model all the models and their 
developments, approaches and applicability are described in 
subsequent sub-sections. 
 
3.2.1 Object-background Model: Object Background 
models are based on histogram thresholding. They are primitive 
models for image segmentation. They follow a concept that 
there is a uniform background and objects are irregularly placed 
on this background (Rosenfield and Davis, 1979). They are 
mainly based on spectral properties. Spectral variation is 
represented by image histogram. This makes image histogram 
the choice for object delineation. Hence, finding an appropriate 
threshold between object and background fulfils the task of 
object identification. Most of the threshold based method 
follows an image model. In the next paragraph, some of them 
are discussed. 
 
The widely used bi-level thresholding techniques have 
underlying object and background modelling (Weszka, 1978). 
Threshold can also be calculated based on the maximisation of 
class (object and background) separability error/ discriminant 
analysis (Otsu, 1979), maximisation of entropy based on the 
assumed probability distribution model (Pal and Pal, 1991) and 
many more. A detailed review on thresholding techniques can 
be found in Sahoo et al. (1988). Fuzzy thresholding approaches 
are the current developments in this field (details in fuzzy model 
section). 
 
Currently, thresholding based methods are not popular in 
remote sensing areas especially in urban remote sensing 
applications with high resolution imagery. This is because of 
high degree of variation of histogram and hidden clustering 
problem (Beveridge et al., 1989).  

 
3.2.2 Markov Random Field Model: Markov random field 
(MRF) model is not so old in remote sensing applications as 
compared to histogram thresholding. MRF model was 
conceptualised from Ising model (pp.1-23, Kinderman and 
Snell, 1980). MRF model takes into account the neighbourhood 
relationship which makes it attractive for modelling texture and 
contexture of images. The detailed mathematics of types of 
MRF models and their estimations can be found in the book by 
Li (pp. 21-47, 2009). However, a short summary of applications 
on remote sensing image segmentation is presented here. 
 
One of the seminal papers of MRF in segmentation is Hansen 
and Elliot (1982).  In remote sensing, the application of MRF 
was much later by Jeon and Landgrebe (1992). They used MRF 
for contextual classification of Landsat TM temporal data (pp. 
243, Richards and Jia, 2006). Bouman and Shapiro (1994) 
applied unsupervised segmentation scheme with modified MRF 
model and named the model as multi-scale random field model 
(MSRF). MSRF used hybrid structure of quadtree and pyramid 
graph for scale representation. Then, expectation maximisation 
(EM) algorithm used for solving sequential maximizing a 

posteriori (SMAP) whose solution calculates the required 
parameters of MSRF model. They used multispectral SPOT 
image for their experimental results. Spectral and spatial 
features were used in MSRF model. Raghu and Yegnarayana, 
(1996) used supervised scheme for segmentation. They applied 
Gabor filters, for extracting texture feature, constituting a multi-
resolution feature extraction mechanism. Texture feature vector 
was represented as Gaussian distribution and a posteriori 
probability scheme was formulated for assigning a partition 
label to a pixel where partition is expressed as noncausal MRF. 
Posterior probability of segmentation model was represented as 
Gibbs distribution and maximizing a posterior probability was 
done using Hopfield neural network with a deterministic 
relaxation modelling. This process used spectral, texture, spatial 
and prior knowledge as prior distribution. Technique was tested 
on three band image of IRS satellite. This paper used spectral, 
spatial and texture, in form of local interactions and class 
information. Both of the above method has used multi-
resolution concept (see section 3.2.5). Jung et al. (2005) used 
multi-resolution MRF based unsupervised texture segmentation 
using Discrete Wavelet Transform (DWT). A MRF model was 
applied on each sub-band image separately, obtained from 
DWT considering spatial adjacency relationship. Parameter 
estimation was done by least squares estimate of Pseudo- 
maximum Likelihood. MAP criterion was optimized using 
simulated annealing (SA). Landsat TM was used for generating 
results through Gaussian MRFs. The properties used are 
spectral, spatial, contextual (spatial adjacency rule and clique 
functions) and texture. 
 
Tsai and Tseng (1997) developed unsupervised segmentation 
scheme in which RGB of SPOT satellite was transformed into 
HSI colour space to estimate the number of colour sets by scale 
space filter based histogram thresholding. Then, iterated 
conditional mode (ICM) algorithm was employed for MAP 
estimation of GMRF based pixel partition labelling. Method 
used spectral and spatial information using texture (hybrid of 
local and global texture information) features for pixel based 
segmentation. Tseng and Lai (1999) also used GMRF but 
approximation was done by using Genetic algorithm instead of 
ICM for MAP estimation. 
   
Sarkar et al. (2000) developed a modified technique to reduce 
the complexity of MAP-MRF estimation. Instead of working 
directly on pixels, they used a two stage algorithm for over-
segmented image. At first stage, region adjacency graph was 
plotted for those regions. Energy function of MRF model was 
defined based on intra-region homogeneity and inter-region 
dissimilarity. At second stage, region merging is performed 
based on these energy equations value compared with a 
threshold based on Fischer distribution. This is an unsupervised 
MRF model based region merging approach which utilised 
spectral, spatial and textural properties. Sarkar et al. (2002) 
extended the above mentioned MRF based unsupervised 
segmentation approach for multiband imagery and used it for 
land-use classification.  
 
D’Elia et al. (2003) modified Tree structured MRF model based 
on binary split of the image regions at each step. Initially, the 
regions were split in a binary tree pattern based on splitting 
criterion. In order to reduce fragmentation, estimation of field 
parameters was locally adaptive and a region merging parameter 
was also included. They modelled the image as a linear 
combination of original value plus zero-mean Gaussian noise. 
Estimation of the field parameters were based on local 
neighbourhood characteristics using maximum pseudo-
likelihood estimation. Finally, MRF labelling was performed 
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using MAP estimation through iterative conditional mode 
approximation technique. Poggi et al. (2005) used the Tree-
structured MRF model for supervised texture segmentation on 
multi-spectral spot data which uses prior knowledge about the 
class and its estimated parameters.  
 
In some other segmentation applications, Yang et al. (2008) 
used MRF in fusion based segmentation of SAR and Landsat 
imagery. They used region adjacency graph for MRF model and 
region reliability measure based on image properties for fusion. 
Moser and Serpico (2008) used graph based multiscale 
segmentation and fused the feature of those segmentations at 
coarse and fine scales to get final segmentation.  
 
MRF models have attracted quite a decent amount of research 
for image segmentation. This is because of its ability to 
integrate spectral, textural, contextual, spatial properties of 
image and even prior knowledge in form of prior distribution. 
However, the mathematical formulation and high computational 
complexity are the drawbacks. 
 
3.2.3 Fuzzy Model: Fuzzy theory had been conceptualised by 
Zadeh (1965). It has been applied in various fields of 
engineering applications. Fuzzy segmentation adds fuzzy 
boundary for objects. In the subsequent paragraphs, few 
developments and fuzzy logic based techniques applied in 
remote sensing image segmentation would be stated.  
 
In early remote sensing, fuzzy segmentation was derived from 
clustering methodology. In order to be tuned with the 
terminologies of research papers, clusters and segments are used 
interchangeably in this literature. Cannon et al. (1986) utilised 
fuzzy c-means clustering for image segmentation. Fuzzy c-
means clustering is a form of minimizing within group sum of 
squared (WGSS) error. Each pixel holds a membership value 
derived from local minimum of WGSS error. Two methods 
used for hard clustering was confusion matrix oriented merging 
(percentage of total pixels in that cluster) and minimal spanning 
tree merging whose nodes are cluster centres and edges are 
distance between cluster centre. Here, the class information was 
already available which helped in pruning the spanning tree to 
form segments. Krishnapuram and Kellel (1993) modified fuzzy 
c-means by possibilistic c-means. They introduced a scale 
parameter to modify the objective function of original fuzzy c-
means. This method doesn’t the need of stating the number of 
clusters beforehand and is robust even in the presence of noise 
and outliers. Hence, filtering step may be avoided. However, 
this method requires a reasonable scale parameter value and 
good initialization. Thus, restricts its capability of automated 
segmentation. Fan et al. (2009) proposed a single point iterative 
weighted fuzzy c-means which uses prior knowledge for 
initialising cluster centres and spatial and spectral information 
for weighing the original fuzzy c-means distance calculation. 
 
Caillol et al. (1993) incorporated fuzzy sets in Gaussian Markov 
random field model to segment image. They introduced an 
interesting approach in the sense that their method incorporates 
both hard and fuzzy segmentation simultaneously. They named 
their method as fuzzy stochastic estimation maximization. 
However, their approach was limited to two class segmentation. 
They primarily used grey level values. Tzafestas and Raptis 
(2000) used an iterative fuzzy clustering which can incorporate 
image properties namely, spectral, spatial, texture and frequency 
in fuzzy form for segmentation. The algorithm applied is locally 
adaptive and number of output clusters/segments is not fixed a 
priori. Thus, it produces optimum number of segments till it 
reaches a predefined threshold.  

Pal et al. (2000) used fuzzy techniques for histogram 
thresholding based segmentation. They used fuzzy entropy, 
fuzzy geometry, fuzzy correlation and fuzzy clustering 
techniques for thresholding. Results were demonstrated on IRS 
and SPOT satellite imagery. Bandyopadhyay (2005) used 
genetic algorithm for fuzzy clustering. He included spatial 
information by incrementing pixel vector with mean of a 3x3 or 
higher neighbourhood. Then, spatial information was included 
using up-down pixel value difference from centre pixel. Wuest 
and Zhang (2009) have modified the Hierarchical Split and 
merge algorithm (HSMR) to perform an unsupervised 
segmentation. They used fuzzy band ratio to describe regions by 
their class densities. Then, fuzzy logic was used for comparing 
the region similarity. The algorithm was applied on Quickbird 
imagery and segmentation is basically proposed for land use 
purposes. 

 
Most of the fuzzy segmentation methods are derived from fuzzy 
c-means clustering and fuzzy thresholding (Shankar, 2007). 
However, it is possible to incorporate fuzzy model in the most 
of the existing segmentation model e.g. Fuzzy MRF stated here 
and Fuzzy Neural models to be stated in next section. The 
decision of incorporating fuzzy model is based on the 
achievable complexity level of the segmentation.  
 
3.2.4 Neural Model: Neural networks are based on 
simulation of human brain processing element called as 
Neurons. The structure of a neuron is shown in the fig-1. 
Rectangular blocks correspond to input multiplied by weights 
(Wi) and F correspond to threshold function and z correspond to 
linear sum of weights multiplied with corresponding input.  One 
can build a network by increasing the number of neurons and 
number of layers or outputs, adding elliptical blocks in 
horizontal and vertical fashion. Layers in between input and 
output layers are known as hidden layers. The basis of Neural 
network lies in training of neural network. The aim of training is 
to model the process of data generation such that it can predict 
the output for unforeseen data. Training is generally associated 
with supervised methodology. However, unsupervised network 
can also be formulated e.g. Adaptive Resonance Theory 1 
(ART1), ART2, Fuzzy ART and Self-organizing Maps (pp. 
102-147, Tso and Mather, 2001). 
 
 

 
 

Figure 1. showing structure of a neuron 
 

One of the early applications of neural networks in image 
segmentation is by Visa et al. (1991). They used co-occurrence 
matrix based texture feature vectors as input to self-organizing 
map (SOM) neural networks. Their aim was cloud detection 
from NOAA-10 and NOAA-11 satellite imagery.  They used 
texture features derived from spectral values. Solaiman et al. 
(1994) proposed an edge based segmentation by automatically 
tuning parameters of Canny-Deriche recursive filtering using a 
multi-layer perceptron (MLP) network. They utilised spectral 
and spatial properties. Chen et al. (1996) modified the learning 
technique of MLP network by first removing any hidden layer, 
then selecting a polynomial basis function as the activation 
function. Essentially the network was linearized by this 
modification. This linearization made it capable of being trained 
by a Kalman filtering technique. This reduced the training time 
compared to back-propagation training. This is essentially a 

F(z) 

W1 

Wn 
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supervised technique because of MLP network. The process is 
based on intensity values or spectral properties. 
 
Baraldi and Parmiggiani (1995) modified ART neural network 
to simplified ART neural network (SARTNN) such that it 
estimates much lesser user defined parameters than ART and 
also has capability to accept multi-valued input. The 
architecture is similar to ART and used Vector degree of Match 
(VDM) for comparison of multi-valued vector. This process 
doesn’t require a priori number of processing elements. They 
applied the algorithm for clustering the Landsat-5 imagery and 
found better clustering. Chen et al. (1997) proposed a neuro-
fuzzy scheme for image segmentation. In the first step, they 
transformed image using histogram based non-uniform coarse 
coding technique. This resolved the proportion ambiguity, 
observed with patterns having proportional relationships when 
used as input for ART, due to normalizing inputs. In the second 
step, ART2 was applied as neural network due to its 
unsupervised nature. This clustered the input pattern into the 
desirable number of classes. However, the final informative 
classes are still to be formed. This final step was performed 
using fuzzy clustering. This method used spectral and spatial 
information in the form that the probability that adjacent pixels 
belong to same class is large. This method was applied on three 
multispectral channels, Green, Red and Infrared of SPOT HRV 
sensor.  
 
Kuntimad and Ranganath (1999) used Pulse coupled neural 
network (PCNN) for image segmentation. The essential feature 
of PCNN lies in its one to one correspondence to image pixels. 
Further, it requires no training and directly produces segmented 
objects with edges. PCNN has also capability to utilise the 
neighbourhood relationship. Li et al. (2007) used improved 
pulse coupled network for image segmentation of 
IKONOS imagery. Their modifications differ in the sense of 
linking of neurons, edge-preserved prior smoothing instead of 
just smoothing and reduce algorithm complexity.  
 
ANN might not have caught the eyes of researchers of remote 
sensing image segmentation but it has  wide applications in 
medical imagery with different type of ANN like SOM, MLP 
and Hopfield Network to name a few (Peterson et al., 2002). 
This may be due to the challenge of generalization in 
conventional neural networks (Atkinson and Tatnall, 1997). 
However, PCNN seems to be a promising approach for 
unsupervised image segmentation with its capability to 
incorporate neighbourhood relationship. This area needs further 
research. 
  
3.2.5 Multi-resolution Model: Woodcock and Strahler 
(1987) stated the importance of factor of scale in identification 
of objects present in the remote sensing imagery. Scale of an 
object is stated as level of aggregation and abstraction at which 
an object can be described (Benz et al, 2004). An object which 
is smaller than the spatial resolution of image cannot be 
identified. It is because of inappropriate scale of object. Based 
on this, two problems can be stated. Firstly, if object size is 
large then high spatial resolution satellite would fragment the 
object and secondly, if object size is small then low spatial 
resolution may not even recognize it. With the availability of 
high resolution satellite imagery second problem has been 
eliminated. Now, the first problem is to be solved. A general 
idea of multiscale/multiresolution approach arose for solving 
this kind of problem. Multi-scale segmentation can go both 
ways from coarse to fine (top-down) and fine to coarse (bottom-
up) (Zhong et al., 2005). The idea for coarse to fine level states 
that initial segmentation can be performed at coarse level and 

this initial segmentation acts as input to next finer level 
segmentation. The reverse is true for fine to coarse approach. 
However, in both approaches a threshold is defined to decide 
merging or splitting. This creates a hierarchical segmentation. 
Now the next concern is how to represent the multi-
resolution/multiscale/hierarchical and segment based on this 
representation scheme. This is the topic of discussion in the next 
paragraph. 
 
Bongiovanni et al. (1993) used pyramidal structure for multi-
resolution segmentation. They assumed image to be bi-modal 
and based on spectral property a threshold is determined to 
assign bimodality. The method iteratively finds the bi-modality 
and then follows top-down approach to segment based on their 
bimodality. The representation scheme for this operation was 
pyramidal where each pyramid node had four children. Bouman 
and Shapiro (1994) applied multiscale representation using a 
hybrid of pyramid graph (at finer level) and quadtree (at coarse 
level) for a MRF based image segmentation (already described 
in sec. 3.2.2).  
 
Baatz and Schäpe (2000) brought significant development in the 
research of multi-resolution segmentation for remote sensing 
imagery after the introduction of Multi-resolution/hierarchical 
segmentation using Fractal Net Evaluation approach (FNEA). 
FNEA represents the notion of hierarchy as fractal net because 
of the self similarity notion of fractals. Each coarser level gets 
the input from finer level and if an object is identified at coarser 
level then it repeats its representation at each finer level which 
is referred as similarity. The process starts with each pixel as 
objects and then subsequently merged based on the criteria in 
which merged region shouldn’t exceed a defined heterogeneity 
threshold. This approach has capability to incorporate spectral, 
texture, spatial, shape, size, prior knowledge and contextual 
properties of image. This approach is incorporated in 
eCognition/Definiens Developer, a commercial software 
product. This software revolutionised the field of remote 
sensing image segmentation with its immense possibility to 
provide GIS ready information (Blaschke, 2010; Benz et al., 
2004). The selection of parameters, scale, smoothness and 
compactness, for multi-resolution segmentation requires an 
expert knowledge which makes it semi-automatic.  However, 
Maxwell and Zhang (2005) proposed a fuzzy approach which 
automatically selects the parameter of the segmentation used in 
multi-resolution approach. 
 
Apart from the development of eCognition/Definiens Developer 
some other techniques are also developed. Chen et al. (2003) 
applied a top-down strategy for multiscale segmentation applied 
on SPOT HRV image. They performed discrete wavelet 
transform on first principal component, obtained from PCT of 
original bands, to obtain coarse scale image and applied 
clustering for coarse scale segmentation. Segmentation at fine 
scale used region growing procedure based on seed pixel of 
region. Pixels are grouped with seed pixel based on spectral and 
textural feature vector. Grouping is based on a threshold of 
acceptable heterogeneity after merging. This process is 
performed iteratively until all coarse scale segmentation was 
subjected to fine scale segmentation. Zhong et al. (2005) used a 
bottom–up approach for multi-scale segmentation on IKONOS 
image using. Starting with a pixel region, region is subsequently 
merged with other based on achieved homogeneity measure. 
Homogeneity measure is derived from colour feature, 
smoothness feature and compactness feature. Once, every 
region at a particular scale are processed like this, the average 
size of objects are calculated. If average size satisfies the size 
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threshold then segmentation is optimal otherwise segmentation 
is carried on with the achieved regions. 

Li et al. (2008) applied multiscale segmentation using hybrid of 
statistical region merging (SRM) for initial segmentation and 
minimum heterogeneity rule (MHR) for merging objects for 
high resolution Quickbird imagery. SRM utilises spectral, scale 
and shape measures for initial segmentation. Segmentation 
using SRM follows region growing technique where region 
growing is based on statistical test. Minimum Heterogeneity 
rule used colour (spectral) and shape property for region 
merging.  
 
Multi-resolution model is indeed the most sought after 
technique for remote sensing image segmentation. It is possible 
to combine the concept of multi-scale to any other segmentation 
approach e.g. with MRF model (Bouman and Shapiro, 1994).  
Its combination with watershed model will be defined in next 
sub-section. Its success lies in its capability to incorporate 
spectral, shape, size, texture and contexture features of region at 
various scales for efficient segmentation especially for high 
resolution complex landscape imageries. The most typical part 
of this model is appropriate scale representation and information 
extraction from them (Chen et al., 2009). The method developed 
by Chen et al. (2009) aids in identifying the scale of proper 
representation of objects.  
 
3.2.6 Watershed Model:  Watershed model is a 
mathematical morphological approach and derives its analogy 
from a real life flood situation (Beucher, 1992). It transforms 
image into a gradient image. Then, image is seen as a 
topographical surface where grey values are deemed as 
elevation of the surface at that location. Then, flooding process 
starts in which water effuses out of the minimum grey value. 
When flooding across two minimum converges then a dam is 
built to identify the boundary across them. This method is 
essentially an edge based technique (Carleer et al., 2005). The 
original watershed algorithm was susceptible to over-
segmentation so a modified marker-controlled based watershed 
algorithm was proposed by Beucher (1992). Watershed 
algorithm produces over-segmentation because of noise or 
textured patterns. The application of watershed algorithm on 
remote sensing imageries is relatively recent than other models. 
Next few paragraphs describe several modifications on marker-
controlled watershed algorithm to reduce over-segmentation 
problem. 
 
Traditionally watershed algorithm was applied with median 
filter to eliminate noise and preserve contours (Carleer et al.,  
2005; Sun and He, 2008). Chen et al. (2006) stated that median 
filter fails to encounter high imagery texture, generally present 
in high resolution imagery. They proposed a modified technique 
to encounter this problem. They used a non-linear filter named 
Peer group filtering for removal of noise and image smoothing. 
Then, a floating point based rainfall algorithm for watershed 
transformation was applied for initial segmentation. Then, a 
multi-scale region merging algorithm was applied based on 
spectral, shape and compactness feature for final segmentation. 
The algorithm was applied on IKONOS imagery. Chen et al. 
(2008) proposed a different gradient operator for watershed 
transform which efficiently reflect texture information. The 
gradient image used is known as Homogeneity gradient image 
or H-image. H-values are calculated by a local window based 
operation. Dark and bright areas in H-image represent region 
centers and region boundaries. A rainfalling algorithm for 
watershed transformation was used followed by region merging, 
where regions were represented using Region adjacency graph. 
Region merging was based on colour, texture and shape 

features. Algorithm was applied on SPOT three band image 
with 2.5 m resolution. 
 
Watershed algorithm is new segmentation approach with 
relatively less application in remote sensing image segmentation 
than other described models. However, it may be good for 
initial segmentation in a multi-scale resolution as it produces an 
over-segmentation. Over-segmentation elimination is also a 
problem associated with this method which needs further 
research. The commercial software ERDAS Imagine Extension 
(IMAGINE WS) has incorporated this algorithm. 
 
3.3 Categorisation based on homogeneity measure 

Next stage of categorization corresponds to the homogeneity 
measures used for image segmentation. But before that it is 
necessary to determine the possible homogeneity measures of 
image features. This requires a well understanding of image 
objects and the final outcome of image segmentation. Image 
objects are real world objects represented on remote sensing 
image. With very high resolution satellite, image objects can be 
visualized by human eye. This has been addressed by some 
researchers. For example, Wang and Terman (1997) suggested 
sensory cues of segregation based on Gestalt psychology for 
segmentation and Fu and Mui (1981) as psycho physical 
perception problem for segmentation. It is similar to elements of 
analysis for image interpretation by human eye (pp. 67-68, 
Richards and Jia, 2006).  Thus, the possible measures are based 
on similarity comprises spectral, texture, spatial, size, shape, 
and temporal. Some other semantic information prior 
knowledge, context and connectedness are also required (Wang 
and Terman, 1997).  
 
The primary homogeneity measure is spectral/tonal feature. 
Secondary homogeneity measures are spatial, texture, shape and 
size. Tertiary homogeneity measures are contextual, temporal 
and prior knowledge (pp. 67-68, Richards and Jia, 2006). As per 
the order, the most important is primary then secondary and 
then tertiary.  Secondary and tertiary measures are more 
important when the boundaries of objects are required to be 
precise with very less mis-segmented pixels. In this study, more 
emphasis is given on secondary and tertiary measures which 
were not widely covered in earlier literatures. The list of 
measure may not be exhaustive but surely cover most of the 
available techniques existing for image segmentation. 
Subsequent sections describe the trend of techniques for 
different homogeneity measures used in image segmentation.  
 
3.3.1 Spectral and Textural Features:  The most primitive 
measures of homogeneity are spectral and textural features. 
Spectral values refer to grey levels or pixel values of an image. 
It has been long realised that using only spectral features good 
segmentation results are not possible but was still practiced due 
to the ease of incorporating them in digital format (Kettig and 
Landgrebe, 1976).  Texture features points to spatial pattern 
represented by spectral values (Haralick et al., 1973). A textured 
image may have various texture patterns. However, 
quantitatively characterizing texture is not simple (pp. 128-130, 
Richards and Jia, 2006). Due to this fact texture segmentation 
has been studied widely generally in combination with other 
features like shape, spectral and contextual and various models 
till today. 
 
Chen and Pavlidis (1978) used co-occurrence matrix and a 
quadtree based structure to determine texture similarity for 
grouping pixels in a region. Cross et al. (1988) also used 
quadtree based hierarchical structure and applied texture 
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measure was local difference statistics. Guo et al. (2005) used 
texture measure derived from local binary pattern and used 
wavelet transform to pre-process the image and derived texture 
from local binary pattern. They also used quadtree structure for 
splitting and merging. It can be seen from trend that quadtree 
based hierarchical image splitting has been the trusted method 
of texture segmentation for decades. 
 
Conners et al. (1984) used spatial grey level dependence method 
(SGLDM) and six texture measures namely inertia, cluster 
shade, cluster prominence, local homogeneity, energy and 
entropy in region growing algorithm based on split and merge 
tecnique. Ramstein and Raffy (1989) used variogram and fractal 
dimension measures for texture segmentation and classification. 
Ryherd and Woodcock (1996) used a 3x3 adaptive window to 
calculate texture image based on local variance and applied a 
multi-pass region growing algorithm which builds spatial 
homogeneous objects using Euclidean distance in n-dimensional 
space. They showed that segmentation accuracy of derived 
texture image is better when compared with original image, 
used spectral property only. Algorthm was tested with SPOT 
panchromatic image. 
 
Texture segmentation is one of the most sought after 
segmentation technique. It is evident from Reed and Buf (1993) 
and the above literature. This is mainly because of the presence 
of highly textured regions in high resolution satellite imagery. 
Currently, the research has shifted from texture to multi-
resolution model. 
 
3.3.2  Shape and Size Features: The importance of shape 
and size measure could be understood when the natural object 
are to be identified on satellite imagery. For example, a river 
and a pond may has same spectral, texture and spatial properties 
but they differ in shape and size. It is because rivers are linear 
and unbounded features whereas ponds are non-linear and 
bounded features. Shape and size measures are mostly utilised 
as complementary to each other. Further, they are always 
applied in conjunction with the spectral and texture measures. 
Only some substantial algorithms based on the recent 
developments are mentioned.  
 
Beveridge et al. (1989), performed over-segmentation and then 
utilised shape, connectivity and size measure for region merging 
to achieve segmentation. Multi-resolution models represent the 
size of object through spatial scales (Bongiavanni et al., 1993). 
Fractal Net Evaluation approach (explained in section 3.2.5) 
used in commercial software, eCognition/Definiens developer, 
also uses scale, shape and compactness parameter. 
 
The state of art use of shape and size refers to multi-scale/multi-
resolution approach to image segmentation. Shape and size 
measures are especially helpful when delineating complex 
objects in high resolution satellite imagery. 
 
3.3.3 Context: Context generally refers to spatial context 
which means relationship of pixels with its neighbourhood 
(Thakur and Dikshit, 1997). Contextual information is also used 
in conjugation with spectral or texture or both measures. Few 
methods are found which utilise specifically context based 
segmentation. Context helps in avoiding fragmentation of a 
segment and merging. For example in an urban image, cars in a 
parking lot may cause fragmentation unless context measures 
are applied. 
 
A good recent example of context based segmentation is Fan 
and Xia (2001). They deduced context information from spatial 

and scale space of image and modeled five context models with 
quadtree model for scale dependency. They called their 
algorithm as multi-contextual (due to five context models) and 
multi-scale approach to Bayesian segmentation which in 
mathematical terms solves context-based mixture model 
likelihood. They used their methods for aerial and SAR 
imagery. Even eCognition/Definiens Developer software has 
the capability of including the context information based on 
neighbourhood relationship measures. Benz et al. (2004) 
demonstrates in the paper that how eCognition integrates spatial 
and scale context as semantic information in identifying the 
appropriate image objects. Contextual constraints are used in 
segmentation and classification and are well modeled by 
Markov Random Field. This is why several context-based 
classifications use MRF model (Melgani and Serpico, 2003; 
Jackson and Landgrebe, 2002).  
 
Context is especially useful when segmentation requires bigger 
area to be identified as one segment e.g. land use classification. 
MRF models are currently the best model for implementation of 
contextual measures.  
 
3.3.4 Temporal:  Temporal measure refers to measurement 
based on images of same area and sensor characteristics in 
different time (pp. 67-68, Richards and Jia, 2006). Temporal 
measure is not directly used for segmentation but is used as an 
application of segmented image.  
 
Carlotto (1997) performed temporal segmentation for change 
detection from Landsat TM. He used total difference image to 
segment based on histogram thresholding. Jeansoulin et al. 
(1981) performed segmentation using fuzzy edge detection and 
region growing for segmentation and demonstrated how 
temporal criterion can be used to detect changes based on 
objects.  Hanaizumi et al. (1991) used spatial segmentation for 
change detection and showed result on Landsat TM imagery. 
They used division and detection procedure where 
divison/region-splitting was performed by fitting regression 
model on pixel scattergram. Dambra et al. (1991) fused multi-
temporal imagery using segmented image. SAR segmented 
image is also used for change detection. Several SAR 
segmenting methods are reviewed by Caves et al. (1996).  
 
Yamamoto et al. (2001) detected change in SPOT HRV and 
Landsat TM image using 3-D segmentation with time as Z axis. 
They applied local statistical regression model for region 
splitting using spatial and spectral measures. Hall and Hay 
(2003) used multi-object scale analysis for change detection 
which utilises Marker Controlled watershed segmentation 
(Beucher, 1992). Lhermitte et al. (2008) introduced multi-
temporal hierarchical image segmentation. They segmented the 
10 daily data of SPOT VGT sensor by first decomposing 
original image time series in Fast Fourier Transform component 
and then performed hierarchical segmentation analogous to 
eCognition (Baatz and Schäpe, 2000) using Euclidean distance 
between FFT components of same frequency as measure of 
similarity. 
 
Temporal characteristics have important application in 
monitoring changes like land-use change, disaster mapping, 
traffic flows, crop mapping etc (pp-280-81, Campbell, 2007). 
Temporal segmentation has been used mainly for change 
detection in a series of temporal image. Its application is mainly 
seen for large area change detection rather than small area. 
Thus, more applications have been found on low resolution 
images than high resolution. 
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3.3.5 Prior Knowledge: Prior knowledge refers to 
photointerpreter knowledge regarding the regions/objects of the 
image (pp. 342-352, Richards and Jia, 2006). It may be the 
knowledge of classes of the image region or about some specific 
area, building or trends etc. Incorporating prior knowledge in 
image analysis is one steps towards developing artificial 
intelligence in the machine (Srinivasan and Richards, 1993). 
Prior knowledge may not be the primary measure for 
segmentation but it has the capability of utilising the location 
based information. For example, it is our prior knowledge 
which generally says that small buildings mean residential areas 
and large buildings means commercial or institutional areas. 
This indicates towards differentiation based on shape properties. 
In the next paragraph, few prior knowledge based segmentation 
or prior knowledge based homogeneity measure derivation are 
described. 
 
Ton et al. (1991) divided segmentation techniques into two 
types as partial segmentation (without using a priori knowledge) 
and complete segmentation (using a priori knowledge). The 
approach for knowledge based can be further divided into 
histogram-oriented and cluster-oriented (Ton et al., 1991; 
Paudyal et al., 1994). Most of the popular method like  
Hierarchical split and Merge (Ojala and Pietikainen, 1999), 
region growing, multi-resolution used by eCognition (Baatz and 
Schäpe, 2000) etc are partial segmentation techniques. Ton et al. 
(1991) used spectral and spatial knowledge rules for supervised 
segmentation of Landsat TM image. They automated generation 
of spectral knowledge based rules based on training data and 
hierarchical classification. They applied both threshold and 
region growing for segmentation.  
 
Liu et al. (1993) used texture measure for region uniformity and 
contexture information at pixel level for segmentation. They 
used knowledge in determining the best texture measure, which 
gives minimum error using multivariate Gaussian Bayesian 
classifier, out of the available for good segmentation. The 
method used is essentially supervised segmentation. Using 
similar concepts some researchers incorporated knowledge in 
textural measures (Paudyal et al., 1994; Simman, 1997).  
 
Smits and Annoni (1999) used no prior information but derived 
knowledge, automatically from a selected region, to select the 
best feature which can distinguish object from its neighbours. 
Jinghui et al. (2004) also used GIS prior information to extract 
building from Quickbird imagery using fuzzy connectedness 
algorithm.  
 
Poggi et al. (2005) used tree structured MRF model in 
incorporating prior knowledge for supervised segmentation. 
Benz et al. (2004) also showed how expert knowledge can be 
included in segmentation based fuzzy classification.  
 
Prior knowledge is incorporated in mathematical models by 
using class distribution information. In fuzzy models, it can be 
incorporated as semantic rules (Benz et al., 2004). Prior 
knowledge is specifically useful when for segmentation of 
complex landscape object indistinguishable using texture and 
context. 
 
 

4. CONCLUSIONS 

With the numerous amounts of image segmentation techniques 
presented in this paper, it might be possible to get confused 
regarding what is presented in this paper. Thus, it is important 
to summarize all of those to regain the content of this paper. 

Image segmentation methodologies were categorized in three 
stages. At first stage comes model driven approach and image 
driven approach (mainly based on statistical analysis). The 
second stage corresponds to homogeneity based measure, and 
final category corresponds to mode of operations on an image, 
e.g. edge detection, region growing/splitting. 
 
In model driven approach, object background model is 
insufficient for remotely sensed imagery. Neural model 
generally suffers from complexity regarding decision of 
network structure, proper learning and generalization of 
network. Hence, neural model is not one of the liked approaches 
by most of the researchers. Markov Random Field model has 
attracted quite a decent research in image segmentation. It can 
utilise significant image properties namely, spectral, spatial, 
texture, contexture and prior knowledge. However, MRF lacks 
the integration of shape and size and implementation of MRF is 
very complex. 
 
Fuzzy model has been applied in remote sensing image 
segmentation mostly by means of fuzzy clustering of image or 
fuzzy thresholding. The strength of fuzzy model lies in 
ambiguity resolution. It can easily ensemble itself with neural 
model, MRF model and also histogram thresholding (Chen et 
al., 1997; Caillol et al., 1993; Shankar, 2007).  
 
Multi-resolution (MR)/Multi-scale model is the most widely 
used model in remote sensing image segmentation. It has also 
been incorporated in a commercial software eCognition/ 
Definiens Developer. This model is capable identify object and 
object features at its intrinsic scale which makes object 
extraction of various scales possible (Chen at al. 2009).  The 
problem of MR approach is scale representation and 
information extraction from each scale. The idea of MR 
approach is complex but when appropriately implemented has 
wide usage especially in remote sensing satellite images dealing 
with urban areas.  
 
Watershed model based on mathematical morphological 
operators is another budding technology with respect 
application in remote sensing image segmentation. Further, 
research on this approach is required. 
 
Homogeneity measures described in this paper are spectral, 
spatial, texture, shape, size, contextual, temporal and prior 
knowledge. Spectral measure is the most primitive one and 
quite long it has been realised that this alone wouldn’t be able to 
deal with high resolution satellite imagery (Zhong et al., 2005). 
The second most widely applied homogeneity measure is based 
on texture. Texture segmentation is more successful because it 
inherits spectral and spatial properties in itself. However, this 
would still not yield a perfect segmentation. A better 
segmentation would require a model or methodologies which 
utilise most of the above mentioned measures to calculate 
region homogeneity or heterogeneity threshold. Integration of 
prior knowledge and contextual information has seen quite a 
good research in segmentation. 
 
The selection of segmentation approach depends on what 
quality of segmentation is required. Further, it also depends on 
what scale of information is required. Few examples, based on 
done literature review in this paper, would be stated now to 
illustrate the idea. For urban GIS applications objects at 
different scale are required. For landuse coarse scale 
segmentation is required whereas for land cover fine scale. 
Hence, multi-resolution model would be the best choice. For 
highly textured image MRF model might be the good choice. 
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Fuzzy model would be good choice to represent ambiguity of 
region boundaries. Neural model would be good choice no prior 
distribution can be assumed and not very high quality object 
information is required. Among homogeneity measures, 
spectral, shape, size, scale, compactness and texture should be 
concerned when complex landscapes are to be analyzed.  

As a part of future recommendation, some of the mentioned 
approaches in this paper should be implemented to look how 
each behaves on same image. Behaviours with images of  
different spatial resolution would be quite interesting. Further, 
addition of existing quantitative analysis of recent segmentation 
evaluation techniques would be quite helpful. 
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ABSTRACT:

In this paper, a damage assessment system of GIS-objects such as roads and buildings after natural disasters is presented. The main
contribution is the integration and exploitation of multi-temporal imagery leading to a more robust assessment of infrastructural objects.
In addition, the chronological development of the assessedobjects is investigated. The multivariate alteration detection method is used
to detect changes between different time points in conjunction with the classification of different changes realized via Gaussian mixture
models. Further accessorily introduced information are derived from GIS, in particular DEM belief functions. The strategy of the
proposed approach is the combination of the computed probabilities using individual appropriate methods. The goal of the system is
the assignment of GIS-objects into different damage assessment categories as intact or not intact/destroyed using thefused information
from multi-temporal multi-sensorial data. The system is tested at a test scenario assessing roads concerning their trafficability. The
results show the improvement of the damage assessment system after the integration of multi-temporal information.

1. INTRODUCTION

In this paper, an assessment system of GIS-objects is presented
using multi-sensorial and multi-temporal imagery after natural
disasters. The focus of this article is the multi-temporal com-
ponent, because the integration of imagery from different time
points into an assessment system has several advantages: Firstly,
multi-temporal images provide the opportunity to monitor natu-
ral disaster chronologically during a period of time, not only at a
specific time point. Secondly, the assessment of the GIS-objects
at the time pointt2 can be improved using the results from time
point t1.

Another focus of this article is the automatic information retrieval
from imagery being relevant for rescue teams after natural disas-
ters. Information on the status of the infrastructure afterdisasters
is essential to guarantee an effective and fast disaster manage-
ment. Therefore, the emphasis of this article is the development
of automated methods assessing infrastructural objects such as
roads concerning their functionality.

The precondition ensuring an effective disaster management is
the near-realtime supply of information, because time is the cru-
cial parameter. Therefore, great efforts have been made in order
to speed up the workflow from satellite tracking and data acquisi-
tion to the point of map generation (Voigt et al., 2007). The whole
workflow can generally be passed within 24 hours. Data analy-
sis consisting of information extraction, damage assessment, the-
matic analysis and change detection plays a decisive role inthe
processing chain of the workflow (Bamler et al., 2005). Up to
now a lot of data analysis tasks are done manually which is very
time consuming. Therefore, automation is required to substitute
the manual interpretation. The difficulty is the development of
methods minimizing wrong decisions to avoid fatal consequences
in emergency actions. Possibilities to achieve a low error rate are
semi-automated approaches.

A given fact is the variability of available imagery and GIS data
in case of emergency. For this reason, a basic characteristic of the
presented system is the handling of different input data sources.

∗ Corresponding author.

In this article, a modular system is presented which is able to
deal with varying data sources and provides the embedding ofall
available information.

In Section 2. existing up-to-date damage assessment systems are
presented and categorized inarea-andobject-based systems. In
addition, data fusion techniques with regard to disaster manage-
ment are discussed. Hereupon, the basics of Gaussian mixture
model and a the change detection methods are introduced since
these methods are key elements of the assessment system, which
is described in Section 3. In Section 4. the general system isap-
plied to a test scenario, the shown results are evaluated concern-
ing their quality measure. Finally, further investigations and fu-
ture work is pointed out.

2. STATE OF THE ART AND BASICS

2.1 Damage Assessment Systems

In case of natural disaster it is reasonable to differentiate between
object-basedandarea-baseddamage assessment systems. The
focus ofobject-based systemsis the assessment of infrastructural
objects such as roads or buildings concerning their functionality.
In recent years several systems have been developed estimating
the extent and type of destruction on various buildings. Thedam-
age assessment was realized using different kind of sensorssuch
as LIDAR (Rehor et al., 2008) or satellite images (Chesnel et
al., 2007). But there is a lack of methods assessing transportation
lifelines after natural disasters (Morain and Kraft, 2003). In (Frey
and Butenuth, 2009) a near-realtime assessment system of roads
using GIS-objects and multi-sensorial data is presented. The road
objects are classified into different states and are visualized using
the ample paradigm proposed by Förstner (Förstner, 1996). In
this article, the system is extended by the multi-temporal compo-
nent using change detection methods.

On the other handarea-based systemsfocus on the affected re-
gions. Typical examples are the generation of flood masks de-
rived from different sensors. Besides optical imagery, particu-
larly radar images are suitable for the extraction of inundated ar-
eas. Martinis (Martinis et al., 2009) uses a split-based automatic
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thresholding method to detect flooded areas from TerraSAR-X
data in near real-time.

2.2 Data fusion

In general, the performance of the damage assessment systemcan
be improved by adding additional imagery and data sources. The
additional benefit depends on the way of how the data is com-
bined. Pohl (Pohl and Van Genderen, 1998) differentiate between
three different levels of image fusion: pixel level, feature level
and decision level. The combination of different data sources,
e.g. vector and image data, was discussed in several other contri-
butions, e.g. (Butenuth et al., 2007). Particularly, the integration
of GIS information combined with imagery improves the results
and simplifies the decision makings enormously (Brivio et al.,
2002). Wang (Wang et al., 2002) presents a method for map-
ping flood extend combining optical imagery and DEM. In the
approach, for each data source an individual flood mask is gen-
erated. The final flood mask consists of the set union of the indi-
vidual masks. Considering the DEM as an image this approach
belongs to the decision level image fusion as defined in (Pohl
and Van Genderen, 1998). The presented approach in this arti-
cle combines imagery and DEM, too, to detect flooded areas. In
contrast to the discussed approaches, the aim is the combination
based on probabilities derived from the input data.

2.3 Change Detection: Multivariate Alteration
Detection (MAD)

Change detection algorithms are widely used investigatingthe ex-
tent and damage of natural disasters. A comprehensive review
about change detection methods is given in Lu (Lu et al., 2004).
However, many methods are restricted to specific sensors charac-
teristics. The efficient response in case of natural disaster requires
a change detection method which is able to deal with various
sensors containing a different number of channels. Furthermore,
the influence of changing atmospheric conditions should be min-
imized. The multivariate alteration detection method (MAD) is
invariant to linear transformations which implies the insensitiv-
ity to linear atmospheric conditions or sensor calibrations at two
different times. In addition, the handling of different numbers of
channels is given (Nielsen et al., 1998).

The MAD transformation is based on the canonical correlation
analysis (CCA). The CCA investigates the intercorrelationbe-
tween two sets of variables unlike the principal component anal-
ysis, which identifies patterns of relationship within one set of
data. LetF = {F1, F2, ..., Fn} andG = {G1, G2, ..., Gm} be-
ing two images with n or m channels(n ≤ m). A linear combi-
nation of the intensities for all channels leads to the transformed
imagesU andV:

U = ~a F = a1F1 + a2F2 + . . .+ anFn

V = ~b G = b1G1 + b2G2 + . . .+ bmGm.
(1)

The goal of the transformation is to choose the linear coefficient
~a and~b minimizing the correlation betweenU andV. This leads
to the result that the difference image between the transformed
imagesU andV will have maximum variance. Due to the fact
that multiples ofU andV would have the same correlation a rea-
sonable constraintvar(U) = 1 andvar(V ) = 1 is chosen:

var(U − V ) = var(U) + var(V )− 2cov(U, V )

= 2(1− cov(U, V )). (2)

Using CCA, the linear coefficients~a and~b are determined and the
MAD variatesMi can be calculated (Nielsen et al., 1998):

Mi = Ui − Vi for i = 1 . . . n. (3)

An extension to the MAD transformation is the iterative reweight-
ed MAD (IRMAD) method. Similar to boosting methods in data
mining, an iteration schema focuses on observations whose change
status is uncertain (Nielsen, 2007). Since the MAD or IRMAD
variates can only being interpreted in a statistical mannerthere
is a need to assign semantic meaning to the MAD variates. In
Canty (Canty and Nielsen, 2006) an unsupervised classification
method is proposed based on the MAD variates to cluster pixelin
no-change and one or more change categories.

2.4 Combination of Probability Functions: Gaussian Mix-
ture Model (GMM)

Since the radiometric characteristics of infrastructuralobjects of
the same type could vary strongly, single probability functions
are not able to describe the complex scenes sufficiently. There-
fore, mixture models which combines single functions to a more
complex probability function are used. The resulting probability
functionp(y|θj) is simply a weighted sum of the initial functions
p(y|θj):

p(y|θ) =
k∑

j=1

αjp(y|θj). (4)

Eachθj describes the set of parameters defining thej th compo-
nent,α1 . . . αj are the weights called mixing probabilities and
y = [y1 . . . yd]

T represent one particular outcome of a d-dimen-
sional random variableY = [Y1 . . . Yd]

T. If Y is normal dis-
tributed, Gaussian are typically used. The mixing probabilities
have to fulfill following equations:

αj ≥ 0, j = 1 . . . k, and
k∑

j=1

αj = 1. (5)

The expectation maximization (EM) algorithm is used to deter-
mineαj andθj . A detailed description of mixture models can
be found in McLachlan (McLachlan and Peel, 2000). The min-
imum message length criterion (MML) is one possibility to find
the number of centersj and is used in our system (Figueiredo and
Jain, 2002).

3. ASSESSMENT SYSTEM

In this Section, the general assessment system is presentedus-
ing multi-sensorial multi-temporal imagery and further available
data. The goal is the assessment of GIS-objects categorizing them
into different states.

3.1 System

The design of the system has a modular and very flexible struc-
ture to cope with varying raw data being available in emergency
cases (cf. Fig. 1). Nevertheless, there are some prerequisites
to apply the system. The GIS-objects which should be assessed
concerning their functionality must be given. It is conceivable to
extract the GIS-objects using imagery before the natural disas-
ter takes place or, alternatively, from a GIS. However, in view of
the performance of automatic extraction methods, objects from
a given GIS-database with a guaranteed quality are better suited.
The result of the assessed GIS-objects depends strongly on the
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Figure 1: General damage assessment system.

available input information. Besides the imagery, DEM and fur-
ther GIS-information can be embedded into the system. Here,
this data is called input data.

For multispectral imagery Gaussian mixture models are applied.
Belief functions are introduced to derive probabilities from GIS-
information. If multi-temporal imagery are available change de-
tection methods such as the MAD algorithm are used to derive
probabilities. The combination of the different input datais car-
ried out in the probability level. All the individual methods and
the combination of the probabilities are realized at pixel level. In
contrast, the subsequent assignment of GIS-objects to the cate-
goriesintact, possibly intactor not intact/destroyedusing a max-
imum likelihood estimation is object-based (cf. Fig. 1).

3.2 Methods and Combination of Probabilities

For each input data individual methods have to be applied to de-
rive individual probabilities if the infrastructural objects are intact
or not (cf. Fig. 1). Given multispectral imagery as input data a
multispectral classification is carried out. The infrastructural ob-
jects are classified to different classes relating to the categories
intact, possibly intactand notintact/destroyed. Since a lot of
classes like roads have no consistent radiometric characteristic
as shown in Figure 2 and Figure 3, GMM are used to deal with
the different subgroups of the classes. The resulting probabilities
from the mixture modelpimg are combined with probabilities
from further input data (cf. Fig. 1).

The availability of images at different time points enablesthe us-
age of change detection methods exploiting additional assessment
criteria. The IRMAD algorithm enables the detection of changes
caused by natural disasters. The resulting IRMAD-variatesare
classified using a supervised multispectral classification. For the
different change-classes, i.e. ’intact⇒ destroyed’ probability
functions are generated. These probabilitiespmad are embedded
into the assessment system. In Figure 4(c) three IRMAD vari-
ates are shown as an RGB-color image obtained from IKONOS-
images at timet1 (cf. Fig. 4(a)) and timet2 (cf. Fig. 4(b)). In
this example of a flood event the changed areas from flooded to
not flooded are illustrated in pink, the gray color stands forno
change (cf. Fig. 4(c)).

Figure 2: Two-dimensional probability density functions of the
classes forest, water and a combined class road. Exemplarily vi-
sualized via the infrared and green channel.

Figure 3: Two-dimensional probability density functions of the
classes forest, water and separated road-classes (city road, coun-
try road, path and motorway). Exemplarily visualized via the
infrared and green channel.

Additional GIS-information such as DEM is often available hav-
ing the opportunity to enhance the assessment system. Since
the combination of the input data is based on the probability
level, also from the GIS-information probabilities have tobe de-
rived. Belief functions can be generated depending on the GIS-
information. In Figure 5 an example is shown, which depicts the
probability that an object is flooded depending on the altitude.
The combination of the probabilities derived from the different
input data is defined as following (cf. Fig. 1):

ps1 = ps1,img ⊗ ps1,gis ⊗ . . .⊗ ps1,mad

ps2 = ps2,img ⊗ ps2,gis ⊗ . . .⊗ ps2,mad

...
psi = psi,img ⊗ psi,gis ⊗ . . .⊗ psi,mad.

(6)

The probabilitiespsi are the combined probabilities of one status
si. In the easiest case the set of states could beintactor not intact.
But it is also possible to think of different kinds of destruction
states. In addition, weights are introduced since the information
content of the different input data varies:

psi = w1psi,img ⊗ w2psi,gis ⊗ . . .⊗wdpsi,mad. (7)

The number of input data is denoted asd. Finally, the object is
categorized to the statesi with the largest probability.
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(a) IKONOS-scene of flooded area at timet1

(b) IKONOS-scene of flooded area at timet2

(c) Three MAD-variates depicted as an RGB-color image

Figure 4: Change detection using MAD-algorithm.
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Figure 5: Belief functions depending on altitude: area is flooded
(blue), area is not flooded (gray).

4. RESULTS AND DISCUSSION

The presented damage assessment system is applied to a specific
flood scenario. In real case scenarios the availability of input data
is the crucial factor. The derivation of the probabilities given in
Equation 6 is not always possible depending on the availabledata.
On the other side often additional information exist which are
useful to generate additional rules. In real applications the combi-
nation of probabilities is embedded into a rule-based framework
which can differ from case to case.

4.1 Test Scenario

Test scenario is the flooding of the river Elbe (Germany) in the
year 2002. The available input data for the damage assessment
system consists of two IKONOS-scenes (cf. Fig. 4(a) and 4(b))
acquired at the 21th and 26th of August, and a DEM. The peak
of the water level was measured at the 19th of August. The scene
at the timet1 shows almost the maximum inundated area. In the
second scene at timet2 the flooding receded strongly and only
a small area is covered by water (cf. Fig. 4(b), top right). In
addition to the images, a DEM is available with a 10m x 10m
grid with an geometric accuracy of +/- 1m. In this test scenario
road objects given from a GIS-database are assessed concerning
their trafficability.

4.2 Workflow of Rule-based Classification

A detailed workflow of the rule-based assessment system is de-
picted in Figure 6, the input data are illustrated by gray paral-
lelograms. Below these parallelograms the derived probabilities
from the input data are attached in gray rectangles. The combina-
tion of the probabilities is realized in the blue boxes. The goal in
this scenario is the assessment of road segments concerningthe
trafficability at timet2. In addition to the imagery and the DEM
described in Section 4.1, the assessed road segments at the time
t1 are given. They are obtained by means of the described as-
sessment system using very strict parameters. Alternatively, also
a manual generated reference at timet1 could be used. The as-
sessed road segments at timet1 and additional information as the
water level lead to the rule-based framework built on the combi-
nation of the probabilities. The probabilitypimg derived from the
imagery is partitioned into three different probabilitiesbelonging
to a specific class: waterpwater, roadproad, forestpforest. As
shown in Figure 3 the class road is subdivided into subclasses of
roads using GMM. Using a maximum likelihood estimation fol-
lowed by a threshold operation the segment is categorized into
the three statestrafficable, possibly floodedandflooded.

4.3 Evaluation

The obtained results are compared to a manually generated ref-
erence. The information for the generation of the referenceis
only the image at timet2. Therefore, it is not a comparison
with the real ground truth, but it is the comparison of the au-
tomatic approach with the manually interpretation of an human
operator. The reference is also categorized into three different
classestrafficable, possibly floodedandflooded. Since the cat-
egorization of the automatic system consists of the same states
the following four different assignment criteria are determined:
’correct assignment’, ’manual control necessary’, ’possibly cor-
rect assignment’ and ’wrong assignment’. The category ’correct
assignment’ means that the manually generated reference isiden-
tical with the result of the automatic system. In the case of ’man-
ual control necessary’ the automatic approach leads to the state
possibly floodedwhereas the manual classification assigns the
line segments tofloodedor trafficable. The other way around
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Figure 6: Workflow of Rule-based Classification.

denotes the expression ’possibly correct assignment’. ’wrong as-
signment’ means that one result categorize the segment toflooded
and the other totrafficable. The enhancement of the automatic
system by the combined interpretation is shown in Table 7.

t2 t2, DEM t1,2, DEM t1,2,c, DEM

correct 68.40 68.45 69.60 87.14

manual 27.88 27.77 27.48 10.96

possibly 2.64 2.72 2.52 1.79

wrong 1.08 1.06 0.40 0.11

Table 7: Evaluation (percentage shares)

The first column in Table 7 represents the result using only the
imaget2 without any further information. The result with about
1% of ’wrong assignements’ and about 68% ’correct assignment’
is almost identical if an additional DEM as input data is used
(cf. Table 7: t2, DEM ). The reason for the lack of improve-
ment could be ascribed to the bad accuracy of the used DEM.
The influence of the height information is discussed in (Freyand
Butenuth, 2009). The evaluated road segments are depicted in
Figure 8(a). Green road segments correspond to ’correct assign-
ment’, yellow to ’manual control necessary’, cyan to ’possibly
correct assignment’ and red or blue belongs to ’wrong assign-
ment’. If the systems assigns a road segment to the categorytraf-
ficablebut the referencce isfloodedthe road segment is colored
in red. Blue road segments are assigned tofloodedby the system
andtrafficableby the reference.

In Figure 8(b) the result of the third column from Table 7 is vi-
sualized which includes the additional scene at time pointt1 as
input data. The additional scene and the resultant calculated prob-
ability pmad derived from the described MAD method leads to an
improvements of the results. Several red road segments disappear
whereas the ’correct assignments’, the assignments to ’manual
control necessary’ and the ’possibly correct assignments’remains
almost constant.

In Figure 8(c) the results exploiting an additional manually gen-
erated reference from scenet1 are plotted. The numerical eval-

(a) Detail of evaluation using imaget2 and DEM

(b) Detail of evaluation using imaget2, imaget1 and DEM

(c) Detail of evaluation using imaget2, imaget1 with correctly assessed
roads and DEM

Figure 8: Evaluation of assessment system: green=’correctas-
signment’, yellow=’manual control necessary’, cyan=’possibly
correct assignment’, red=’wrong assignment’[system =traffica-
ble, reference =flooded], dark blue = ’wrong assignment’ [sys-
tem =flooded, reference =trafficable].

uation is presented in the forth column of Table 7 (t1,2,c,DEM ).
The results are by far better then the previous obtained results.
The ’correct assignments’ arise from 69% to 87% and the ’wrong
assignments’ decrease from 0.4% to 0.1%. But it is importantto
point out, that a correct reference at the time pointt1 has to be
generated. Nevertheless, it has no influence of the fact thatthe
system is near-realtime since the time consuming generation of
the reference can be done before.

4.4 Result after Data Fusion

The final obtained result using the described damage assessment
system is depicted in Figure 9. All road segments are divided
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into four different categories. Besides the already mentioned cat-
egoriestrafficable(green),possibly flooded(yellow) andflooded
(red) an additional categoryflooded to trafficable(blue) is intro-
duced by means of the change detection algorithm. This addi-
tional category is very useful for rescue teams since it shows the
areas which are again trafficable after flooding.

Figure 9: Detail of result of damage assessment system usingall
available input data: imaget1, imaget2, DEM and manual gener-
ated reference at timet1. (green =trafficable, yellow = possibly
flooded, red =flooded, dark blue =flooded⇒ trafficable).

5. CONCLUSIONS

In this article, the general framework of a damage assessment
system and the benefit of the included data fusion is shown. The
improvement of the results by adding additional available data
is demonstrated in the test scenario. The integration of multi-
temporal imagery leads to an enhancement of the damage assess-
ment system concerning the correctness of the assessed objects
and concerning the additional temporal information which can
provide the rescue teams in emergency actions. Combining this
basis with rule-based approaches which are strongly dependent
on the natural disasters and available input data the overall sys-
tem leads to useful results with a very little rate of ’wrong assign-
ments’.

In future work, the generic system will be tested at more testsce-
narios with different sensors. In particular, the combination of
optical images and radar images should be investigated in more
detail. In addition, the influence of the DEM accuracy has to be
investigated in future work. Besides the radiometric exploitation
of the optical imagery also the geometric features should bein-
troduced as an additional evidence of destructions. A distinction
between different regions of global context should improvethe
results as well. Depending on the global context the required pa-
rameter can be chosen. The automatic setting of the parameters in
the system is currently not included in this paper. Further investi-
gations have to be done to learn suitable parameters automatically
depending on the available data.
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ABSTRACT: 
 
This paper is dedicated to a new method of sea surface significant wave height (SWH) measuring. The method can be applied to 
space-born radar altimeter data. This method is based on the fundamentals of Bayesian optimal measuring of a parameter. The 
correlation function of sea surface echo was used to calculate a state of the art likelihood function of the SWH estimate. Optimal 
discriminator of SWH is developed using the least square error of the SWH estimate criteria, apart from others papers which mostly 
minimize the least square error of altimeter waveform fitting function. Discriminator characteristics are plotted and subsequent 
results are presented as well as potential measurement accuracy calculation results. 
 
 

1. INTRODUCTION 

Circular orbit space-born radar altimeter (RA) is used to 
produce broad field information, e.g. for monitoring of mean 
sea level and sea currents, refining of sea geoid, mapping of sea 
rings and gravitational anomalies, assessing of sea wave height 
and wind, monitoring of sea ices and rains, refining of Global 
Ocean model, some natural gas and mineral oil seeking 
activities at the sea shore, planning of sea freight and fishing, 
etc [Bhatt, 2005; Davis, 1997; Graham, 1998]. 
Optical and radar tools are used to measure an altimeter vehicle 
position with centimetre level error [Blanc et al, 1995]. RA 
emits С and Ku bands pulses to sea surface vertically, usually to 
illuminate a circle several kilometres in diameter [Chelton et al, 
1989], Ka band will probably be used in the future. 
Nowadays RA illuminate radio pulses with duration τp from 
tens to hundred microseconds and pulse power up to tens watts. 
Also linear frequency modulation is used with up to Δfs=320 
MHz spectrum bandwidth (480 MHz will probably be used in 
the future), i.e. so-called chirp pulse. The spectrum bandwidth 
is restricted not only by technical issues, but also by the effect 
of ionosphere dispersion [Min Ho Ka and Baskakov, 2004]. 
Parabolic reflector receive-transmit antenna is usually used for 
RA with a beam width of 1°-2°, and the maximum permissible 
antenna pointing error is one quarter of the beam width. 
Apparently world-famous paper dedicated to the first space 
altimeter experiment was [McGoogan et al., 1974] and then 
probably the most referenced paper discussing the echo model 
was [Brown, 1977] followed by [Hayne, 1980]. 
There are known algorithms of retrieving geophysical 
parameters, including SWH, from RA data. Some of them 
involve intuitive evident method of assessing of altimeter 
waveform leading edge slope [Chelton et al, 1989; Tucker, 
1991; Sujit Basu and Pandey, 1991], others involve maximum 
likelihood estimation [Rodriguez and Chapman, 1989; 
Challenor et al., 1990] which can actually be called a fitting 
algorithm. But there is not enough information about using the 
fundamental Bayesian optimal method though a very brief 
paper was published [Mailhes et al, 2008].  
This paper describes a developed algorithm of SWH estimation 
for RA based on the Bayesian method. 

2. CORRELATION FUNCTION OF ECHO 

By applying the Gaussian facet model of sea surface one can 
see that the echo is subjected to fast and slow fluctuations. The 
fast fluctuations of echo signal occur when RA-emitted radio 
wave leading edge crosses sea surface facets, which provides 
random initial phases of echoes. The slow fluctuations occure 
when the reflecting area increases during the sensing pulse. It 
was shown [Baskakov et al, 2007] that correlation interval of 
the echo fast fluctuations at the input of the RA receiver is 
inversely proportional to the compressed pulse duration (almost 
during the whole duration) therefore the de-chirp technique of 
receiving may be used as an optimal in the signal to noise ratio 
criteria meaning. The echo slow fluctuations calculation [Min 
Ho Ka and Baskakov, 2004] allowed the selection of sensing 
pulse repetition interval. It was shown [Baskakov et al, 2007] 
that for space-born altimeter correlation function of RA echo at 
the matched filter (MF) output can be presented as a product of 
two independent functions 
 
 
 [ ])exp()()(Re),( 0τωτρτ jtPPtR nm −=    (1) 
 
 
where Pm – maximum power of the echo at the output of the 
MF, Pn – normalized by Pm averaged form of the power of the 
signal at the MF output, ρ(τ) – a fast changing function in 
comparison with Pn(t) differing from the chirp auto-correlation 
function by an exponent, ω0 – centre frequency of RA sensing 
pulse. 
Theoretically the RA receiver can be based on a MF, processing 
the echo in the time domain, or based on a de-chirp scheme, 
processing the echo in the frequency domain. These two 
schemes are equal in theory, but in practice the second variant 
is deployed more. In the time domain, the MF output signal 
power can be presented [Baskakov et al, 2007] as 
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where b – parameter depending on the antenna beam width, 
antenna pointing error and sea surface roughness; μ – parameter 
depending to the sea surface wave height supposing that facets 
ordinates probability density is Gaussian and 
 
 

 2

2

2
21

⎟
⎠

⎞
⎜
⎝

⎛+
Δ

=
cf

z

s

σ
π

μ    (3) 

 
 
c – light velocity; σz – sea surface facets standard deviation, 
which can be recalculated into the significant wave height 
(SWH) H1/3 = 4σz [Chelton, 1989; Baskakov et al, 2007]; 
Φ1(x)– probability integral divided by 2. 
When processing the echo in the frequency domain the average 
power spectrum of the signal at the de-chirp mixer output 
accounting for side lobe correction can be calculated as Fourier 
transform of the two-dimension correlation function (1) and 
after normalizing by maximum value of power spectral density 
Sm can be presented as [10] 
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where k – frequency slope in the sensing pulse and the 
frequency axis f is shifted by the intermediate frequency value 
fint. 
Altimeter waveform is the average power form of the echo at 
the MF output as well as the average power spectrum density at 
the de-chirp mixer output. The vehicle height above the sea 
surface, SWH, sea surface backscattering coefficient σ0 and 
antenna pointing error relate to the offset and the shape of the 
waveform [Baskakov et al, 2007], therefore they can be 
revealed by processing the waveform. Practically the most 
demanding part of the process is fulfilled by on-Earth centres 
[Zigna et al, 2001]. 
 
 

3. OPTIMAL DETECTION 

According to the theory of statistical radio location there must 
be a detection process before measuring. After resolving an 
according Fredholm equation the logarithm of likelihood 
function for RA was presented in [Grishechkin and Baskakov, 
2007] as 
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where ξ(t) – input signal, )( τ−
•

th f  – pulse response 
characteristic of the MF, q(t) – current ratio of the echo power 
to the power spectral density of the RA receiver noise (N0) at 
the MF output, T – duration of the echo, C0 – a constant which 
does not depend on the echo. 
 

4. OPTIMAL ESTIMATION 

A discriminator is the key unit of any tracking measuring 
scheme. The main task for RA is to measure its altitude. Height 
discriminator analysis was presented in [Baskakov, 1994] and 
other papers. This paper presents analysis of SWH 
discriminator. 
The output signal of an optimal (meaning the least square error 
of the estimated parameter) discriminator is determined by the 
measuring parameter derivative of the likelihood function 
logarithm (5). The optimal discriminator algorithm was 
mathematically calculated assuming that other parameters of 
the waveform were fixed. Then the influence of other 
parameters variation was assessed. Mathematically it was 
preferable to differentiate (5) by parameter μ (3) instead of 
SWH value. Parameter μ can be recalculated into standard 
deviation of sea surface facets ordinates σz and then into SWH 
as mentioned above. 
As well as to processing waveform in the time domain 
[Grishechkin et al, 2008] it can be shown that for processing in 
the frequency domain the discriminator characteristic has the 
following formula 
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where the discriminator reference function has the following 
formula 
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and the signal to noise ratio in the bandwidth of one filter of the 
spectrum processing unit corresponding to the highest point of 
RA waveform has the following formula 
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where ΔFc is inversely proportional to the correlation interval of 
the fast fluctuations mentioned above. 
Equations (6) and (7) were used to plot the series of 
discriminator characteristics, see figure 1. The characteristics 
are plotted as a function of δf error determined by the current 
altitude error. The 1 kHz step of δf corresponds to 10 cm step of 
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altitude. Other parameters are fixed: vehicle orbit height h = 
1000 km, Δfs=320 MHz, τp=102.4 μs, qm = 20 db, true standard 
deviation sea surface facets ordinates σz tr = 1 m. 
Having (6) and (7) one can calculate the correlation function of 
the discriminator output signal and then calculate the spectrum 
of the output signal, which, at zero frequency, is equal to the 
standard deviation of the estimate of μ. The resulting standard 
deviation of the estimate of sea surface facets ordinates σz, 
which can be recalculated to SWH, is plotted in figure 2. 
 

 
 

Figure 1.  Sea wave height estimator discriminator 
characteristic series, 1 – δf=-2 kHz; 2 – δf =-1 kHz; 3 – δf =0 

kHz; 4 – δf =1 kHz; 5 – δf =2 kHz 
 
 

 
 

Figure 2.  Potential accuracy of single measurement of 
parameters μ and σz,  

1 – σz tr = 1 m; 2 – σz tr = 2 m; 3 – σz tr = 4 m 
 
Usually homogeneous sea surface roughness area is about 100 
km or more, therefore it is adequate to average SWH 
measurements for about 4 seconds. If the pulse repetition 
frequency is 1 kHz and σz tr is from 1 m to 4 m and signal to 
noise is 20 db then averaging for 4 s can provide less than 1 cm 
error of σz measurement, i.e. 4 cm error for SWH. 
 
 

5. CONCLUSION 

This paper and our previous papers reach the following 
conclusions: 
1. Systematic error of optimal RA discriminators for SWH 
measurements depends on altimeter altitude error. 

2. Optimal discriminator demands compensation of noise 
component of the discriminator output signal which can be 
provided by processing of RA input “signal” when there is no 
echo (e.g. before emitting the next pulse). 
3. SWH measurements accuracy can not be reduced lower then 
the limit determined by the natural irreducible fluctuations of 
RA echo which caused by the random character of sea surface 
reflection. As expected, optimal discriminator for SWH 
estimator developed by using the Bayesian method is the most 
accurate of all the published. 
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CLASSIFICATION OF SETTLEMENT AREAS IN REMOTE SENSING IMAGERY
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ABSTRACT:

Land cover classification plays a key role for various geo-based applications. Numerous approaches for the classification of
settlements in remote sensing imagery have been developed. Most of them assume the features of neighbouring image sites to be
conditionally independent. Using spatial context information may enhance classification accuracy, because dependencies of
neighbouring areas are taken into account. Conditional Random Fields (CRF) have become popular in the field of pattern
recognition for incorporating contextual information because of their ability to model dependencies not only between the class labels
of neighbouring image sites, but also between the labels and the image features. In this work we investigate the potential of CRF for
the classification of settlements in high resolution satellite imagery. To highlight the power of CRF, tests were carried out using only
a minimum set of features and a simple model of context. Experiments were performed on an Ikonos scene of a rural area in
Germany. In our experiments, completeness and correctness values of 90% and better could be achieved, the CRF approach was
clearly outperforming a standard Maximum-Likelihood-classification based on the same set of features.

* Corresponding author.

1. INTRODUCTION

1.1 Motivation

The detection of settlement areas in satellite imagery is the basis
for many applications, e.g. regional planning, the observation of
urban expansion, or disaster prevention and management. In
optical remote sensing images settlement areas have a
heterogeneous appearance because they consist of a large
number of different objects such as buildings, trees, and roads.
The variety of these objects results in specific local patterns in
the images. Whereas these patterns make a spectral
classification of such areas very difficult, they can at the same
time be exploited to improve the classification result if they are
properly modelled. It is the main goal of this paper to model the
contextual information contained in the local patterns of image
features to improve the accuracy that can be achieved in the
classification of settlement areas. In order to do so, we want to
use Conditional Random Fields (CRF) (Kumar & Hebert, 2006)
because of their ability to consider contextual relations between
both the class labels and the observed image features of the
image sites (i.e., pixels or segments). For this purpose, we will
use radiometric and texture features from multispectral Ikonos
data, i.e. from imagery having a resolution of 4 m. The
parameters of the CRF will be learned from training data, and
we will assess the effects of using the context information on
the classification results.

1.2 Related Work

The methods that can be applied to detect settlement areas in
satellite images depend on the resolution of these images. In
images having a resolution better than about 2.5 m, a settlement
is decomposed into buildings, roads, vegetation, and other
objects. Various classification techniques have been proposed
to extract these object classes, e.g. (Gamba et al., 2007). In

images of 2.5 – 10 m resolution, which are our main interest
here, the individual objects can no longer be discerned except
for large structures. Buildings, roads, and urban vegetation are
merged into a class ‘settlement’ which is characterized by a very
heterogeneous distribution of the spectral components of the
respective pixels. Hyperspectral data may help to overcome this
problem (Herold et al., 2003), but the more common approach
is to introduce textural features into classification, because they
are better suited to characterize settlements, e.g. (Cheriyadat et
al, 2007; Zhong & Wang, 2007). Various textural features have
been used for urban classification, e.g. features based on the
Grey-Level Co-occurrence Matrix (GLCM) (Smits & Annoni,
1999; Cheriyadat et al., 2007; Zhong & Wang, 2007),
normalised grey-level histograms (Shackelford & Davis, 2003),
or features related to the distribution of gradient orientation
(Zhong & Wang, 2007).

These features can be used in any classification scheme. In a
Bayesian statistical setting, the features of individual image sites
are considered to be conditionally independent, which leads to a
separate classification of each of the individual sites (Bishop,
2006). This approach has been found to lead to a salt-and-
pepper-like appearance of the classification results. In order to
improve the situation, context can be taken into account in the
classification process. The simplest way of doing so is by post-
processing the original classification results, taking into account
the distribution of class labels in a local neighbourhood, e.g.
(Gamba & Dell’Acqua, 2003). A more sophisticated approach
uses statistical models of context. Among these, Markov
Random Fields (MRF) (Besag, 1986) have found many
applications in pattern recognition and remote sensing, e.g.
(Tupin & Roux, 2005; Gamba et al., 2007). MRF can be used
for representing texture, e.g. (Paget & Longstaff, 1998). In a
Bayesian context, the main contribution of MRF is to act as a
smoothness term on the class labels via a model for their local
statistical dependencies (Besag, 1986; Kumar & Hebert, 2006).
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The features extracted from different sites are still assumed to
be conditionally independent, and the interaction between
neighbouring image sites is restricted to the class labels.
Conditional Random Fields (Kumar & Hebert, 2006) were
developed to overcome these restrictions. CRF provide a
discriminative framework that can also model dependencies
between the data and interactions between the labels and the
data. In their experiments with man-made structure detection in
natural terrestrial images, Kumar and Hebert (2006) could show
that CRF outperform MRF.

Up to now, hardly any work has been done on classifying
remotely sensed data using CRF. Zhong and Wang (2007)
analyse images from Quickbird and SPOT with a multiple CRF
ensemble model for the detection of settlement areas. They
apply CRF to five groups of texture features and then fuse these
results. The fusion process itself is based on a MRF taking into
account the conditional probabilities provided by each of the
CRF. Lu et al. (2009) use CRF on LiDAR data for
simultaneously classifying the LiDAR data into terrain- and off-
terrain-points and estimating a Digital Terrain Model from the
off-terrain points. He et al. (2008) use CRF for building
extraction from SAR data. Of these works, our new method is
most closely related to (Zhong & Wang, 2007). However, our
model is simpler because it only employs a single CRF that is
applied to a feature vector taking into account radiometric and
textural characteristics of the image. As the local dependencies
of image data and class labels are modelled by a CRF in a very
general way (Kumar & Hebert, 2006), we do not think it is
necessary to use a MRF in order to fuse the output of a set of
CRF. In our experiments, the effects of including a statistical
model of context based on CRF on the classification results will
be assessed by comparing the results of our new method to a
standard maximum likelihood classification based on the same
set of features. The main focus of this paper is on the benefits of
using CRF for modelling context in classification and not on
finding an optimum set of features for describing settlements.

2. MODELLING CONTEXT IN CLASSIFICATION
USING CONDITIONAL RANDOM FIELDS

In many classification algorithms the decision for a class at a
certain image site is just based on information derived at the
regarded site, where a site might be a pixel, a square block of
pixels in a regular grid or a segment of arbitrary shape. In fact,
the class labels and also the data of neighbouring sites are often
very similar or show characteristic patterns. Incorporating
contextual information of neighbouring sites should improve
the classification accuracy. The method described in this paper
uses CRF for that purpose. In this section we want to give a
brief overview on the CRF framework that is based on (Kumar
& Hebert, 2006) and (Vishwanathan et al., 2006).

2.1 Conditional Random Fields (CRF)

The classification problem to be solved can be described as
follows. We have observed image data y. The image consists of
image sites i  S, where S is the set of all image sites. For each
image site we want to determine its class xi from a set of pre-
defined classes. The class labels of all image sites can be
combined in a vector x whose ith component is the class of an
individual image site i. Probabilistic classification methods
determine the class labels so that they maximise the conditional
probability P(x | y) of the class labels x given the observed
data y. CRF provide a discriminative framework for directly

modelling P(x | y), which reduces the complexity of the
involved models (Kumar & Hebert, 2006):

 1
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i i ij i j
i S i S j N

P( ) exp A ( x , ) I x ,x ,
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x y y y (1)

In Equation 1, i  S is the index of an individual image site, Ni

is a certain neighbourhood of image site i, and thus j is an image
site that is a neighbour to i. Z is a normalisation constant
required to make P(x | y) a probability. The exact determination
of Z is computationally intractable, which is the reason why
approximate methods have to be used to determine the
parameters of the model in Equation 1 and to maximise P(x | y)
in the classification stage. In the exponent of Equation 1, the
association potential Ai links the class label xi of image site i to
the data y. Unlike with MRF, the association potential for an
image site i may depend on the entire image y. Thus, the data
from neighbouring image sites are no longer considered to be
conditionally independent. The second term in the exponent of
Equation 1 is the interaction potential Iij. It is responsible for
modelling the dependencies between the labels xi and xj of
neighbouring sites i and j and the data y. This dependency of
the interaction potential on the data is the second advantage of
CRF over MRF. In MRF the interaction terms just depend on
the labels, so that in many applications they only act as a kind
of smoothness prior on the labels (Kumar & Hebert, 2006).

Any application of the CRF framework has to define what
constitutes an image site and which classes are to be discerned.
Furthermore, a model for the association and interaction
potentials has to be found. We choose the image sites to be
square blocks of pixels in a regular grid. The side length s of
these squares is a parameter to be set by the user. We are only
interested in a binary classification, so xi  {-1; 1}, where xi = 1
means that image site i belongs to class settlement and xi = -1
means that it belongs to the background. We model the CRF to
be isotropic and homogeneous, hence the functions used for Ai

and Iij are independent of the location of image site i.

2.2 Association Potential

The association potential indicates how likely a site i is to
belong to a label xi given the observed data y and ignoring the
other image sites. Kumar and Hebert (2006) suggest local
discriminative classifiers for modelling the association potential
by linking the association potential to the conditional
probability P’(xi | y) of class xi at image site i given the data y:

   i i iA x , =log P' xy y (2)

The image data y are usually represented by image features that
are determined from the original grey levels of the image. In
order to put into practice the dependency of the association
potential from the whole image, Kumar and Hebert (2006)
define a site-wise feature vector fi(y) which, though being
computed specifically for site i, may depend on the entire image
y; usually the feature vector will be influenced by the data in a
local neighbourhood that is not identical to the neighbourhood
used for the interaction potential. Kumar and Hebert (2006)
suggest using general linear models for P’(xi | y). For that
purpose a feature space mapping (f) is required. It transforms
the site-wise feature vectors fi(y) into another feature space of
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higher dimensions so that the decision surface becomes a
hyperplane. Let hi(y) = (fi(y)) be the site-wise transformed
feature vector, with (fi(y)) = [1, 1(fi(y)), … N(fi(y))]T and
k being arbitrary functions. The dimension of the transformed
feature space is N + 1. In a generalised linear model, the
conditional probability P’(xi | y) is described by Equation 3:

 
  i

i i-x

1
P' x =

1+e
w h y

y
T

(3)

where w is a vector of dimension N + 1. Its components
describe the weights of the transformed features. These weights
are the parameters of the association potential that have to be
determined in a training phase. Fixing the first component of
hi(y) to 1 accommodates the bias parameter in the linear model
in the exponent of Equation 3 (Bishop, 2006).

2.3 Interaction Potential

The interaction potential is a measure for the influence of the
data y and the neighbouring labels xj on the class xi of site i. It
can be linked to the conditional probability P”(xi = xj | y) for the
occurrence of identical labels at sites i and j given the data y:

ij i j i jI (x ,x , )=log P''(x x )y y (4)

In the interaction potential, the data are represented by site-wise
feature vectors i(y), which may have a different functional
form than the vectors fi(y) used for the association potential in
order to accommodate features that are typical for
neighbourhood dependencies. From the feature vectors i(y)
and j(y) of two neighbouring sites a new vector of relational
features ij(y) = ij(i(y), j(y)) can be derived. Kumar and
Hebert (2006) suggest concatenating the two vectors i(y) and
j(y) or using some distance function. The interaction potential
can be modelled as

T
ij i j i j ijI (x ,x , )=x x ( )y v μ y (5)

In Equation 5, the vector v contains the feature weights. They
are the parameters of the model of the interaction potential and
have to be determined by training. Kumar and Hebert (2006)
give a geometric interpretation of the interaction potential: It
partitions the space of the relational features ij(y) betweens the
pairs that have the same class labels and pairs that have
different labels. Thus, unlike with the well-known Ising model
for MRF (Besag, 1986), it will moderate smoothing of
neighbouring labels if there is a discontinuity of the features
between the two sites.

We use i(y) = fi(y), i.e. the features used for the interaction
potential are identical to those used for the association potential.
Furthermore, the component-wise absolute differences are used
for the relational features ij, i.e. ij(y) = [1, |fi1(y) -
fj1(y)|, … |fiR(y) - fjR(y)|]T, where R is the dimension of the

feature vectors fi(y) and fik(y) is the kth component of fi(y). The
neighbourhood Ni of image site i consists of the four
neighbouring image sites.

2.4 Parameter Learning and Classification

The parameters of the model for P(x | y) are the weights w and
v of the association and interaction potentials, respectively.
They can be combined to a parameter vector  = [wT, vT]T that
has to be estimated from training samples, i.e. a set
Y = {y1, … yM} of M training images for which the class labels
X = {x1, … xM} are known. If the parameters  are known,
classification can be performed by maximising P(x | y)
according to Equation 1. However, exact inference is
computationally intractable for CRF (Kumar & Hebert, 2006).
Vishwanathan et al. (2006) compare various methods for
inference on CRF and come to the conclusion that Loopy-
Belief-Propagation (LBP) (Frey & MacKay, 1998), which is a
standard technique for performing probability propagation in
graphs with cycles, provides the best results. It is thus used for
classification in this work. In order to determine the parameters
, P(x | y) is interpreted as P(x | y, ), and  is estimated so that
it maximises the conditional probability P( | X, Y) or minimises
the negative log-likelihood L() = -log(P( | X, Y)). An
optimisation method that is frequently used is the BFGS Quasi-
Newton method (Nocedal & Wright, 2006). If applied to
minimise L(), it requires the computation of the gradients of
L(), which in turn requires the selection of an approximate
inference method (Vishwanathan et al., 2006). Following
Vishwanathan et al. (2006), we use BFGS together with LBP
for the simultaneous estimation of w and v.

3. FEATURE EXTRACTION

In order to apply the CRF framework, the site-wise feature
vectors fi(y) that are used both for the association and the
interaction potentials must be defined. It has to consist of
appropriate features that can help to discriminate settlements
from the background. In our application, we use two groups of
features, namely gradient-based features fgi(y) and colour-based
features fci(y). Thus, the site-wise feature vector for site i
contains both groups: fi(y) = [fgi(y)T, fci(y)T]T. Both fgi(y) and
fci(y) contain features computed at two different scales 1 and
2. At scale 1, they are computed taking into account only the
pixels inside the image site i (which is a square box of s x s
pixels), whereas at scale 2 the pixels in a square of size 2 · s
centred at the centre of image site i are taken into account.
Hence we do not only consider information derived at site i for
the site-wise feature vectors fi(y), but we also model
dependencies between the image information of neighbouring
sites. Of course, this principle could be expanded to a larger
number of scales.

3.1 Features Based on Gradients

For determining the gradient-based features, we start by
computing the gradient magnitude (Figure 1) and orientation for
each pixel of the input image. All the gradient-based features
are derived from a weighted histogram of the gradient
orientations computed for each image site at both scales. Each
histogram has 30 bins, so that each bin corresponds to an
orientation interval of 6° width. Each bin contains the sum of
the magnitudes of all gradients having an orientation that is
within the interval corresponding to the bin. Summing over the
magnitudes and not just counting the numbers of gradients
falling into each bin is necessary to maintain the impact of
strong magnitudes.
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Three examples for histograms of different land cover types are
shown in Figure 2. It shows that due to the heterogeneity of
settlement areas, there are several strong peaks in this class,
whereas cropland is nearly homogeneous and has a histogram
showing low magnitudes. Thus, that mean MG and the variance
VG of the histogram magnitudes are chosen as features to
distinguish between textured and homogeneous areas. The third
example in Figure 2 shows a road passing through cropland. In
such a situation, the histogram shows only one strong peak as
opposed to the settlement, where a larger diversity of
orientations and thus a larger number of peaks can be observed.
Thus, the number of bins NG with values above the mean was
selected as the third gradient-based feature. All the features are
normalised so that the values are in the interval [0, 1]. The
gradient based feature vector fgi(y) of image site i consists of six
elements (three for each scale): fgi(y) = [MGi

(1), VGi
(1), NGi

(1),
MGi

(2), VGi
(2), NGi

(2)]T, where the upper index indicates the
scale. We also tried to use the main orientation of the image site
and the angle between the two largest peaks of the histogram as
additional features. Neither modification resulted in any
significant improvement of the classification performance.

Figure 1. Gradient magnitude image of the test area.

3.2 Features Based on Colour

Figure 2 shows that in settlement areas we can expect a large
variation of colours, whereas other land cover classes show a
more homogeneous appearance. We carry out an IHS
transformation and then proceed by analysing the hue image
(Figure 3). For each image site i we compute the variance of the
hue VH at both scales and normalise it so that its values are in
the interval [0, 1]. The colour based feature vector of image site
i has two components, namely VH for both scales:
fci(y) = [VHi

(1), VHi
(2)]T. We also tried to use the mean hue as an

additional feature, but it did not improve our results. We also
tried to use other bands or combinations of bands, but using the
hue band showed better performance than any other single
band, and the consideration of other bands did not improve the
results significantly while increasing the computational costs.

3.3 Feature Space Mapping

The site-wise feature vectors fi(y) have a dimension of 8. As in
(Kumar & Hebert, 2006), the transformed feature vectors hi(y)
are obtained by a quadratic expansion of the feature vectors fi(y)
so that the functions k(fi(y)) include all the l = 8 components
of fi(y), their squares and all their pairwise products. The
dimension of the transformed feature vectors hi(y) is
l + 1 + l · (l + 1) / 2 = 45. In case of the interaction potential, no
feature space mapping is used. The dimension of the relational
feature vectors ij(y) is 9. Using a feature space mapping for
these relational feature vectors degraded the results in our tests,
maybe because the feature space becomes too high-dimensional.

4. EXPERIMENTS

For our experiments we used the RGB bands of a multi-spectral
Ikonos scene of a rural region near Herne, Germany. The
resolution is 4 m. Two test areas having a similar type of land
cover were cut out of the scene, each covering an area of
3.2 x 2.0 km2. Ground truth was obtained by manually labelling
these test areas on a pixel-level. In order for an area to be
labelled as a settlement, it had to contain at least four houses;
smaller groups of houses were ignored. One of the test areas
and the related ground truth were used for training, whereas the
other one served as our test scene. For the test scene, the ground
truth could be used to evaluate the results.

Figure 2. Gradient orientation histograms and the image
patches they were computed from (s = 20 pixels).
Upper row: settlement; centre: cropland; last row:
cropland intersected by a road.

Figure 3. Hue image of the test area.

After having defined the size s of an image site, the features and
the class labels were determined for all the image sites of the
training area. An image site was labelled as belonging to class
settlement if more than 50% of its pixels belonged to the
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settlement class. The features and the class labels for the image
sites of the training area were used to determine the parameters
of the CRF. After that, the test scene was also subdivided into
image sites of size s, the features were extracted for all image
sites, and the parameters learned from the training data were
used to determine the class of each image site by maximising
P(x | y) using LBP. A reference classification was determined
from the ground truth in the same way as the class labels for
training were generated, i.e. by majority voting of the pixels in
each image site. After that, completeness, correctness and
quality (Heipke et al., 1997) were computed based on a
comparison of the class labels of the image sites.
This procedure was applied using three different block sizes s,
namely s = 4, 10, and 20 pixels, which resulted in 25000, 4000,
and 1000 image sites, respectively. By using different block
sizes, it should be possible to assess the influence of this
parameter on the results. Furthermore, we carried out a standard
Maximum-Likelihood (ML)-classification using s = 4 and
s = 10 pixels and the same features as for the CRF, but only for
the scale 1; using also 2 deteriorated the ML results. In the
ML classification we used a normal distribution for the
likelihood model P(fi(yi) | xi), determining the mean and
covariance function from the training data. A comparison of the
ML classification results and the results achieved by using CRF
should highlight the influence of the statistical model of
context.

The completeness, correctness, and quality achieved for the test
scene in our experiments are shown in Table 4. The CRF-based
method achieves completeness and correctness values of 90%
and better in all cases except for s = 4, where completeness is
slightly smaller. In comparison, the ML method also achieves
90% completeness, but correctness is very low (76%) for s = 10
pixels. For s = 4 pixels, the results are even worse. Using the
CRF framework with its statistical model of context in the
classification process significantly increases the quality of the
results.

Method s [pixel] Completeness Correctness Quality
ML 4 77.6% 68.2% 57.0%
ML 10 90.7% 75.8% 70.3%
CRF 4 89.6% 90.3% 81.7%
CRF 10 92.9% 90.0% 84.2%
CRF 20 94.4% 91.6% 86.9%

Table 4. Evaluation of the classification results achieved for
ML and for CRF using different block sizes s.

Figure 5 shows the ground truth and the results achieved both
for CRF and ML classification for s = 10 pixels. The CRF
results achieved for s = 20 pixels are shown in Figure 6.
Examining these figures, it is obvious that the CRF approach
tends to result in compact shapes. It works very well on the
larger settlement areas. However, the smoothing effects of the
context model cause small settlement areas to be missed. Small
patches of non-settlement areas surrounded by settlement are
also misclassified. These over-smoothing effects indicate that
the impact of the interaction potential might be too strong. On
the other hand, comparing the results of the CRF and ML
classification results in Figure 5, the benefits of considering
context become obvious. The ML results are much noisier.
Large structures in settlements are not correctly detected, and
there are many small false positives related to groups of trees.
For the CRF method, there is a minor effect of the block size on
the quality of the results: using s = 20 pixels, the completeness
is 5% larger than for s = 4 pixels, because the features can be

extracted more reliably if the block size is larger. However, a
larger block size will reduce the level of detail of the results.
Our experiments indicate that a value between s = 4 and
s = 10 pixels might be optimal. Figure 7 shows a part of the test
area for the CRF and ML classification using s = 4 pixels.

Figure 5. Test scene for s = 10 pixels. Class settlement is
superimposed to the image in red. First row: ground
truth; second row: CRF; third row: ML.

Figure 6. Results of CRF classification using s = 20 pixels.
Class settlement is superimposed to the image in red.
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Despite the in general somewhat poorer results of the CRF
approach compared to larger block size, the shape of the
settlement is well-preserved, whereas a reliable classification
can not be achieved using the ML approach.

Figure 7. Section of the results of the Maximum-Likelihood-
classification and the CRF-classification for s = 4.

Our results are quite promising, even more so because they
were achieved using only a small set of features and a relatively
simple model for the interaction potential. Using better features
or a better context model could still improve the results.

5. CONCLUSION AND OUTLOOK

We have presented a new CRF-based approach for the
classification of settlements in high resolution optical satellite
imagery. CRFs allow incorporating contextual information into
the classification process. The focus of this paper was on the
impact of the context information on the classification results
and not on a sophisticated selection of features. Tests on a
multispectral Ikonos scene of 4 m resolution containing
settlement areas of different size have shown that our CRF-
based approach can achieve completeness and correctness
values of over 90% for settlement areas and that it clearly
outperforms ML classification based on the same set of features.
Further research will focus on the extension of the framework to
a classification of an arbitrary number of classes. The necessity
of this already becomes obvious when trying to classify Ikonos
panchromatic data of 1 m resolution with our approach.
Settlements and forests are much harder to distinguish, which
leads to unsatisfactory results. The situation could be improved
by considering at least one more class, namely forest. Moreover
the CRF framework should be applied to the results of a
preliminary segmentation in order to obtain a more precise
determination of the class boundaries. In this way, the problem
of several classes existing in one site could also be reduced.
Another goal for the future is an extension of the CRF
framework to make it applicable to multi-temporal
interpretation by considering spatial as well as temporal context,
e.g. by introducing an additional temporal interaction potential.
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ABSTRACT:

The objective here was to analyse the effects of inventory errors on the prediction of assortment outturn volumes carried out in
current airborne laser scanning (ALS) inventory method and forest-planning simulation computing in Finland. Harvested logging
machine data of 12 clear-cutting stands (5300 trees) in Evo (southern Finland) study area was used as field reference of the study.
Prediction error of assortment outturn volumes contains forest inventory, stem distribution generation, prediction of stem form and
simulation of bucking errors. ALS inventory-related bias in estimated timber assortments ranged from -5.1 m3/ha to 20.5 m3/ha and
RMSE from 6.0 m3/ha to 46.2 m3/ha. Accuracy of the estimated stem distributions varies in different stands. The results showed that
the accuracy of the estimates of timber assortments is considerably poorer than the accuracy of stands mean characteristics.

1. INTRODUCTION

Standwise forest inventory (SWFI) and increasingly ALS
inventory data acts as input data in forest management planning
calculations. After the inventory, stand development and the
effects of silvicultural treatments are simulated, using various
models (e.g. Hynynen et al. 2002). In forest management
computations, the quality of the input data describing the
stand’s present state has a decisive impact on the reliability of
the output results (Haara 2005). The longer the reference
period, the larger the output errors; thus, inaccurate input data
are especially problematic in the case of forestry yield value
determination throughout the rotation period. In addition,
inaccurate input data cause significant nonoptimal losses in
forest planning and forest silviculture if the timing of various
treatments fails due to erroneous input data (e.g. Eid 2000, Eid
et al. 2004, Holopainen and Talvitie 2006, Holopainen et al.
2009).

Airborne laser scanning (ALS) is the most accurate remote-
sensing technique for standwise forest inventory providing
accuracies (RMSEs) ranging between 10% and 27% for the
mean volume at stand or plot level (e.g. Næsset 1997, 2002,
Holmgren 2003, Lim et al. 2003, Packalén and Maltamo 2006,
Holopainen et al. 2008). For comparison, the mean errors of
traditional standwise field inventory (SWFI) used in operational
forest management planning vary for mean volume from 16% to
38% in Finland (Poso 1983, Haara and Korhonen 2004, Saari
and Kangas 2005). Current ALS data acquisition costs are
comparable to those of SWFI. The two main approaches to
deriving forest information from small-footprint ALS data have
been those based on laser canopy height distribution (area-
based method, Næsset 1997, 2002) and individual tree detection
(Hyyppä and Inkinen 1999, Persson et al. 2002, Leckie et al.
2003, Popescu et al. 2003, Maltamo et al. 2004).

Acquisition of forest-planning data is currently in a phase of
radical change. Several forest organizations in Finland are
currently replacing traditional SWFIs with area-level ALS
inventories in which low-density (less than two pulses per m2)
ALS data are used as an auxilliary data source. This new forest
resource information provides new opportunities for forest
management planning and e.g. forest estate valuation but, on the
other hand, also sets new demands on forest development
models and simulation methodologies. It, for example, offers
several alternatives for forming stem distributions.

Area based ALS features can be utilized for the formation of
stem diameter distributions in several ways. One alternative is
to first estimate the mean stand characteristics and then apply
stem distribution models based on theoretical distributions (e.g.
the Weibull distribution). Another alternative is to use ALS
features to directly estimate stem distribution parameters in a
manner proposed and studied by Gobakken & Naesset (2004,
2005), Maltamo et al. (2006), Bollandsås and Naesset (2007) or
by Breidenbach et al. (2008). Third possibility is to utilize stem
distribution series measured for field plots used as reference in
k-NN or k-MSN method (Packalén and Maltamo 2008).

Most of the ALS research in forest inventory has focused on the
estimation of mean characteristics, such as plot or stand mean
height or mean volume (e.g. Naesset 2002, Maltamo et al. 2006,
Holopainen et al. 2008). However, from the standpoint of both
forest value assessment and operative timber harvesting, the
prediction of species-specific assortment outturn volumes,
namely pulp wood and saw wood, is by far the most essential
issue. For example, the economic value of a forest stand cannot
be accurately determined on the basis of total stem volume only.
Instead, information on tree species and the stem distribution is
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required to reliably determine the distribution of the total stem
volume in various assortments.

The significance of tree species-specific estimates in forest-
planning simulation and optimization calculations is
considerable (e.g. Holopainen et al. 2008). It is thus a great
deficit, that the accuracy of tree species-specific estimates is
considerably poorer than mean volume estimate. On the level of
a forest stand (compartment), which generally is the unit of
operations, Packalén and Maltamo (2007) obtained relative tree
species-specific RMSEs from 28% (pine) to 62% (deciduous).
These results are fully comparable to the traditional SWFI
estimation, which is prone to error, as well. Haara and
Korhonen (2004) investigated the accuracy of SWFI in eastern
Finland. Their study showed that on the stand level the relative
RMSE varied from 29% (pine) to 65% (deciduous), while the
relative RMSE of stand mean total volume was 25%.

One problem in examination of timber assortment-level
estimation accuracy of ALS inventory is that it requires
sufficiently accurate ground reference data. In practice, the best
method for acquiring such data is to use measuring data
gathered by logging machines. However, to utilize these kinds
of data as reference data for an ALS inventory, a rather
complicated experimental arrangement is required to
synchronize logging and imaging time schedules and identify
felled trees.

The objective here was to analyse the effects of inventory errors
on the prediction of assortment outturn volumes carried out in
current ALS inventory method and forest-planning simulation
computing in Finland. Harvested logging machine data was
used as field reference of the study.

2. METHOD

2.1 Study area

The research material comprised of 12 clear-cut forest stands
(Table 1) located in an approximately 2000-ha managed
forested area in the vicinity of Evo, Finland (61.19° N, 25.11°
E).

The compartments) were spruce-dominant (83%). The
delineation of all study compartments was checked using global
positioning system (GPS) measurements.

Age BA N Dg Hg Area
Mean 88 18.5 1228 30.5 19.1 1.1
Min 51 12.3 211 22.8 14.4 0.2
Max 123 24.0 9556 37.3 23.6 1.9

Stdev 22 3.1 2771 3.9 3.1 0.6

Table 1. Statistics of age (years), basal area (BA, m2/ha), stem
number (N, 1/ha), mean diameter (Dg, cm), mean height (Hg,

m) and area (ha) of the compartments according to the
standwise field invetory data.

2.2 Logging machine mensurations

Data obtained by the logging machines were utilized in the
study as reference data. The logging machines gathered so
called STM data according to the Standard for Forest Data and
communication (StanForD 2006). An STM file includes data

for each felled tree regarding the logging machine’s position at
the time of felling, stem diameters at 10-cm intervals from the
felling height to the final bucking height, tree species, bucking
parameters (e.q price matrix, demand matrix) and bucked timber
assortment volumes. Bucked assortment volumes include
volumes of saw- (minimum diameter>15 cm) and pulp wood
(minimum diameter ≤ 7 cm).

The logging machine information obtained covered 5300 felled
trees. An STM file was saved for each felled tree producing
commercial timber. STM data were obtained for all trees felled
in clear-cutting compartments. Stem distribution series,
assortment outturn volumes and mean stock characteristics for
each clear-cutting compartment were derived, using stem
diameter and length information present in the STM files.

The diameter at breast-height (dbh) was derived as each stem’s
12th measured diameter (10-cm stump + 120 cm = 130 cm).
Total tree height was estimated, based on the commercial timber
height present in the STM file.

2.3 ALS inventory

The ALS data were acquired in midsummer 2006. The flying
altitude was 1900 m. The density of the pulses returned within
the field plots was 1.8/m2 (only, first, intermediate or last;
1.3/m2 if only or first pulses were considered). A digital
elevation model (DEM) and consequently heights above ground
level were computed by the data provider. Same-date aerial
photographs were obtained with a Vexcel Ultracam digital
camera, as well. The photographs were orthorectified,
resampled to a pixel size of 0.5 m and mosaiced to a single
image covering the entire area. The near-infrared (NIR), red (R)
and green (G) bands were available.

Modelling field reference data for ALS-inventory were gathered
from the study area in midsummer 2007. Treewise field
measurements from 264 fixed-radius (10 m) plots were
collected and plot level characteristics calculated. There was a
1-year gap between the acquisition of ALS data and field
measurements and logging machine measurements; the latest
growth was subtracted.

Several statistical and textural features were extracted from the
ALS data and aerial photographs. The extraction window was
16 x 16 m, which has been used in operative ALS inventories in
Finland. The features included means and standard deviations
of spectral values of aerial photographs and ALS height and
intensity, Haralick textural features (Haralick et al. 1973;
Haralick 1979) derived from spectral values, ALS height and
intensity, and standard texture referring to a set of averages and
standard deviations of spectral values, ALS height and intensity.
The height statistics for the first and last pulses were calculated
as in Suvanto et al. (2005): mean and maximum height,
standard deviation and coefficient of variation of height, heights
at which certain relative amounts of laser points had
accumulated as well as percentages of laser points accumulated
at various relative heights. Only pulses exceeding a 2-m height
limit were included to remove hits to ground vegetation and
bushes. Finally, percentages of points under 2-m in height were
added. The total number of features in the final dataset was 172.
All features were standardized to a mean of 0 and std of 1. ALS-
feature selection was based on the genetic algorithm method
presented e.g. by Goldberg (1989). A reduced set of features (11
features, see Holopainen et al., 2008) was used in the estimation
of stand characteristics.
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The estimation method was k-NN, which has long been used in
Finnish remote sensing -aided forest inventory applications (e.g.
Kilkki and Päivinen 1987; Tokola 1990, Muinonen and Tokola
1990; Tomppo 1991). The nearest neighbours were determined
by calculating the Euclidean distances between the observations
in the n-dimensional feature space. The number of nearest
neighbours was set to 5.

2.4 Determination of stem distributions

Based on mean characteristics obtained by the ALS inventory,
stem distribution series were generated for each study
compartment. Reference stem distribution series were derived
for each compartment, using logging machine STM data. These
series are based on the felled trees and do not include
generation errors. Generation of stem distribution series was
carried out with the SIMO system (Rasinmäki et al. 2009)
incorporating the Weibull distribution for 1-cm diameter
classes. Separate distribution models were applied for pine
(Mykkänen 1986), spruce (Kilkki and Päivinen 1986) and birch
(Siipilehto 1999).

2.5 Determination of assortment volumes

The stem form of each diameter class in the generated stem
distribution series was predicted, using Laasasenaho's (1982)
stem curves. The predicted stem form was then used to
determine assortment volumes for each diameter class. Bucking
was performed, using Näsberg's (1985) dynamic algorithm.

3. RESULTS

3.1 Accuracy in estimation of mean characteristics

ALS inventory results of basal area (BA), mean diameter (Dg)
and mean height (Hg) of clear cut stands were compared to
reference data calculated using logging machine STM data. Bias
and RMSE values are shown in Table 2. Accuracies of the ALS
inventory are at the same level as in previous studies in the
same area (e.g. Holopainen et al. 2008).

BA Dg Hg
ALS Bias 3.5 -2.9 -0.6
ALS Bias-% 17.8 -10.2 -2.8
ALS RMSE 4.5 6 2.6
ALS RMSE-% 22.7 21.2 12.4

Table 2. Accuracy of the ALS-inventory in the logging
compartments, BA (m2/ha), Dg (cm) and Hg (m).

3.2 Accuracy in estimation of timber assortments

Prediction error of assortment outturn volumes contains forest
inventory, stem distribution generation, prediction of stem form
and simulation of bucking errors. The combined effects of all
error sources were examined in this study.

Saw wood Pulp wood
Pine Spruce Birch Pine Spruce Birch

ALS BIAS 8.9 20.5 -1.8 0.2 -5.1 14.6
ALS BIAS% 100.8 19.4 -22.2 5.3 -21.1 123.9
ALS RMSE 19.9 46.2 9.2 6.0 11.5 19.1
ALS RMSE% 225.0 43.7 116.5 142.5 47.1 161.8

Table 3. Accuracy in estimation of timber assortments based on
ALS, m3/ha

Table 3 shows that ALS inventory-related bias ranged from -5.1
m3/ha to 20.5 m3/ha and RMSE from 6.0 m3/ha to 46.2 m3/ha.
Based on these results, it should be noted that accuracy level
ofmean characteristics provided by ALS inventory were not
achieved for timber assortments. The great magnitude of the
pine- and birch-related relative errors is a consequence of the
relatively minor respective logging outturns. A more realistic
view of the effect of inventory error on pine and birch
assortment volumes can therefore be acquired by examining the
absolute accuracy statistics.

3.3 Predicted stem distributions

True stem distribution series were determined by a logging
machine (STM). In addition to the true stem distribution series,
predicted stem distribution series were formed for each clear-
cutting compartment investigated in the study. Predicted series
were generated on the basis of mean stock characteristic output
by the ALS inventory (ALS). The essential results concerning
stem distribution series generation are presented in the stand
level figures 1, 2 and 3.
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Figure 4. Predicted (ALS) and true stem distributions in a
compartment with only slight estimation errors in basal area and

mean diameter.

In figure 4, there is a compartment where basal area is
overestimated by 1.3 m2/ha and mean diameter underestimated
by 0.8 cm. Still, the theoretical stem distribution does not
represent accurately the true stem distribution series which
inflicts errors varying from -3.9 m3/ha to 16.9 m3/ha in tree
species specific saw log volumes and -10.1 m3/ha to 6.0 m3/ha
to respective pulp wood volumes. Both variables basal area and
mean diameter are overestimated, 5.3 m2/ha and 2.1 cm,
respectively, in the stand where stem distributions are presented
in figure 5. Predicted stem distribution cannot describe the real
variation between diameter classes. Errors in species specific
saw log volumes varies from -5.5m3/ha to 53.0m3/ha and
respective pulp wood volumes from -16.4m3/ha to 5.3m3/ha.
Extreme-case is presented in figure 6. Mean diameter has been
underestimated (5.2 cm) as basal area overestimated (2 m2/ha).
That kind of errors lead to totally biased stem distribution and
inaccurate estimation of timber assortments. Errors in species
specific saw log volumes varies from -91.0m3/ha to 47.5m3/ha
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and respective pulp wood volumes from -8.3m3/ha to
27.6m3/ha.
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Figure 5. Predicted (ALS) and true stem distributions in a
compartment where both basal area and mean diameter are

overestimated.
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Figure 6. Predicted (ALS) and true stem distributions in a
compartment, with overestimated basal area and underestimated

mean diameter.

4. DISCUSSION

In the present study we investigated the accuracy of timber
assortment volumes predicted by operational low-pulse, area-
based, ALS inventory and forest management planning
simulation in Finland. Analyses were performed for clear-
cuttings, field reference data consisted of a total of 5300 stems
felled in 12 logging compartments.

Errors in timber assortment level were higher than errors of
clear cut stand’s mean characteristics (see Tables 2 and 3).
When analysing figures 1-3 it can be seen that quality of ALS-
based diameter distribution series has great variance even if
mean characteristics are close to true ones.

The most reliable results for the accuracy of the two inventory
methods were derived for spruce saw timber and pulpwood
assortments, because spruce was clearly the most common tree
species in the clear-cutting compartments. In addition, one must
take into account the fact that since the study data covered
clear-cutting compartments only, the results cannot be
generalized to consider all development classes.

Our results concerning the accuracy of low-pulse ALS
inventory were slightly poorer than the plot-level ALS results in
a study by Peuhkurinen et al. (2008) obtained with a k-NN
method using ALS features and aerial photographs.

Peuhkurinen et al. (2008) obtained relative RMSEs for spruce
saw log volumes of 32.1% and bias of -2.3%, respectively. That
accuracy is somewhat comparable with our results of
uncertainty caused by ALS inventory in prediction of spruce
saw log assortment.

Packalen & Maltamo (2008) tested low-pulse ALS data (0.7
pulses / m2) and spectral and textural features of calibrated
aerial photograph in the prediction of species-specific diameter
distributions. When they used a similar Weibull distribution
method than we did, the accuracies of Scots pine logwood,
Norway spruce logwood and deciduous logwood were (bias%
in brackets) 40.97% (-3.27%), 61.06% (-25.78%), 142.93% (-
37.62%).

In this study we wanted to focus in uncertainty of current forest
management planning simulation methods in Finland, i.e.
despite promising results of other possibilities to utilize area-
level ALS inventory data (Gobacken & Næsset 2004, Maltamo
et al. 2006, Packalén & Maltamo 2008), we used mean
characteristics and theoretical weibull distribution series in the
simulation.
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ABSTRACT:

We argue that the future of remote sensing will see a diversification of sensors and sensor platforms. We argue further that remote
sensing will also benefit from recent advances in computing technology to employ new algorithms previously too complex to apply.
In this paper we support this argument by three demonstrations. First, we show that an unmanned aerial vehicle (UAV) equipped with
digital cameras can provide valuable visual information about the Earth’s surface rapidly and at low cost from nearly any viewpoint.
Second, we demonstrate an end-to-end workflow to process a sizeable block of such imagery in a fully automated manner. Thirdly,
we build this workflow on a novel computing system taking advantage of the invention of the Graphics Processing Unit (GPU) that
is capable of performing complex algorithms in an acceptable elapsed time. The transition to diverse imaging sensors and platforms
results in a requirement to deal with unordered sets of images, such as typically collected from a UAV, and to match and orientate these
images automatically. Our approach is fully automated and capable of addressing large datasets in reasonable time and at low costs
on a standard desktop PC. We compare our method to a semi-automatic orientation approach based on the PhotoModeler software and
demonstrate superior performance in terms of automation, accuracy and processing time.

1. INTRODUCTION

Aerial photography has been the workhorse of remote sensing.
Satellite imagery has augmented the remote sensing tool box since
the launch of Landsat in 1972. Both aerial and satellite imaging
result in very ordered and industrially planned image datasets.
Recently, however, one can see a diversification of the image
inputs for remote sensing (Eissenbeiss et al., 2009). Photog-
raphy from handheld amateur cameras, from balloons and un-
manned aerial vehicles (UAVs), all are subject to intensive re-
search into their applicability to tasks previously reserved to in-
dustrial solutions. In the last few years, advances in material sci-
ence and control engineering have turned unmanned aerial vehi-
cles into cost efficient, flexible and rapidly deployable geodata
acquisition platforms. For instance the micro-drone md4-200
(http://www.microdrones.com) depicted in Figure 1 has the abil-
ity for vertical take off and landing, provides position hold and
autonomous way-point navigation and is equipped with a stan-
dard digital consumer camera that can be tilted (up to 90◦) to
capture images from different angles. Thus, a UAV can act as a
virtual eye in the sky capable to provide visual information about
an object which otherwise cannot be obtained. Therefore, pho-
togrammetric reconstruction based on imagery taken from UAV
systems is of high interest and has been addressed by many au-
thors, e.g. in the context of digital surface model (DSM) ex-
traction (Förstner and Steffen, 2007), archaeological preserva-
tion (Scaioni et al., 2009) and agricultural survey (Grenzdörffer
et al., 2008). According to (Colomina et al., 2008), UAVs are a
new paradigm for high-resolution low-cost photogrammetry and
remote sensing, especially given the fact that consumer grade dig-
ital cameras provide a sufficiently high accuracy for many pho-
togrammetric tasks (Gruen and Akca, 2008). The presence of on
board navigation, Global Positioning System (GPS) and Inertial
Measurement Units (IMUs) allows UAVs to act as autonomous
systems that fly in the air and sense the environment. Due to
the low operation altitude, UAVs achieve a very high resolution

∗ Corresponding author.

Figure 1: Micro-drone md4-200 with attached PENTAX Optio
A40.

in terms of ground sampling distance and can therefore compete
with airborne large format digital camera system (e.g. Ultra-
CamXp (http://www.microsoft.com/ultracam)).

Although, recent UAVs are most often equipped with GPS/INS
positioning systems and orientation sensors, the output of these
sensors does in general not achieve the required accuracy to pro-
vide direct georeferencing of the acquired imagery (Eugster and
Nebiker, 2009). Hence, image based methods, referred to as
structure from motion in the computer vision literature (Hartley
and Zisserman, 2000), are necessary techniques to determine the
exterior camera orientations. There exists a variety of approaches
that address the 3D reconstruction problem from videos and or-
dered sets of still images, e.g. (Pollefeys et al., 2004). Real time
performance for camera motion recovery on modest hardware is
reported (Nistér et al., 2004), but working incrementally on a
frame by frame basis leads to the inherent problem of error ac-
cumulation and drift (Steffen and Förstner, 2008). Furthermore,
sequential processing is only possible for very ordered, industri-
ally planned image datasets, such as manned airborne and space-
borne remote sensing imagery. The transition to diverse imaging
sensors and platforms results in a requirement to deal with un-
ordered sets of images. This is especially true for images cap-
tured by highly maneuverable UAV systems that allow random
flight paths, hence deliver unordered image datasets.

Therefore, in practice, wide baseline matching methods that are
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able to establish geometric relations between images, which are
(widely) separated in time/space, are necessary in order to obtain
consistent 3D models. These methods have been shown to even
work on very uncontrolled image collections such as images from
the web (Snavely et al., 2006), but require a high degree of com-
putational effort. Recently, (Agarwal et al., 2009) presented a
distributed computing engine based on a cluster of 500 comput-
ing cores to automatically reconstruct 3D scenes from large im-
age collections. Our system shares algorithmic similarities with
their approach, but in contrast to rely on hundreds of computer
clusters, we leverage the parallel computing power of current
GPUs to accelerate several processing steps. We follow the con-
cept of General-Purpose computing on Graphic Processing Units
(GPGPU) and use Nvidia’s Compute Unified Device Architec-
ture (CUDA) toolchain for our implementation. Our proposed ap-
proach is fully automated and capable of addressing large datasets
in reasonable time and at low costs on a standard desktop PC.

2. UAVS AS PHOTOGRAMMETRIC SENSOR
PLATFORMS

The main advantage of a UAV system acting as a photogram-
metric sensor platform over more traditional manned airborne or
terrestrial surveys, is the high flexibility that allows image acqui-
sition from unconventional viewpoints. Consider Figure 2: While
the camera network in standard airborne and terrestrial surveys is
normally restricted to flight lines or street paths, a UAV system
enables more flexible, e.g. turntable like network configurations,
that maximize scene coverage and allow superior accuracy in
terms of triangulation angles. Furthermore, the photogrammetric
network planning task (Chen et al., 2008) can be optimized and
adapted to the scene since nearly any desired viewpoint can be
reached. Moreover, networks of multiple, synchronously flying
UAVs (Quaritsch et al., 2008) could be utilized to deliver multi-
view information simultaneously, which opens the possibility to
reconstruct also non-rigid objects over time.

The remainder of the paper is organized as follows. In the next
Section we describe in detail our structure from motion system
which is able to operate on unordered datasets, such as typical
images captured by a UAV system. In Section 4. we show re-
sults of our method and compare our system to a standard semi-
automatic approach based on the PhotoModeler software. Fi-
nally, Section 5. concludes our work.

3. 3D RECONSTRUCTION SYSTEM

Our 3D reconstruction system is able to automatically match un-
ordered sets of images and to determine the exterior camera ori-
entations and sparse tie points without prior knowledge of the
scene. The system mainly consists of three processing steps:
Feature extraction, matching and finally structure from motion
computation. Figure 3 gives an overview of our reconstruction
pipeline. A prerequisite of our system is that the intrinsic cam-
era parameters are known and constant. We use the calibration
method described in (Irschara et al., 2007) to simultaneously esti-
mate the focal length, principal point and radial distortion param-
eters, standard values are assumed for the remaining intrinsics
(i.e. zero skew and unit aspect ratio).

In general, calibrated camera settings are not strictly necessary
for Euclidean 3D modeling, since self-calibration methods (Polle-
feys et al., 1999) exist, but robustness and accuracy is normally
greatly improved for image collections with known intrinsics.
Furthermore, also an increase in processing speed is achieved due
to the lower dimensionality of the problem.

http://www.nvidia.com

(a)

(b)

(c)

Figure 2: Typical camera networks used for aerial (a) and (b) ter-
restrial survey. In general, a UAV system allows the acquisition
of more flexible photogrammetric camera networks, like the con-
figuration depicted in (c), that enables a regular sampling of the
visual hull of the scene of interest.

Feature Extraction

Coarse Matching

Detailed Matching

Structure
from Motion

Epipolar Graph

Figure 3: Overview of the main processing steps of our recon-
struction pipeline.

3.1 Feature Extraction

Our system utilizes the very effective SIFT keypoint detector and
descriptor (Lowe, 2004) to represent point features. SIFT fea-
tures are invariant to scale and rotation and partially invariant
to viewpoint and illumination changes. Hence, these kind of
features are very suitable for wide baseline matching and have
been found to be highly distinctive and repeatable in performance
evaluation (Mikolajczyk et al., 2005). In particular we rely on
the publicly available SiftGPU software. On recent GPUs, a
speedup exceeding twenty over a single core CPU implementa-
tion is reached.

3.2 Matching

Unlike feature point tracking in video sequences, where corre-
spondence search can be restricted to local regions, matching of

http://cs.unc.edu/˜ccwu/siftgpu
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unordered still images essentially requires exhaustive search be-
tween all image pairs and all features seen therein. Hence, the
matching costs are quadratic in the total number of extracted fea-
tures from the image database. Note, the number of SIFT features
from a medium sized image (e.g. 4000 × 3000 pixel) normally
exceeds a value of 10000. For a small image database consisting
of 1000 images, more than 10 million SIFT keys are detected, this
translates into 100 billion descriptor comparisons that are neces-
sary for exhaustive nearest neighbor search. This is a consider-
able amount of computation, which turns out to be a prohibitively
expensive operation executed on a single CPU.

To make the correspondence search more tractable, we divide the
matching procedure into two submodules. First, we build upon
work on efficient image retrieval (Nistér and Stewenius, 2006)
and use a vocabulary tree to determine an image-to-image simi-
larity score. Second, we take advantage of the high computational
power of modern GPUs to establish putative correspondences be-
tween the feature sets of relevant image pairs.

3.2.1 Coarse Matching Inspired by recent advantages in im-
age search, we use a vocabulary tree approach and inverted file
voting (Sivic and Zisserman, 2003) for coarse matching of poten-
tially similar images. The vocabulary tree based database repre-
sentation is very efficient in terms of memory usage and allows an
extremely fast determination (in the order of some milliseconds)
whether two images are similar or dissimilar. Hence, by con-
sidering only the most relevant candidate images for pair-wise
matching, the computational effort can be reduced significantly.

The vocabulary tree is constructed by offline training using hi-
erarchical k-means clustering of millions of SIFT features (ex-
tracted from a generic image database) and gives a quantized
approximation of the high dimensional descriptor space. Since
k-means clustering of large datasets is a time consuming opera-
tion, we employ a CUDA based approach executed on the GPU
to speed up clustering.

The vocabulary tree concept relies on the following basic assump-
tion: if the similarity between two features sim(fi, fj) is high,
then there is a relatively high probability that the two features are
assigned to the same visual word w(fi) ≡ w(fj), i.e. the fea-
tures reach the same leaf node in the vocabulary tree. Based on
the quantized features from a query image Q and each database
image D a scoring of relevance is derived. Typical scoring func-
tions are based on a vector model, as for instance the tf-idf (term
frequency, inverse document frequency), which delivers a rela-
tive document ranking according to the degree of similarity to
the query. In contrast to that, in our system we rely on a scor-
ing function that gives an absolute score of similarity based on
a probabilistic model (Singhal, 2001, Irschara et al., 2009). This
model allows a direct determination whether a document image
is likely to match a query image.

3.2.2 Pairwise Feature Matching A variety of approaches
have been proposed to speedup nearest neighbor matching in high-
dimensional spaces (like the 128-dimensional SIFT descriptor
space). Among the most promising methods are randomized kd-
trees (Anan and Hartley, 2008) with priority search and hierar-
chical k-means trees (Fukunaga and Narendra, 1975). These al-
gorithms are in general designed to run on a single CPU and are
known to provide speedups of about one or two orders of mag-
nitude over linear search, but the speedup comes with the cost
of a potential loss in accuracy (Muja and Lowe, 2009). On the
other hand, given that the number of features is limited to some

http://www.vis.uky.edu/ stewe/ukbench/

thousands, nearest neighbor search, implemented as a dense ma-
trix multiplication on recent graphics hardware, can achieve an
equivalent speedup, but delivers the exact solution. Hence, we
employ a GPU accelerated feature matching approach based on
the CUBLAS library.

3.3 Epipolar Graph

After matching relevant images to each query view, geometric
verification, based on the Five-Point algorithm (Nistér, 2004) is
performed. Since matches that arise from descriptor comparisons
are often highly contaminated by outliers, we employ a RANSAC
(Fischler and Bolles, 1981) algorithm for robust estimation. In its
basic implementation, RANSAC acts as hypothesize-and-verify
approach. In the same spirit as (Nistér, 2005) we explicitly divide
the RANSAC algorithm into two steps. First, we generate all our
N relative pose hypotheses with a minimal number of five points.
Second, we score the hypotheses based on the truncated Sampson
error (Hartley and Zisserman, 2000) against each other. Note, the
scoring procedure can be easily parallelized, hence we employ a
CUDA based scoring approach in our reconstruction system.

In order to decide whether two images satisfy an epipolar geom-
etry, we compute the RANSAC termination confidence,

p = 1− exp(N log(1− (1− ε)s)) (1)

whereN is the number of evaluated models,w = 1−ε the proba-
bility that any selected data point is an inlier, and s = 5 is the car-
dinality of the sample point set used to compute a minimal model.
We require p > 0.999 in order to accept an epipolar geometric
relation. In our experiments, we used up to N = 2000 models
which corresponds to a maximal outlier fraction of ε = 0.67. The
epipolar graph of the UAV-dataset is shown in Figure 4(d).

3.4 Structure from Motion

Our structure from motion approach follows a greedy strategy,
similar to the one described in (Irschara et al., 2007). Starting
from a reliable image triplet, new views are incrementally reg-
istered by robust camera resectioning based on the Three-Point
algorithm (Haralick et al., 1991) inside a RANSAC loop. In-
cremental Euclidean bundle adjustment is used to simultaneously
refine structure (3D points) and motion (camera matrices).

4. RESULTS AND DISCUSSION

In our experiments we performed two test-flights with the micro-
drone md4-200 and an attached PENTAX Optio A40 camera as
depicted in Figure 1. The camera was precalibrated and the zoom
was fixed to a wide angle setting. The survey was performed
by manual remote control, 615 still images with a resolution of
4000 × 3000 square pixels were captured from different view-
points. Furthermore, eight ground control points were determined
using a total station (with an accuracy of ε± 1cm, see Figure 8).
This data is considered as ground truth and is later used to asses
the object space error of the automatic computed structure from
motion results. Figure 4 shows the affinity matrix according to
the probabilistic scoring used for coarse matching. On average
each image is only matched with 84 potentially similar views,
which gives a speedup of approximately seven compared to a full
exhaustive search. Still, 86% of potential epipolar relations are
found. Note, the average degree of image overlap in this dataset
is relatively high. A much higher speedup would be achieved if
one considers larger datasets with a sparser image overlap. Since
the epipolar graph of the UAV-datasets is not fully connected (see
Figure 4(d)), several individual 3D reconstructions are obtained.
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(a) (b) (c) (d)

Figure 4: (a) Image affinity matrix according to the probabilistic model of relevance. (b) Epipolar adjacency matrix computed by
exhaustive image matching and geometric verification. A white entry in the matrix indicates that an epipolar geometry between two
images Ii and Ij could be computed. (c) Successfully recovered epipolar geometries by considering only relevant images according
to (a). (d) Epipolar connectivity graph of the whole dataset, clusters in the graph represent a high degree of geometric connectivity.

CPU [s] GPU [s]
SIFT (4000× 3000 pixel) 10 0.4

Coarse Matching 0.5 0.05

Matching (5000× 5000) k × 1.1 k × 0.044

RANSAC-H (5-pt, N=2000) k × 0.1 -
RANSAC-V (|C|=5000, N=2000) k × 0.12 k × 0.02

Structure from Motion [h] 1 -
Total Time [h] (615 views, k = 84) 21 3.5

Table 5: Comparison of processing timings between execution
on a single core CPU (Intel Pentium D 3.2Ghz) vs. a GPU accel-
erated implementation (Nvidia GeForce GTX280). RANSAC-
H stands for the hypotheses generation step based on the Five
Point algorithm, RANSAC-V for the evaluation module. N is
the maximal number of hypothesis, |C| the number of putative
correspondences used for evaluation, and k reflects the number
of considered images for detailed feature matching and geomet-
ric verification.

Figures 6 and 9 show visual results of the two largest connected
reconstruction results, denoted as R1 (239 registered images) and
R2 (68 registered images) through our experimental evaluation.

Table 5 gives typical processing times of the modules involved in
our system and compares timings of a single CPU execution with
timings achieved with GPGPU support. Regarding feature ex-
traction and matching, the speedup induced by the GPU is about
one order of magnitude.

4.1 Accuracy Analysis

We compare our fully automatic structure from motion approach
to the semi-automatic PhotoModeler software (version 6) for the
task of exterior image orientation. Since it turns out that process-
ing 615 images is impracticable for a semi-automatic system, we
restrict our evaluation to a subset of 23 manually selected images
from one building facade (corresponding to result R1, see Fig-
ure 6). The processing steps of the PhotoModeler approach in-
clude the semi-automatic measurement of tie and control points,
bundle adjustment and fine tuning. Four different orientation
methods were conducted: selfcalibration with constant/variable
intrinsics and with/without reference point constraints by using
fifteen 3D control points, respectively. All methods give con-
sistent results, on average a reprojection error of 0.5 pixel is re-
ported. A detailed, quantitative comparison of the PhotoModeler

http://www.photomodeler.com

(a)

(b) (c)

Figure 6: Orientation result R1: (a) Sample input images and
(b) perspective view of camera orientations (239) and respective
3D points (58791) obtained by our automatic structure from mo-
tion system. (c) Orientation result obtained by semi-automatic
processing using the PhotoModeler software, a subset of 23 man-
ually selected images is used.

orientation output with results from our structure from motion
pipeline is summarized in Table 7.

The semi-automatic approach, based on the PhotoModeler soft-
ware, was performed by an expert user, the orientation of a subset
of 23 images still requires about eight man hours (and is trouble-
some and strenuous work). On the other hand, with our fully
automated system, all 615 images can be processed at once and
within a timeframe of 3.5 hours on a standard PC and a sin-
gle GPU. We achieve identical results in terms of reprojection
error, but with a higher confidence in the solution, since many
more tie points are utilized. Furthermore, the automatic approach
is scalable and allows registration of many more images much
faster. For instance, in our pipeline processing one image takes
about 20s, whereas orientation with the PhotoModeler software
requires more than 20min man workload.

4.1.1 Object Space Error The reprojection error is a suitable
measure to assess the precision of camera orientations in image
space, but for a practical application, the error in object space is
of interest. Therefore, we rely on control points measured by a
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PhotoModeler sfm-approach
# processed views 23 615
# registered views (R1) 23 239

# 3D points 237 58791

avg. # points/image 99 3160
avg. # rays/3D point 10 13

avg. triangulation angle 10◦ 6.7◦

avg. reprojection error 0.458 0.460

processing time [h] 8 3.5

processing time/image [s] 1252 20

Table 7: Comparison of the semi-automatic PhotoModeler ori-
entation to our proposed fully-automatic structure from motion
system (sfm-approach), the values correspond to reconstruction
result R1 (see Figure 6).

total stations to estimate an absolute error measure. The land-
marks are determined at well localized structures, like building
corners and junctions (see Figure 8). Thus, image measurements
with respect to the corresponding landmark are easily to estab-
lish. For each image we estimate the 2D coordinates belonging to
the 3D control point (manually by visual inspection) and link the
measurements into point tracks. In practice, we only use a sub-
set of images to measure observations, but ensure that for each
control point at least three measurements are provided and the
triangulation angle is sufficiently high (ᾱ > 20◦). Next, we use
a linear triangulation method (Hartley and Zisserman, 2000) fol-
lowed by bundle-adjustment to triangulate the measurements into
3D space. In order to measure the object space error, we compute
the 3D similarity transform between 3D control points and re-
spective triangulated tie points. The alignment can be computed
with a minimal number of three point correspondences, but us-
ing more than three points in a least squares manner will result
in a closer alignment. Hence, we use the leave-one-out cross-
validation (Kohavi, 1995) technique to assess the accuracy of our
orientation results. We take seven correspondences to compute
the parameters for the similarity transform and use the remaining
point to estimate the object space error ε between observation X
and ground truth point X̂ ,

ε =

√
(Xx − X̂x)2 + (Xy − X̂y)2 + (Xz − X̂z)2. (2)

Table 10 summarizes our evaluation, the error varies between 0.4
to 5.4cm, overall a RMSE of 3.2cm is achieved. Note, the repro-
jection error of the triangulated tie points varies between 1.1−2.5
pixel, this is in accordance to the expected uncertainty induced
by the manual tie point extraction. A subpixel accurate measure-
ment of tie points (e.g. 0.5 pixel) would lead to a RMSE of about
1.5cm, that is close to the precision of the total station.

5. CONCLUSIONS

In this paper we demonstrated the feasibility of accurate and fast
3D scene reconstruction from unordered images captured by a
UAV platform. We compared the orientation results of our fully
automatic structure from motion pipeline to a standard, semi-
automatic approach based on the PhotoModeler software. From
our experiments we conclude that our system achieves the same
accuracy in terms of reprojection error, but at a higher confi-
dence, since many more tie points are utilized than for the semi-
automatic approach. Furthermore, our method is scalable to larger
datasets and allows much faster image orientation. In our exper-
iments we achieve a speedup of about 60 over semi-automatic
processing with the PhotoModeler software.

Figure 8: Orthographic projection of a building facade with the
eight ground truth control points (red circles) used in our evalua-
tion.

(a)

(b) (c)

(d) (e)

(f)

Figure 9: (a) Sample input images and (b),(c) perspective view
of camera orientations and respective 3D points.(e) Input image
and related depth map (f) obtained by dense matching techniques.
(f) Texturized depthmap from an oblique viewpoint.
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Point ID 7000 7006 7010 7012 7021 7017 7025 7029
# measurements (images) 3 6 3 3 10 3 10 6
avg. triangulation angle [◦] 107.2 21.9 23.2 23.2 33.4 54.7 69.5 84.6
avg. reprojection error [pixel] 1.18 1.67 2.24 1.63 1.58 1.16 2.44 0.85
object space error [cm] 4.2 0.4 2.5 4.5 0.6 2.8 1.7 5.4

Table 10: Reprojection error and object space error determined by leave-one-out cross-validation for eight ground truth control points.
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ABSTRACT: 
 
Since the exterior orientation elements of line-array CCD images are highly correlated, normal collinear equations that computing 
these elements are ill-posed and the error of the least square estimation is very large and the solution strongly depends on the initial 
value. For solving this problem, this paper puts forward an algorithm to compute the exterior orientation elements based on 
quaternion spherical linear interpolation. Firstly the quaternion is used to describe the attitude of the image, and then spherical linear 
interpolation is used to gain the attitude of any line in this algorithm, lastly a model of exterior orientation elements is build and is 
used in exterior orientation. Experimental results indicated that the method could effectively overcome the correlation problems of 
exterior orientation elements and the positioning accuracy is very high, and the reliability and stability of this algorithm are both 
independent of the initial values of exterior orientation elements. 
 
 

                                                                 
* Corresponding author. 

1. INTRODUCTION 

Line-array CCD images have stable geometric attributes, and it 
is quite meaningful to investigate the techniques of object 
orientation and stereo plotting by CCD images. However, line-
array CCD images have a projection centre for each image line, 
and the orientation parameters of traditional linearization 
collinear equation are highly correlated. Thus, the equations to 
solve exterior orientation elements are greatly ill-posed. Least 
Square (LS) solutions, which are dependent on the initial values 
of exterior orientation elements, may have great errors, and the 
precision of orientation and mapping is greatly influenced 
(Wang, 1979; Qian, et.al, 1991). 
 
Numerous investigations have been done by researchers on the 
precise computing the exterior orientation elements of line-
array CCD images, and many methods to solve ill-posed 
problems are proposed (Qian, et al, 1991; Krupnik, 2000; 
Katiyar, et al.2003; Gupta, et al.1997), such as adding virtual 
error equations, combining great correlation items, iteratively 
solving the line and angle exterior orientation elements 
respectively, centralized criterion of coefficient and so on. 
Although the orientation precision is increased by these 
methods, the correlations and the ill-posed problems of normal 
equation are not solved. Consequently the precision is restricted. 
Subsequently, some scholars put forward some biased 
estimations (Guo, et al, 2003; Gui, et al. 2003; Wang, et 
al.2005), for example ridge estimation (including special and 
generalized ridge estimation), principal component analysis and 
stein estimation. However, there are various limitations in these 
biased estimations, and many works should be done to improve 
them. Moreover, for high resolution satellite CCD images (such 
as IKONOS images), rational function model, affine 
transformation method are investigated to objects positioning 
by many researchers (Okamoto, et al. 1999; Fraser, et al. 2002; 
Zhang, et al. 2004). For these methods, rigorous projection 
relationships between image coordinate system and ground 

coordinate system are not considered. This is the greatest 
advantage of these methods. 
 
The ill-posed problems can be solved in two aspects. One is 
choosing the appropriate calculation methods. The other one is 
building appropriate math model. The above solutions just 
reduce the ill-posed problem from the calculation methods, 
without solving this problem in essential. In order to solve the 
ill-posed problem perfectly, this paper tries to build a model of 
exterior orientation elements using quaternion. Single image 
space resection based on quaternion is firstly studied and tested 
in Jiang’s (Jiang, 2007) and Wang’s (Wang, 2007) papers. 
Experimental results show that it can get correct solutions under 
a larger range of initial values than traditional way. However, 
frame photo is the research object in their paper, and their 
methods are not suit for processing the line-array CCD images. 
Liu’s (LIU, 2008) paper extends the method to the bundle 
adjustment of airborne three-line images, and it behaves very 
well. However, his method is not suit for processing single line-
array CCD images. So in this paper, when quaternion is used to 
describe the exterior orientation elements of the first and the 
last scan line of a line-array CCD image, we gain the quaternion 
attitude elements of any scan line through the method of 
quaternion spherical linear interpolation (SLERP). Then we put 
forward an algorithm of exterior orientation based on the 
quaternion SLERP (called quaternion algorithm). At last, we do 
some exterior orientation experiments by this algorithm. 
 
The remainder of this paper is organized as follows: In Section 
2, quaternion and quaternion spherical linear interpolation are 
briefly reviewed. Section 3 puts forward a SLERP model of 
exterior orientation elements based on quaternion, and an 
algorithm of exterior orientation using the above model is given. 
Experimental results and analysis are given in Section 4. 
Finally, Section 5 concludes the paper. 
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2. QUATERNION SPHERICAL LINEAR 

INTERPOLATION 

2.1 Quaternion representation of rotation  

A quaternion is an ultra-complex number which expresses as 
(Zhang,1997),where   

are real numbers and  are so-called imaginary units whose 
products follow the rule ， , 

, . A quaternion also can be 
written as , where the number  is called the real 
part and the sum  is called imaginary part. 
The vector form of quaternion is .The 
conjugate of a quaternion is .The 
norm of a quaternion is .If the , quaternion 
is called a unit quaternion. 

 
The detailed discussion of quaternion is in Jiang’s paper. Much 
of that is not exited in this paper. The rotation matrix which 
using the quaternion can be gained from the product rule of 
quaternion, the formula is as follow (JIANG,2007): 

(1) 
 
When the order of the rotation axis is , we can 
obtain the Euler angles  from the above rotation matrix 
through the following formula. 

  (2) 

 
2.2 Quaternion Spherical Linear Interpolation  

When quaternion is used to describe the image attitude, the 
spherical linear interpolation of quaternion can allow us to 
smoothly interpolate between two image attitudes (LIU, 2008).  
The principle of quaternion spherical linear interpolation is 
illustrated in figure 1. Given two unit quaternions  、  and 
their inclination angle , the unit quaternion  is on the arc 
which connected  and , and the inclination angle of  and 

 is . So  is given by:  
                  (3) 

Where,  are the coefficients, and  is the 
interpolative variable. 

        (4) 

 (5) 
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 Figure 1. The outline of quaternion spherical linear 

interpolation 

In this paper, we only give that how to obtain the expression of 
. From the geometry of figure 1, we can get two similarity 

triangles, so that. 

 

 and  are unit quaternions, , so the we 

can obtain: 

 

We can also obtain the expression of  similarly. 
 
Using formula       (4) in equation (3), the SLERP function of 
quaternion is given by 

  (6) 

 
If we look upon two unit quaternions  and   as two points 
on the surface of a 4D sphere, quaternion SLERP will 
interpolate around the shortest arc that connects the two 
quaternions along the surface of the 4D sphere. 
 
 

3. SOLUTION OF EXTERIOR ORIENTATION 
ELEMENTS 

3.1 SLERP model of exterior orientation elements  

In this paper, the projection center (i.e., ) in the 
elements of exterior orientation is expressed by linear 
interpolation, and the unit quaternion  is used to describe the 
angular elements, the quaternion attitude of any scan line is 
obtained by using SLERP. 
 
The image projection of line-array CCD image is the line 
central projection, so the projection center of scan line  is 
given by: 

  (7) 

Where  is the projection center of scan line ;  
is the measured  coordinate of  the scan line ;  is 
the projection center of the centre line, and  are the 
coeffifients of change in the  direction. 
 
When quaternion is used to describe the exterior orientation 
elements of the first and the last scan line of a line-array CCD 
image, the quaternion attitude of any scan line can be obtained 
by using SLERP. 
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  (8) 
Where   is the quaternion attitude of any scan line;  and   
are the quaternion attitude of the first and the last scan line; 

 is given by formula       (4). 
Using the vector expression of ,  and  in formula (8),  is 
given by: 

  (9) 

 
The interpolative variable  is given by: 

     (10) 

Where    is the row number of the scan line;  is the total scan 
line number of a view image. 
 
3.2 Linearization of collinear equation with SLERP 
model  

In the error equation of exterior orientation based on quaternion 
SLERP model, the unknown elements are  (, , , , , 

, , , , , , , , ). The following is about that 
how to linearize the collinear equation based on quaternion 
SLERP model. 
 
In the line-array CCD image, we assume that  is known, and 

. For any GCP, the coordinates are known,  
. The linearization error equation is given 

by: 

(11) 

Where 
  
  
  

  
  
  

  
 
 

 
 
   

 

The differential equation of equation (7) is given by: 

  (12) 

 

For the same reason, we can gain the differential expression of 
equation (9) considering that , , ,  is the function of 

, , ,  and , , , . 

(13) 

 
In the equation (13), there are thirty-two deflection differential 
coefficients. Through math deduction, we can obtain the 
expression of these deflection differential coefficients simply. 
The following is the expression of the deflection differential 
coefficients for . 

 

 

 

 

        (14) 

 

 

 

Where 

 

 

    

    

    

    

 
Using the deflection differential coefficients of equation (13) in 
error equation (11), the error equation of exterior orientation 
based on quaternion SLERP model is given by: 

(15) 

Where 
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The expression of  and  is as the same as that in equation 
(11). 
 
In the result of the above linearization equation, the form of the 
coefficients is fit to program. Comparing with the traditional 
Euler angle model, it successfully avoids a great deal of 
computation of trigonometric functions. 
 
3.3 Computation of exterior orientation elements  

The error equation (15) can be written in the matrix form.  
             (16) 

Where 
 

 

 
 

 
Because of the unit quaternion which is used to describe the 
attitude, there are two conditions in the error equations. 

 

 
The two equations also should be linearized, and the 
linearization equation is given by: 

 
 

 

 
 
The above equations can be written as follow: 

   (17) 
Where 

 

 
 
When there are  points, the total error equations is: 

 

   (18) 

Where and  are the matrix with ;  is the matrix 
with ;  is the number of ground control points (GCPs). 
 
Supposed the weight matrix of observed value is , we can gain 
the solution of equation (18) according parameter adjustment 
with constraints. 

   (19) 
 

Where 

 (20) 

 
When the number of GCPs , given the initial value of line 
and attitude elements , we can obtain the most probable value 
of the line and attitude elements  iteratively through equation 
(19) until that the result is smaller than the tolerance.  
 
3.4 Summary of the algorithm  

The complete algorithm works as follows: 
 
(1) Input the base data, including observed value of image 
points and the ground coordinate of the corresponding GCPs. 
 
(2) Determine the initial values of exterior orientation elements 

. In this quaternion algorithm, the initial values has not 
special requirement. We just can give the initial values 
as , , , ，

, , ,
,where ,  are the average value 

of GCPs ground coordinate. Then begin the iteration. 
 
(3) Compute exterior orientation elements of every GCP using 
equation (7) and (9), and calculate the quaternion rotation 
matrix using equation (1).  
 
(4) Compute the matrix,  and weight matrix  using error 
equation (16), and estimate value of the least squares prediction 

. 
 
(5) Update the exterior orientation elements with formula 

, and check that whether the result  is less than 
the tolerance or not. If it is less than the tolerance, the iteration 
ends, and the result  is the estimation value of the exterior 
orientation elements. Otherwise, repeat step 3 to step 4 until the 
result of exterior orientation elements is less than the tolerance. 
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4. EXPERIMENTS AND RESULTS 

The exterior orientation process of line-array CCD images is to 
obtain the exterior orientation elements of the images using 
GCPs and their image points. In order to verify the efficiency of 
this quaternion method, experiments are done on the solution of 
exterior orientation elements by various methods.  

 
The experiment data used in this paper are two SPOT images 
(Level 1A) of TangShan area in china: Image_01 and Image_02, 
which constitute a single stereo.  The size of the pixel is 
13µm×13µm, the focal length of the camera is 1082 mm, and 
the size of the image is 6000×6000. The flight height is about 
830 000.0 m, the swath width is 60km×60km, and the overlap 
of these two images exceeds 80%. The ground coordinate uses 
Gaussian coordinate system, and the longitude of central 
meridian is 117 degree. The ground altitude difference is 0～
500 m. 
 
Figure 2 is the outline of GCPs which is distributed evenly in 
images. The control points are measured from 1:50,000 
topographic maps. For Image_01 and Image_02, 19 control 
points are selected respectively, with 13 orientation points and 6 
checking points. There are 13 homologous points in the two 
images. 
 
We use the following methods in our experiments. 

Method 1: Our algorithm 

Method 2: LS estimation (Qian, 1991). 
Method 3: General ridge estimation (Guo, 2003). 
 

In order to validate the independence of the initial value of our 
method, we use the coordinate of GCPs to compute the initial 
value in our experiment. So, we consider that there is not any 
priori information of images, and the initial values are as follow: 

, , , ，

, , ,
. 

 
In our experiments, we use the analytical method to analyse the 
precision. The solution precision of exterior orientation 
elements can be evaluated by the following two checking 
methods. One is computing the reprojection error. The other is 
computing ground points coordinate by space intersection, and 
then calculating the mean square error. 
  
In table 3 and table 4, , , , , are the precision 
(mean square error) for the image coordinates ,  and the 
ground coordinates , ,  of orientation points respectively; 
while , , , ,  are the precision (mean square 
error) for the image coordinates ,  and the ground coordinates 

, ,  of the checking points respectively. 
 

 
(a)                                                                           (b) 

Figure 2. The outline of GCPs : (a) Image_01 (b) Image_02 
 

Mean Square error for the coordinates 
 of orientation points 

Mean Square error for the coordinates  
of checking points Method 

/Pixel /Pixel /m /m /m /Pixel /Pixel /m /m /m 
Method 1 0.91 0.87 7.68 10.16 17.08 1.35 1.22 13.40 10.13 21.38 
Method 2 1.68 1.58 20.03 22.87 84.92 1.90 1.82 25.87 31.89 96.32 
Method 3 0.91 0.93 9.23 14.92 41.94 1.61 1.12 20.79 13.43 63.35 

Table 3. Orientation precision of Image_01 under various methods 
 

Mean Square error for the coordinates 
 of orientation points 

Mean Square error for the coordinates  
of checking points Method 

/Pixel /Pixel /m /m /m /Pixel /Pixel /m /m /m 
Method 1 0.89 0.91 7.68 10.16 17.08 1.50 1.27 13.40 10.13 21.38 
Method 2 1.52 1.58 20.03 22.87 84.92 1.71 1.49 25.87 31.89 96.32 
Method 3 1.08 1.59 9.23 14.92 41.94 1.25 2.14 20.79 13.43 63.35 

Table 4. Orientation precision of Image_02 under various methods 
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From table 3 and table 4, it can be seen that the quaternion 
algorithm can obtain exterior orientation elements successfully. 
The plane positioning precision is about 1 GSD, and better than 
that of the LS estimation and the general ridge estimation. 
However, the height positioning precision is less admirable, we 
think that the main reason is the influence of the measure error 
for GCPs.  Of course, due to the initial values which gained by 
GCPs only, the positioning precision of the LS estimation and 
the general ridge estimation is not very high, and that show our 
algorithm is independence on the initial values. At the same 
time, special calculation measures are not required in the 
computing process, which shows that the influence of ill-posed 
problem is weaken effectively by this quaternion algorithm. 
However, because the attitude quaternions which used to 
describe the exterior orientation elements of the first and the 
last scan line of a line-array CCD image are unknown numbers, 
the redundant parameters is also exited, and deep researches are 
needed. 
 
 

5. CONCLUSIONS 

Line-array CCD Images are widely used in target 
positioning of remote sensing imagery. However, the 
orientation parameters of traditional linearization collinear 
equation are highly correlated because of such factors as big 
flying height, small angle of coverage, narrow light beam and 
so on. Thus, it is fairly difficult to gain steady and precise 
solutions. We use quaternion to describe the attitude elements 
in this paper, and then build a model of exterior orientation 
elements. It can obtain reliable and precise positioning results. 
Compared with traditional solution methods, it successfully 
avoids a great deal of computation of trigonometric functions 
and the potential unstable factors, and hasn’t special 
requirement for initial values. So it is quite suit for exterior 
orientation of line-array CCD Images without good initial 
values. At present, there are many space photographs without 
ephemeris data, and how to use these images to position is a 
challengeable work in photogrammetry. The quaternion 
algorithm in this paper provides a method for finding the 
exterior orientation elements of these line-array CCD images, 
and provides precise initial values for consequent applications. 
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ABSTRACT: 
 
As an application of Compressive Sensing (CS) in remote sensing area, the theoretical frameworks of SAR and optical imaging 
system based on CS are investigated. The processes of data acquisition are mathematically described. After that the sparse 
representation of images corresponding to the two systems are also presented. Finally, the spare recovery is employed to retrieve 
images. Numerical simulations validated the feasibility of such imaging systems. 
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1. INTRODUCTION 

Compressive Sensing (CS) provides us with a new theory for 
signal/image acquisition. Employing this theory, we can 
reconstruct signals with equivalent or better qualities (e.g.: 
resolution, SNR, etc.) by using less sensors, slower sampling 
rate, smaller data size or lower power consumption than that 
required in traditional system. Instead of uniform and periodical 
samples, CS measurements are formed by the inner products of 
signals with certain sensing matrix. The sparsity of signal is 
exploited to accurate recovery, and the measurements utilized 
are no longer depending on the signal’s bandwidth but on the 
signal’s sparsity. Generally speaking, the dimension of 
measurement vector is logarithmically with the dimension of 
signal (Candes, 2006; Candes, 2006b; Candes, 2006c; Donoho, 
2006).  
 
In this paper, we focus our research on the application of CS in 
remote sensing systems, and especially for optical and synthetic 
aperture radar (SAR) imaging system. In the area of optical 
compressive imaging, Baraniuk’s group realized a Rice Single-
Pixel CS Camera (Duarte, 2008), in which the Digital Micro-
mirror Device (DMD) is served as sensing matrix. This camera 
suffers from an inherent inefficiency: sequential measurements 
are needed. But in many scenarios, there is a high-speed 
movement between the imaging sensor and target (such as 
spaceborne remote sensing), and the sequential multiple 
measurements is not permitted. A. Stern and B. Javidi proposed 
a random projection imaging system (Stern, 2007), in which the 
measurements are obtained within a single exposure by using a 
random phase mask. Enjoying sparse recovery, the more object 
pixels may be reconstructed and visualized than the number of 
pixels of the image sensor. But the design of sensing matrix and 
sparse recovery algorithm desire much improvement. 
Meanwhile, in the area of radar imaging, Baraniuk introduced a 
compressive radar imaging system (Baraniuk, 2007), but the 
simulation is too simple and far away from practical application. 
Besides, J. Romberg proposed a sampling strategy (Romberg, 
2008) based on “random convolution”, and discussed its 
application in radar and Fourier optics conceptually. 
 

We investigated the theoretical frameworks of compressive 
radar and optical imaging systems, which involves: 1) 
mathematically reformatted the processes of data acquisition of 
SAR and optical imaging in the form of linear system, and then 
the imaging process becomes the inverse problem. Furthermore, 
a process called random phase modulation is specially designed 
for CS optical imaging system. 2) The sensing and sparse 
representation matrices are chosen according to the 
characteristics of data acquisition and images from SAR or 
optical imaging systems respectively. Due to the large data 
scale of two-dimensional imaging problem, we also give 
attentions to the computational efficiency of sparse recovery. 
Finally, in each system, numerical simulations are conducted to 
validate the feasibility. Especially, the data for CS SAR 
imaging is generated from professional electromagnetic 
scattering computing software which is similar to real SAR raw 
data. 
 
 

2. COMPRESSIVE SAMPLING AND SPARSE 
RECOVERY 

Different from the traditional uniform and periodical samples, 
the measurements in CS are the projections of the signal onto 
the sensing matrix, i.e. 

0= +y Φx ε                                   (1) 
where 0x is the N-dimensional signal, y is the M-dimensional 
measurement, Φ is the sensing matrix, ε stands for the noise in 
the data acquisition process, and its variance is 2σ . The 
dimension of y is far smaller than 0x , i.e.: M N� . In order to 
reconstruct original signal, the sparsity of 0x is required, that is, 
with a representation matrix Ψ , we can decompose 0x  as 

0 0=x Ψα , where the coefficient 0α  has at most K  non-zero (or 
almost non-zero) components. Substitutes the signal’s sparse 
representation into Eq. (1), then 

0 0= + +y ΦΨα ε Θα ε� ,                          (2) 
where Θ is a matrix compound by the representation and 
sensing matrix.  
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The coefficient 0α , so the signal 0x , can be recovered by 
solving a convex program  

2 2
1 2

min s.t. σ− ≤α y Θα ,                         (3) 
given the matrixΘ obyes a Restricted Isometry Property (RIP) 
(Candes, 2006c).  
 
Roughly speaking, the RIP has restrained the theoretical lower 
bound of number of measurements. For M N× -dimensional 
random sensing matrices whose entries are independently 
generated according to the Gaussian or Bernoulli distribution, 
when the sparsity of signal K  and the dimension of signal N 
are given, the number of measurements M must obey 

logM K N≥ . 
 
Many algorithms have been developed to handle the 
optimization in Eq. (3). Basis Pursuit (BP) (Chen, 1999) is one 
of the first proposed methods. This method enjoys rigorous 
proofs of exact reconstruction, but suffers from heavy 
computationally burdens and can not be used in two-
dimensional imaging which involves data with large scale. 
Algorithms proposed recently have improved computationally 
complexity without loss of precision. These algorithms include: 
Gradient Projections for Sparse Reconstruction (Figueiredo, 
2007), Sparse Reconstruction by separable approximation 
(Wright, 2009), Spectral Projected Gradient (Van Den Berg, 
2008), Fixed Point Continuation method (Hale, 2008) and its 
modification (Wen, 2008), Bregman iteration (Cai, 2008; Osher, 
2008) etc. 
 
The sparse recovery algorithm employed in this paper is Fixed 
Point Continuation (FPC) algorithm, which can solve large 
scale problem. We briefly describe it in Algorithm 1. 
 
Algorithm 1 (FPC algorithm) 
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The value of relevant parameter recommend are: 61 10μ −= × , 

1.999τ = , 4η =  and 51 10xtol −= × . 
 
 

3. RADAR IMAGING BASED ON CS 

Radar image is a reflection of the electromagnetic scattering of 
the illuminated target. The process of “Radar Imaging” is to 
obtain the scattering coefficients from radar echo (i.e. the 
inverse process of radar echo generation). Supposing ( ),x yp pσ  

a two-dimensional function which describes the scattering 
coefficients, and then the radar echo can be modeled as follows: 

( ) ( ) ( )4, , exp cos sinx y x y x y
fE f p p j p p dp dp

c
πϕ σ ϕ ϕ⎧ ⎫= +⎨ ⎬

⎩ ⎭∫∫  (4) 

where ( ),E f ϕ is the radar echo, f is frequency of the 
electromagnetic wave, ϕ is the angle of radar observation, and 
c  is the speed of light.  
 
The basic principle of classical SAR imaging is employing Fast 
Fourier Transform (FFT) to reconstruct ( ),x yp pσ . It is worth to 
mention that the actual radar echoes contain phase errors caused 
by non-ideal motion of target. These phase errors should be 
compensated before SAR imaging (Bao, 2006). 
 
In this paper, we utilize CS for radar sampling and imaging. 
Firstly, under the hypothesis of “point scattering model” 
(Huang, 2006), the radar images are sparse in their original 
(space) domain, so we can take identity matrix as the sparse 
representation matrix.  
 
Secondly, we will re-format the generation of radar echo in the 
framework of CS. Supposing the scattering coefficients 
( ),x yp pσ  can be represented by a N N× -dimensional 

matrix, and can be reshaped into a 1N × -dimensional vector σ . 
Matirx F  stands for a N N× -dimensional Kronecker product 
matrix, which is produced by two identical N N× -
dimensional Fourier transform matrices. Based on these, a 
discrete version of Eq. (4) can be described as  

= ⋅E F σ .                                      (5) 
Where E  is a matrix represents radar echoes. Furthermore, 
assuming an random index set { }1, , N⊂Γ K  obeys M N=T � , 
then, a sub-matrix ΓF  can be formed by selecting M rows 
from F according to Γ . So the compressive radar sampling 
process can be described as 

= ⋅Γ ΓE F σ .                                   (6) 
Note that the dimension of ΓE is far lower than E .  
 
Finally, the scattering coefficients vector σ  is retrieved by 
sparse recovery as Eq. (3). 
 
In our simulation, electromagnetic scattering computing 
software is employed to generate radar echoes of airplane A10. 
The overview of the 3D model of airplane A10 is shown in Fig. 
1, and some radar parameters are list in Table 2. 
 
The sensing matrix ΓF is constructed by randomly selecting 30% 
rows of the 65536 × 65536 dimensional Kronecker product 
matrix F , and compressive measurement is then generated. The 
imaging results from conventional FFT-based and sparse 
recovery methods are listed in Fig. 3. We can see from this 
figure that there are only two intense scattering points in the 
first image and other scattering points are missed. The sparse 
recovered image (Fig. 3(b)) clearly describes the outline of 
airplane. This comparison can validate the feasibility of the new 
principle for radar sampling and imaging based on CS. 
Besides, the resolution of SAR image also can be enhanced via 
sparse recovery. The resolution of conventional correlation-
based imaging is limited by the ambiguity function of the 
transmitted signal; while the resolution of the sparse recovery is 
determined by the accuracy of optimization and the 
discretization of scattering coefficients σ . 
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Figure 1.  An overview of the 3D model of A10 

 
Table 2. Radar observation parameters 

Carrier frequency 9G Hz (X band) 

Bandwidth 200M Hz 

Azimuth angles 44°to 47° 
Polar angles 60° 

Amount of samples 256× 256 
 

 

 
(a) 

 
(b) 

Figure 3.  Result comparing of the two methods based on 
30% measured data. (a) conventional FFT-based 
method, (b) sparse recovery. 

 
 

4. OPTICAL IMAGING BASED ON CS 

The basic composition of the proposed random phase 
modulation and sparse sampling based imaging system is 
sketched in Fig. 4. The incident lights are firstly transformed to 
their frequency domain by a Fourier Transform (FT) lens. Then, 
the transformed lights will be leaded to a Spatial Light 
Modulator (SLM), and the SLM will add random phases to the 
lights which pass through its pixels. That is called random 
phase modulation in this paper. Subsequently, the modulated 
lights will be transformed back to space domain by an inverse 
Fourier Transform (IFT) lens. After that, the lights will be 
randomly and sparsely sampled by a two-dimensional detector 
array. A typical SLM consist of liquid crystal pixels, each 
independently addressed, acting as separate variable amplitude 
and phase modulator. In the proposed imaging system, the SLM 
is placed at the image plane of the FT lens. 
 

 
Figure 4.  Schematics of the random phase modulation and 

sparse sampling system. 
 

Suppose 0x  is the reshaped 1N × -dimensional image (whose 

original dimension is N N× ), and its frequency spectrum is 
0Fx , where matrix is the same as defined in Eq. (5). The SLM 

can be mathematically described as a N N×  diagonal matrix Σ , 
whose non-zero entries are ( )exp , 1nj n Nπ ϕ− ⋅ ≤ ≤ , where 

( )Uniform [ 1,1]nϕ −� . The sparse sampling is realized by a 
multiplication of a M N×  matrix S , whose rows are randomly 
selected from a N N×  diagonal matrix whose entries in 
diagonal line obey (0, 1) binominal distribution. Then, the 
whole process of Fig. 4 can be mathematically described as 

1
0

−=y SF ΣFx                               (7) 

where 1−F stands for two-dimensional IFT matrix.  
 
The function of the phase modulation (i.e. multiplication of 
matrix Σ ) is to translate phases of the spectrum to “noise like” 
modalities. So, when the modulated spectrum is transformed 
back to space domain, its energy will evenly spread out of the 
entire image plane. This means that each sample from the 
detector will carry some mixed information about the original 
image. If sufficient measurements (which is still much less 
than N ) are obtained, we can reconstruct the image according 
to Eq. (3). In other words, the random phase modulation 
extended the space-bandwidth product of original signal. It, 
together with the sparse recovery, enables the system to acquire 
more detailed (high-resolution) images with fewer 
measurements. 
 
The sparse representation in optical imaging is more 
complicated than radar imaging, where identity matrix is 
chosen. Borrowing the idea form JPEG and JPEG2000 stands, 
we employ Discrete Cosine Transform (DCT) and Discrete 
Wavelet Transform (DWT) to construct our sparse 
representation matrix.  
 
The feasibility of the proposed random demodulation and spare 
sampling based optical imaging system is validated by a 
numerical experiment in this section. The original image in the 
simulation is show in Fig. 5(a). The measurements are 
generated according to Eq. (6), and 0.5M N ≈ . Fig. 5(b) shows 
an image from direct reconstruction, which is an inverse 
process of Eq. (6). The sparse recovery gives much better 
results. Two different images are shown in Fig. (c) and (d), 
which corresponding to DCT and DWT representation matrix 
respectively. 
 
One of the superiorities of CS is reducing the measurement for 
image reconstruction. Fig. 6 shows the curve of RMSE of 
sparse recovery with DCT and DWT due to the variation of 
M N . 
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Figure 5.  Result of the CS based optical imaging simulation. 
(a) original image, (b) direct reconstruction 
(RMSE: 0.30), (c) sparse recovery with DCT 
matrix (RMSE: 0.06), (d) sparse recovery with 
DWT matrix (RMSE: 0.05). 
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Figure 6.  Curve of RMSE of sparse recovery 

with DCT and DWT due to the 
variation of M/N. 

 
 

5. CONCLUSIONS 

Benefit from its potential for alleviating the data sampling and 
storage system, CS theory has received more and more 
attentions. As an application in remote sensing area, the 
theoretical framework of SAR and optical imaging based on 
compressive sampling and sparse recovery is investigated in 
this paper. Numerical simulation validated the feasibility of the 
systems.  
 
CS theory also can be employed in any signal acquisition 
system which can be re-formulated as an inversion of linear 
equations. However, the primary restriction is the 
computational efficiency in sparse recovery. Although we have 
emphasized this problem in our algorithm, the consumption of 
memory and time still substantially exceeds that of the 
conventional imaging method, particularly when the images are 
large.  
 
Future research will focus on the further alleviation of the 
computational burdens. The other important point is the 

optimization of sensing matrix, which will permit exactly 
reconstruction with fewer measurements. The difficulty of 
physical realization will also be taken into account during the 
optimization. 
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ABSTRACT:

We present new results from a terrestrial laser scanner (TLS) based investigation on forest defoliation caused by the European pine
sawfly (Neodiprion sertifer) in a Scots pine (Pinus sylvestris) dominated forest. The TLS results are compared with simultaneous
ERS-2 Synthetic Aperture Radar (SAR) images in order to investigate the synchronous use of ALS and radar in forest change
detection, and search for ground based validation methods for satellite SAR forest monitoring. The TLS and SAR based change
detection is compared with visual estimation of the defoliation intensity as percentage of needle loss in the living crown. The
agreement in results points out the potential for a combined method. The capability of TLS of deriving changes on the standing tree
biomass and defoliation level was also confirmed by destructive, consecutive defoliation operations in laboratory. The biomass of the
tree was measured simultaneously with the TLS measurements. The point cloud agreed with standing biomass with 95-99%
coefficient of determination implying that terrestrial laser can be a powerful tool for biomass change reporting, and thus, usable for
defoliation measurement.

* Corresponding author.

1. INTRODUCTION

1.1 Remote Sensing of Forest Biomass

The international interest in biomass detection is strongly
related to forest health and carbon cycle monitoring (Sexton et
al., 2009). The need for improved tools for, e.g., carbon
monitoring applications, and the shortage of data for accurate
biosphere and climate models has been internationally
recognized (e.g., Houghton et al., 2009). As the current
knowledge on biomass, and particularly the changes related to it
are almost entirely based on subjective ground measurements,
remote sensing methods are called for. Airborne laser scanning
(ALS) is a promising method for biomass detection because of
its capability of direct measurement of vegetation structure and
stand attributes (Næsset, 2002, Hyyppä and Inkinen, 1999).
There are several recent activities and development of methods
towards more accurate ALS-based biomass detection (Sohlberg
et al., 2006; Zhao et al., 2009; Hawbaker et al., 2009).

1.2 Terrestrial Laser Scanning in Forest Remote Sensing

The environmental applications of terrestrial laser scanner
(TLS) are constantly increasing. TLS has been found to be an
effective and low-cost monitoring method, and the information
on TLS performance and range data accuracy is constantly
increasing (see Kaasalainen et al., 2009 for more references).
The number of TLS applications is increasing in forest
management and agriculture, e.g., in measuring the 3D-structure
of trees and vegetation canopies (canopy gap fractions), tree
volumes and leaf-area. TLS has been used for modelling of
individual trees and canopies in (e.g., Pfeifer et al., 2004;
Pfeifer and Winterhalder, 2004; Gorte and Pfeifer, 2004; Hosoi
and Omasa, 2006; Fleck et al., 2007; Danson et al., 2007; Xu et
al., 2007; Chasmer et al., 2006), and for automatic forest
parameter estimation (e.g., Bienert et al 2006a, 2006b, 2007;

Aschoff and Spiecker, 2004; Király and Brolly, 2007). The use
of TLS has recently been extended into mobile methods, namely
vehicle-based laser scanning, because of their efficiency in
producing large amounts of high-resolution data and strong
future potential for different applications (Jaakkola et al., 2008).

1.3 SAR-based Forest Remote Sensing

A large number of SAR-based methods have been created for
detection of forest parameters, such as canopy height (Garestier
et al., 2008; Sexton et al., 2009). E.g., airborne polarimetric
SAR has been found a promising method for estimating the
forest structure and tree height (Garestier et al., 2009). In
comparison with radar, LiDAR, and field measurements, Sexton
et al. (2009) found that the LiDAR measurement produced the
best accuracy in pine forests, while the interferometric (SAR)
showed potential for LiDAR based calibration. In their
investigations of radar-LiDAR synergy, Nelson et al. (2007)
emphasized the efficiency of LiDAR in producing accurate and
precise biomass estimation and improving the accuracy of radar
data. While laser scanning produces higher resolution and
accuracy, radar methods are less weather-dependent and capable
of producing data from large areas with high temporal
resolution (Holopainen et al., 2009b). Holopainen et al. (2009a)
compared E-SAR, Landsat Extended Thematic Mapper (ETM)
and aerial photographs in estimation of plot-level forest
variables and reported relative root-mean-squared-errors
(RMSEs) for E-SAR of 45%, 29%, 28% and 38% for volume
(m3/ha), mean diameter (Dg; cm) , mean height (Hg; m) and
basal area (BA; m2/ha), respectively. In combining E-SAR with
aerial photographs, the relative RMSEs for the same variables
were 38%, 26%, 23% and 33%.

This article presents first results from a TLS-based investigation
on forest defoliation caused by the European pine sawfly,
specialist feeder consuming mature needles of pine trees early in
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the season (Viitasaari and Varama, 1987). The TLS results are
compared with simultaneous ERS-2 SAR images in order to
investigate the synchronous use of LiDAR and radar in forest
change detection, and search for validation methods for SAR.
SAR data are available from large areas and better temporal
resolution than laser data, but because of their higher accuracy,
laser-based methods would provide an efficient validation for
SAR change detection and forest parameter estimation. This
requires a systematic comparison of simultaneous data from
both sensors.

2. METHODS

2.1 The Study Site and the Pine Sawfly Hazard

This study was a part of ongoing monitoring campaign for
forest defoliation caused by pine sawflies (Diprionidae). The
traditional monitoring methods have been based on field
sampling (e.g., manual collection of different life stages) and
subjective visual observation of tree condition. The test site was
located in Outokumpu, eastern Finland, in a Scots pine
dominated forest. Reference data were collected from 20 field
plots (consisting of 526 trees in total) in June 6-9, 2009. The
visual assessment of defoliation was carried out simultaneously
with tree-wise measurements in the field plots, and an
additional visual assessment was done after defoliation by
sawfly larvae (July 26-28, 2009) (see Lyytikäinen-Saarenmaa et
al., 2006; De Somviele et al. 2007 for more details).

2.2 Terrestrial Laser Scanning

The terrestrial laser scanner used in this study was Leica
HDS6000, a 685nm phase-based continuous wave laser scanner
with a 360°×310° field-of-view. The distance measurement
accuracy is 4-5mm and the angular resolution is selectable from
full 0.009° down to 0.288°. The circular beam diameter at the
exit and the beam divergence are 3 mm and 0.22 mrad,
respectively. The scanner uses a silicon Avalanche Photo Diode
(APD) as a photo detector.

Two sets of TLS measurements were carried out in the study
site in June 25 and July 26-27 during the active period of the
pine sawfly hazard. The first measurement was made at the
early phases of defoliation and the second one after defoliation
period. The scanning was performed from the centre of each
field plot with similar scanning parameters and resolution at
both dates. Directly visible trees (i.e., those not obscured by
other trees) were extracted from the resulting laser point clouds,
and the change in the number of laser returns from each tree
was compared to the visually estimated defoliation intensity.
The defoliation intensity of trees at each field plot was visually
assessed and expressed as a relative percentage of needle loss
compared with a reference, imaginary tree with full, healthy
foliage. The difference from the reference was expressed in
incremental defoliation classes of 10%. For full details of this
standardized method, see Eichhorn (1998).

The capability of TLS of deriving changes on the standing
tree biomass and defoliation level was verified by destructive,
consecutive defoliation operations by two different laboratory
case studies. In the first case study, one Scots pine tree was
defoliated (by picking the needles) in the laboratory in 7 steps.
The biomass of the tree (i.e., the mass of the picked needles,
and in the end also the stem and branches) was measured
simultaneously with the TLS (the scanner located beside the

trees), and defoliation was also estimated visually. Three simple
tree-wise parameters were derived to represent the tree quality
and defoliation: number of echoes coming from the tree, ratio of
tree hits (i.e., number of echoes coming from the tree divided by
the total number of echoes), and the number of echoes from the
ground. These parameters were compared with the tree biomass
(in grams) measured with a 2-g accuracy for each step.

In the second laboratory experiment, five pine (Scots Pine) and
spruce (Norway Spruce, Picea abies) trees were measured with
TLS from above and below. Here too the biomass of the tree
was measured simultaneously with 2-g accuracy. The biomass
was measured in five steps for each tree resulting in 50 samples
of biomass/defoliation.

2.3 SAR Image Analysis

The Outokumpu research site was also investigated from the
ERS-2 SAR images. ERS-2 is an Earth observation satellite of
the European Space Agency launched in 1995. One of its main
instrument is SAR, which uses C band microwave radiation
(wavelength of about 5.6 cm). The spatial resolution of SAR in
the image mode (PRI) is about 25 metres in range and 21 metres
in azimuth direction. Some of the main functions of the satellite
have damaged preventing for example the interferometric
processing in some cases, but the radiometric stability of the
PRI images is still expected to be fine (Meadows et al., 2008).
The reason for using ERS-2 images was their availability in the
ESA image archive.

Table 1. List of used ERS-2 SAR images.

Altogether 7 images were acquired through the ESA Category-1
project (Table 1). Topography is known to have a strong effect
on the observed backscattering. Therefore, we decided to use
images with the same imaging geometry (same satellite pass
direction and track). However, the weather conditions during
the acquisition, as well as the soil surface and vegetation
moisture values of the test plot, are not known. Therefore, it can
be expected that there is variation in the backscattering values
of the test plots between the images. All images were ordered as
detected products (PRI images), so only the amplitude
information of backscattering signal is used in the studies (non-
interferometric data).

First, all input images were co-registered with each other with
sub-pixel accuracy. The image of 11 August 2008 was used as a
master image. Then, the stack of images was georeferenced into
the Finnish map coordinate system (ETRS-TM35FIN) using
Ground control points and Digital elevation model. According
to the image coordinate residuals the accuracies of 0.8 pixels
and 0.4 pixels were achieved in the range and azimuth
coordinate directions, respectively. A false colour fusion of all
input images is presented in Figure 2, where blue areas
correspond to the water bodies. The city of Outokumpu is
located in the bottom right corner of the Figure 2.

Satellite Pass Track Frame Date
ERS-2 Descending 93 2336 11 Aug 2008
ERS-2 Descending 93 2336 15 Sep 2008
ERS-2 Descending 93 2336 20 Oct 2008
ERS-2 Descending 93 2336 18 May 2009
ERS-2 Descending 93 2336 22 Jun 2009
ERS-2 Descending 93 2336 27 Jul 2009
ERS-2 Descending 93 2336 31 Aug 2009
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Figure 2. Fusion of all input SAR-2 images. Red dots present
the locations of the test plots (Red+Green: Mean amplitude of
all images, Blue: Standard deviation of amplitude in input
images). Map coordinate system: UTM35N/WGS84. Original
data © 2008-2009, European Space Agency.

3. RESULTS

3.1 TLS Laboratory Measurements of Biomass Change and
Defoliation

In the first laboratory measurement with the used three
predictors, the Pearson correlation coefficients derived were
0.996, 0.977 and 0.929, respectively, which implies that the
change in the number of points reflected from the tree represent
accurately the change in the standing biomass of the tree. The
correlation with the estimated visual defoliation was much
smaller. Thus, the changes of the pine biomass could be
accurately determined by the change of the laser points in multi-
temporal TLS surveys. In this test the reduction of needles from
the tree was linear to the reduction of the hits from the tree. In
practice, we expect that the process could be non-linear or it
could depend on tree species and density of the trees.

In the second laboratory experiment consisting of 10 trees (five
pines and five spruces), we used the relative number of hits
coming from each tree as a predictor (normalized into 1 when
no defoliation has occurred) as learnt from the first experiment.
The TLS position (two scanners, one above and the other from
below) did not affect the results neither did the tree species. The
coefficient of determination with a linear regression model was
0.95 for total biomass and 0.97 for needle and branch biomass
(Figures 3 and 4), which implies that the relative number of
points reflected from the tree represent accurately the relative
standing biomass of the tree. There was some non-linearity in
the response, especially with lower relative number of hits, and
with a non-linear model the results could be improved.

Figure 3. Laboratory experiment: normalized laser point
number versus normalized total biomass of the trees. R2=0.95.

Figure 4. Normalized laser point number versus normalized
branch and needle biomass of the trees. R2=0.97.

3.2 TLS Field Experiment

The change in laser returns from the tree canopy (in
percentages) between the measurements in June 25 and July 26-
27 is presented in Figure 5 and compared with visual
observation. Clear trends of defoliation are visible in both
visual and TLS-based analysis of the tree canopies. There are
several factors that affect the accuracy, e.g.,

- Deviation in change detection data from TLS point
clouds (e.g. mixed pixel effect caused by the phase-
based scanning technique)

- The first visual estimation was carried out in June 6-9,
i.e. two weeks before the first TLS measurements.
During the time difference, the youngest larval instars
were already consuming needles.

- The visual estimation of defoliation is subjective
(compared to, e.g., laboratory measurements, for
which the accuracy is better, see Sect. 3.1)

- The ground-based TLS measurement is made in the
upward direction, preventing some parts of the
canopy from being measured. Measurement facing
downwards (e.g., ALS or unmanned aerial vehicle
(UAV) based TLS) would improve the accuracy.
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Figure 5. Visual and TLS-based measurement of forest
defoliation (in percentages).

3.3 SAR

The change in the ERS-2 backscattering values (amplitude
values) of the test plots in comparison with defoliation intensity
in late July 2009 is presented in Figure 6. The backscattering
values were averaged from the SAR pixel values using a circle
with the radius of 50 metres. The test plots were located in the
centre of the circles. It should be noted that the spatial and
temporal pattern of defoliation, i.e., the focal point and the
damage intensity change each year, so the defoliation is not
uniform. Therefore, averaging strongly generalizes the results
concerning the defoliation. However, averaging was the only
way to reduce SAR speckle, and therefore this result is
preliminary.

According to the results of 19 test plots, a slight change in the
averaged SAR backscatter occurred for the plots with visually
observed defoliation. Little or no change in backscatter was
observed for those plots where (visual) signs of defoliation were
not present. Nevertheless, more test plots for ground reference
and SAR data are needed to find out the role of possible other
factors to these changes.

Figure 6. Scatterplot of defoliation intensity (in percentages) in
2009 and change in ERS-2 backscattering (2008-2009).

Because of the qualitative nature of these first results,
comparison between TLS and SAR is difficult, but the
similarity in results suggests that combined use of these two
methods would provide the best time resolution in long-term

monitoring applications. In their earlier study, Holopainen et al
(2010) compared the accuracy of ALS, multi-temporal high-
resolution non-interferometric TerraSAR-X (TSX) radar data
and combined feature set derived from these data in the
estimation of forest variables (mean volume, basal area, mean
height, mean diameter and tree species-specific mean volumes)
at plot level. The combined feature set marginally outperformed
the ALS-based feature set. Features from TSX alone performed
poorly, but brought some extra information into the combined
set. However, due to favourable temporal resolution, they
concluded that satellite-borne radar imaging is a promising data
source for updating large-area forest inventories based on ALS.

CONCLUSIONS

The defoliation trend was visible in the TLS laboratory and
field experiments, and SAR data for those plots where
defoliation was observed visually. Based on these results and
the earlier similar findings (Holopainen et al., 2010), there is
great potential in synchronized use of laser scanner and SAR in
change detection and forest parameter estimation. This requires
careful planning and timing of all experiments for simultaneous
data from both sensors and ground reference.

Future tests will show whether the effect of the trunk is
important. The results partly explain why ALS has been very
effective in earlier studies for stem volume estimation. ALS
does not measure only height information, but also direct
metrics for biomass, or at least for biomass change. Future tests
are needed to verify this, but our results integrated with earlier
findings propose that laser scanner measures directly tree
height, crown area and biomass with a relatively high accuracy.

The laboratory results point out the better accuracy of TLS
measurements, but SAR data are available from large areas and
better temporal resolution than laser data. Therefore a combined
approach would often produce a larger coverage of observations
both spatially and temporally. Also, a shorter wavelength in
SAR (X-band, 3.1 cm, as in TerraSAR-X or Cosmo-SkyMed)
might be better than the C-band (5.6 cm) used in this
experiment.

REFERENCES

Aschoff, T., and Spiecker, H., 2004. Algorithms for the
automatic detection of trees in laser scanner data. In: IAPRS
working group VIII/2 “Laser-Scanners for Forest and
Landscape Assessment”, University of Freiburg, pp. 66-70.

Bienert, A., Scheller, S., Kesane, E., Mullooly, G. and Mohan,
F., 2006a. Application of terrestrial laser scanners for the
determination of forest inventory parameters. In: The
International Archives of the Photogrammetry, Remote Sensing
and Spatial Information Sciences, Dresden, Germany, Vol. 36,
Part 5.

Bienert, A., Maas, H., and Scheller, S., 2006b. Analysis of the
information content of terrestrial laserscanner point clouds for
the automatic determination of forest inventory parameters. In:
ISPRS WG VIII/11 & EARSeL joint Conference '3D Remote
Sensing in Forestry', Vienna, 14-15 February.

Bienert, A., Scheller, S., Keane, E., Mohan, F. and Nugent, C.,
2007. Tree detection and diameter estimation by analysis of

In: Wagner, W., Székely, B. (eds.): ISPRS TC VII Symposium – 100 Years ISPRS, Vienna, Austria, July 5–7, 2010, IAPRS, Vol. XXXVIII, Part 7A
Contents Author Index Keyword Index

85



forest terrestrial laserscanner point clouds. In: The International
Archives of the Photogrammetry, Remote Sensing and Spatial
Information Sciences, Espoo, Finland, Vol. 36, Part 3, pp.50-
55.

Chasmer, L., Hopkinson, C. and Treitz, P., 2006. Investigating
laser pulse penetration through a conifer canopy by integrating
airborne and terrestrial lidar. Canadian Journal of Remote
Sensing, 32(2), pp. 116-125.

Danson, F.M., Hetherington, D., Morsdorf, F., Koetz, B., and
Allgöwer, B. Forest canopy gap fraction from terrestrial laser
scanning. IEEE Trans. Geosci. Remote Sensing, 4(1), pp. 157-
160.

Eichhorn, J., 1998. Manual on Methods and Criteria for
Harmonized Sampling, Assessment, Monitoring and Analysis of
the Effects of Air Pollution on Forests. Part II. Visual
Assessment of Condition and Submanual on Visual Assessment
of Crown Condition on Intensive Monitoring Plots. United
Nations Economic Commission for Europe Convention on
Long-Range Transboundary Air Pollution. Germany.

Fleck, S., Obertreiber, N., Schmidt, I., Brauns, M., Jungkunst,
H.F., and Leuschner, C., 2007. Terrestrial lidar measurements
for analysing canopy structure in an old-growth forest. In: The
International Archives of the Photogrammetry, Remote Sensing
and Spatial Information Sciences, Espoo, Finland, Vol. 36 Part
3/W52, pp. 125-129.

Garestier, F. Dubois-Fernandez, P.C., and Papathanassiou,
K.P., 2008. Pine forest height inversion using single-pass X-
band PolInSAR data. IEEE Trans. Geosci. Remote Sensing,
46(1), pp. 59-68.

Garestier, F., Dubois-Fernandez, P.C., Guyon, D., and Le Toan,
T., 2009. Forest Biophysical Parameter Estimation Using L-
and P-Band Polarimetric SAR Data. IEEE Trans. Geosci.
Remote Sensing, 47(10), pp. 3379-3388.

Gorte, B., and Pfeifer N., 2004, Structuring laser-scanned trees
using 3D mathematical morphology. In: The International
Archives of the Photogrammetry, Remote Sensing and Spatial
Information Sciences, Istanbul, Turkey, Vol. 35, Part B5, pp.
929-933.

Hawbaker, T.J., Keuler, N. S., Lesak, A.A., Gobakken, T.,
Contrucci, K., and Radeloff V.C., 2009. Improved estimates of
forest vegetation structure and biomass with a LiDAR-
optimized sampling design. J. Geophys. Res., 114, G00E04.

Holopainen, M., Tuominen, S., Karjalainen, M., Hyyppä, J.,
Vastaranta, M. and Hyyppä, H. 2009a. The accuracy of high-
resolution radar images in the estimation of plot-level forest
variables. In: Sester, M., Bernard, L., and Paelke, V.: Advances
in GIScience. Lecture notes in geoinformation and
cartography. Springer, pp. 67-82.

Holopainen, M., Haapanen, R., Karjalainen, M., Vastaranta, M.,
Hyyppä, J., Yu, X., Tuominen, S., and Hyyppä, H., 2009b.
Combination of low-pulse ALS data and TerraSAR-X radar
images in the estimation of plot-level forest variables. In: The
International Archives of the Photogrammetry, Remote Sensing
and Spatial Information Sciences, Paris, France, Vol. 38, Part
3/W8, pp. 135-140.

Holopainen, M., Haapanen, R., Karjalainen, M., Vastaranta, M.,
Hyyppä, J., Yu, X., Tuominen, S., and Hyyppä, H. 2010.
Comparing accuracy of airborne laser scanning and TerrSAR-X
radar images in the estimation of plot-level forest variables.
Remote Sensing, 2(2), pp. 432-445.

Hosoi, F, and Omasa, K., 2006. Voxel-based 3-D modeling of
individual trees for estimating leaf area density using high-
resolution portable scanning lidar. IEEE Trans. Geosci. Remote
Sensing, 44(12), pp. 3610-3618.

Houghton, R.A., Hall, F., and Goetz, S.J., 2009. Importance of
biomass in the global carbon cycle. J. Geophys. Res., 114,
G00E03.

Hyyppä, J., and Inkinen, M., 1999. Detecting and estimating
attributes for single trees using laser scanner. The
Photogrammetric Journal of Finland, 16, pp. 27-42.

Jaakkola, A., Hyyppä, J., Hyyppä, H., Kukko, A., 2008.
Retrieval Algorithms for Road Surface Modelling Using Laser-
Based Mobile Mapping. Sensors, 8(9), pp. 5238-5249.

Kaasalainen, S., Krooks, A., Kukko, A., and Kaartinen, H.,
2009. Radiometric Calibration of Terrestrial Laser Scanners
with External Reference Targets. Remote Sensing, 1(3), pp.
144-158.

Király, G., and Brolly, G., 2007. Tree height estimation
methods for terrestrial laser scanning in a forest reserve. In: The
International Archives of the Photogrammetry, Remote Sensing
and Spatial Information Sciences, Espoo, Finland, Vol. 36, Part
3, pp. 211-215.

Lyytikäinen-Saarenmaa, P., Varama, M., Anderbrant, O.,
Kukkola, M., Kokkonen, A.-M., Henderström, E., and Högberg,
H.-E., 2006. Monitoring the European pine sawfly in maturing
Scots pine stands with pheromone traps. Agricultural and
Forest Entomology, 8, pp. 7-15.

Meadows, P., Miranda, N., Pilgrim, A., Tranfaglia, M., 2008.
The Performance of the ERS-2 SAR on becoming a Teenager,
In: Proceedings of the CEOS SAR Cal/Val Workshop,
Oberpfaffenhofen, Germany, 27-28 November 2008.

Nelson, R.F., Hyde, P., Johnson, P., Emessiene, B., Imhoff,
M.L., Campbell, R., and Edwards, W., 2007. Investigating
RaDAR–LiDAR synergy in a North Carolina pine forest. .
Remote Sens. Environ., 110(1), pp. 98-108.

Naesset, E., 2002. Predicting forest stand characteristics with
airborne scanning laser using a practical two-stage procedure
and field data. Remote Sens. Environ., 80, pp. 88-99.

Pfeifer, N., Gorte, B., and Winterhalder D., 2004. Automatic
reconstruction of single trees from terrestrial laser scanner data.
In: The International Archives of the Photogrammetry, Remote
Sensing and Spatial Information Sciences, Istanbul, Turkey,
Vol. 35, Part B5, pp. 114-119.

Pfeifer, N. and Winterhalder D., 2004. Modelling of Tree Cross
Sections from Terrestrial Laser-Scanning Data with Free-Form
Curves. In: The International Archives of the Photogrammetry,
Remote Sensing and Spatial Information Sciences, Vol 36, Part
8/W2, pp. 76-81.

In: Wagner, W., Székely, B. (eds.): ISPRS TC VII Symposium – 100 Years ISPRS, Vienna, Austria, July 5–7, 2010, IAPRS, Vol. XXXVIII, Part 7A
Contents Author Index Keyword Index

86



Sexton, J.O., Bax, T., Siqueira, P., Swenson, J. J., and Hensley,
S., 2009. A comparison of lidar, radar, and field measurements
of canopy height in pine and hardwood forests of southeastern
North America. Forest Ecology and Management 257(3), pp.
1136-1147.

Sohlberg, S., Næsset, E., Hanssen, K.H., and Christiansen, E.,
2006. Mapping defoliation during a severe insect attack on
Scots pine using airborne laser scanning. Remote Sens.
Environ., 102, pp. 364-376.

De Somviele, B., Lyytikäinen-Saarenmaa, P. and Niemelä, P.,
2007. Stand edge effects on distribution and condition of
Diprionid sawflies. Agricultural and Forest Entomology, 9, pp.
17-30.

Viitasaari, M., and Varama, M., 1987. Sawflies 4. Conifer
sawflies (Diprionidae). University of Helsinki. Department of
Agricultural and Forest Zoology. Reports, 10, pp. 1-79. (In
Finnish with an English summary)

Xu, H., Gosset, N., and Chen, B., 2007. Knowledge and
heuristic-based modeling of laser scanned trees. ACM
Transactions on Graphics, 26(4), Article 19.

Zhao, K., Popescu, S., and Nelson, R., 2009. Lidar remote
sensing of forest biomass: A scale-invariant estimation
approach using airborne lasers. Remote Sens. Environ., 113(1),
pp. 182-196.

ACKNOWLEDGEMENTS

The SAR data was related to the ESA project DUE Innovators
II – Insect Combat (ESRIN/AO/1-5781/08/I-IC) and the authors
want to thank Prof. Barbara Koch at Steinbeis Transferzentrum
FELIS. This study was financially supported by the Academy of
Finland (projects "New techniques in active remote sensing:
hyperspectral laser in environmental change detection" and
“Forest Tomography”). The study was also supported by the
Academy of Finland project “Improving Forest Supply Chain
by Means of Advanced Laser Measurements (L-Impact)”. The
authors would like to thank Mikko Vastaranta at the University
of Helsinki for participation in the experiments.

In: Wagner, W., Székely, B. (eds.): ISPRS TC VII Symposium – 100 Years ISPRS, Vienna, Austria, July 5–7, 2010, IAPRS, Vol. XXXVIII, Part 7A
Contents Author Index Keyword Index

87



TRUE ORTHOPHOTO CREATION THROUGH FUSION OF
LIDAR DERIVED DIGITAL SURFACE MODEL AND AERIAL PHOTOS

A. Kato a, *, L. M. Moskalb, P. Schiessb, D. Calhounc, M. E. Swansond

a Graduate School of Horticulture, Chiba University, 648 Matsudo Matsudo-shi Chiba 2718510 Japan
akiran@faculty.chiba-u.jp

b Precision Forestry Cooperative, School of Forestry, College of Environment, University of Washington,
Box 352100 Seattle, WA 98195-2100 USA

(lmmoskal, schiess)@u.washington.edu
c Laboratoire d‘Etudes des Transferts et de Mecanique des Fluides, Commissariat l'Energie Atomique

F-91191 Gif-sur-Yvette Cedex, France
donna.calhoun@cea.fr

d Department of Natural Resource Sciences, Washington State University 177 Johnson Hall Pullman, WA 99164-6410
USA

markswanson@wsu.edu

KEY WORDS: Digital, LIDAR, Fusion, Orthorectification, Orthoimage

ABSTRACT:

Data fusion between aerial photos and LiDAR provides better estimates in forestry and ecological applications, because LiDAR
mainly provides the structural information of objects and aerial photo can add spectral information to them. Without the data fusion,
an accurate identification of tree crown information from two dimensional data is difficult due to shaded and shadow pixels cast on
the image and image distortion. The aerial photogrammetric techniques cannot reconstruct the objects accurately in three
dimensional spaces if they are not clearly visible on the photos. The conventional orthophotos, therefore, still have image distortion
due to an inappropriate Digital Surface Model (DSM). LiDAR provides a more suitable surface of tree crown structure in three-
dimensional spaces. This LiDAR-derived DSM could be used in conjunction with conventional photogrammetric techniques to
rectify aerial photos and produce true orthophotos for each image. The existence of different perspective points from the use of
multiple images results in different illumination and shadows cast on the DSM from the angle between the sun and the camera. In
previous studies, a Z-buffer algorithm was applied for the occlusion detection and compensation. However, the technique was
computationally intensive. In this study, the camera view and sun-oriented hillshade were generated using the LiDAR-derived DSM.
The hillshade surfaces distinguished between the exposed and the occluded side of the DSM during the composition process of
respective true orthophotos. This technique constituted a simpler approach and is applicable to data fusion between LiDAR and
multispectral imagery to make an orthographically rectified image.

1. INTRODUCTION

1.1 Data Fusion

Data fusion data derived from different remote sensing sensors
has been used for numerous applications. The improvement of
detecting objects was demonstrated by data fusion among
several different sensors to derive better results than that
derived by each sensor solely. There are limits in two
dimensional image analyses for forestry application. Those
issues and the advantage of data fusion are discussed in the
following subsection.

1.2 The limitation of two-dimensional image analysis

The limits of two dimensional image data have been addressed
with several crown delineation techniques such as image
processing algorithm (Brandtberg and Walter, 1998; Erikson,
2003), local maximum filter with semivariogram (Wulder et al.,
2000), and valley following algorithms (Gougeon, 1995; Leckie
et al, 2003, 2005). Brandtberg and Walter (1998) processed a
near-infrared image to delineate tree crowns. They detected
crown edges on the image for crown segmentation. The
accuracy was 70% compared with manual delineation. Such
delineation only worked for the visible portion of tree crowns

because of the light illumination. Natural forests canopies are
comprised of tree crowns with various sizes and shapes and
complex vertical tree composition. This presents a challenge for
crown delineation based on two-dimensional data. Leckie et al.
(2005) found several other important issues in two-dimensional
image analysis: different sun angles among multi-year data,
different sensor view angles, and similar spectral signatures of
trees within the old growth stand. The various shade and
shadowing effects caused different delineation results. The
sensor view angle, therefore, should be considered for further
improvement of crown delineation technique.

1.3 Advantage of data fusion

For the conventional photogrammetric technique, creating
automated Digital Surface Model (DSM) over a dense forest is
prone to error because of the difficulty of matching pixels in the
tree canopy between two stereo photos taken at different
viewing angles. Light Detection and Ranging (LiDAR) is,
therefore, a good alternative tool to create better DSMs to
rectify the aerial images. The LiDAR derived Canopy Height
Model (CHM) was used for the valley following algorithm to
compare with the results from digital aerial photos (Leckie et al.,
2003). They found that digital aerial photos were better for the
delineation of tree crowns; while the LiDAR derived CHM was

_______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
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better for open canopy areas. The LiDAR derived CHM was
better suited in clearly distinct area among neighbouring pixels
between trees and shrub (or ground). LiDAR was well suited to
measure tree height and large tree crown delineation (Leckie et
al., 2003). For the data fusion between aerial photos and LiDAR,
a simply approach can be taken to form a direct link between
LiDAR and orthophoto plainmatric coordinate. The orthophoto
still has, however, distorted objects because of the insufficient
quality of DTMs or DSMs that are generally used to rectify the
images. Therefore, the color values assigned on an orthophoto
does not generally match with the LiDAR coordinates. The
orthophoto creation should be improved by better data fusion
approaches.

As the better applications of data fusion between the LiDAR
derived high resolution data and aerial photos, St-Onge et al
(2004) used LiDAR derived Digital Terrain Model (DTM) to
measure tree height using stereo pair of aerial photos. Their
approach can be useful for the change detection of tree height
over time when historical photos are applied for comparison.
Rönnholm et al. (2004) used the backprojection approach with
exterior orientation parameters derived by aerial triangulation
process from stereo pair of aerial photos. They draped LiDAR
points on terrestrial digital images. Their approach explicitly
showed which part of tree crown the LiDAR points were
reflected from and was used for calibration in LiDAR
acquisition accuracy.

1.4 True orthophoto generation

A ‘true’ orthophoto has been created for detecting buildings in
the urban area (Amhar et al., 1998, Habib et al., 2007, Rau et al.,
2002, Schickler and Thorpe, 1998, Zhou et al., 2005) and
forested area (Sheng et al., 2003). Ambar et al. (1998) defined
“true orthophoto” as an orthophoto that is rectified
orthographically. The true orthophoto, therefore, does not have
any image distortion of objects on the final image. Ideally it
rectifies the structure of trees in an upright position on the
image. Ambar et al. used Digital Building Models (DBMs) to
find the visible side of building from the photo projection center
using Z-buffer algorithm. The Z-buffer algorithm is also called
hidden surface removal in computer graphics (Angel, 2003) and
determines the visibility of the objects on the photos. In
transformation of ground coordinate to image space coordinate,
the corresponding location between them is a many-to-one
relationship (Sheng et al., 2003). The Z-buffer algorithm uses
the distance from the photo projection center and determines the
closest object to the projection center and occludes all others. In
this way, the ground coordinates of the visible sides of objects
are only selected and matched with the corresponding pixel on
the photo. Furthermore, it was reported that the false occlusion
was found using the direct method of Z-buffer algorithm, if the
sampling distance on the image was less than the DSM
resolution (Amhar et al., 1998, Habib et al., 2007, Rau et al.,
2002). Habib et al. (2007) showed that false occlusion caused
the black grid lines in the ground coordinate as an example
when the sampling distance did not match between the image
space and the ground coordinate. Habib er al. (2007) also used
radial and spiral sweep methods to resolve the issue of the false
occlusion without DBMs in urban area. The occluded area of a
master image was filled with images from a slave image (Rau et
al., 2002). In other words, orthophotos created from different
camera view angles were used to compensate the occluded area
to produce a gapless composite image (Sheng et al,, 2003).
When the finer resolution true orthophotos were merged into a
larger one, occluded areas were filled in by the color values
derived from orthophotos using an angle-based photo

composition scheme (Sheng et al., 2003), seam line adjustment
(Schickler and Thorpe, 1998), and histogram matching (Rau et
al., 2002, Zhou et al., 2005). These methods were complicated,
because the color values from different perspective photos were
variable and not well calibrated. There was a photographic
“light fall-off effect” which creates the darker colors at the edge
(Sheng et al., 2003). A relatively simpler approach using the
hillshade function is, therefore, introduced in a large area for
occlusion detection and compensation in this study.

1.5 Hillshade method for occlusion detection and
compensation

Hillshade surface utilized by ArcGIS (ESRI Inc.) has been used
for surface temperature change analysis (Hais and Kučera,
2008), making moisture index in landscape (Iverson et al.,
1997), the visual investigation of landslide area (Van Den
Eeckhaut et al., 2005, 2007), identifying tectonic phase
(Pellegrini et al., 2003), and urban growth modeling (Mahiny
and Gholamalifard, 2007). The hillshade function has been
mainly used for landscape analysis and has not been used for
true orthophoto generation. For forestry application, Kane et al.
(2008) used the hillshade function for self-shadowing effect to
characterize the stand condition. They cast the shadow
artificially on the forested landscape using LiDAR derived
CHM.

The advantage of this function is to distinguish which side of a
surface is visible to the light source. The light source can be the
sun or camera location. The parallel rays from the sun were
used for hillshade when the shadow is cast onto the surface,
because the distance of the sun is virtually infinite. But the
camera location mounted on airborne vehicle is in lower altitude
and this function was, therefore, customized to have radial
arrays from camera location to cast the shadow on the surface (a
central projection).

2. OBJECTIVES

In order to compose a LiDAR rectified image that is
displacement free, this paper used photogrammetric
relationships to assign color values from original perspective
image directly to the LiDAR derived DSM (the backprojection
process was used). The assigned color was mapped onto its
LiDAR plainmatric coordinates in two dimensions to make a
true orthophoto from each perspective image. At the final stage
of the process, the light reflectance between camera view and
sun angle was considered using hillshade function. The
shadowing effect of hillshade surface, therefore, was used for
occlusion detection and compensation during the composition
process. The main discussion points of this paper are:
1) accuracy of aerial triangulation* and backprojection

process.
2) occlusion detection and compensation using sun and

camera view hillshade.
* aerial triangulation in this study is achieved by using the Leica
Photogrammetric Suite (LPS, Leica Geosystems, Inc.).

In this paper, a LiDAR derived DSM is used to rectify each
original perspective photo to make a true orthophoto. To make a
gapless composite image, the occluded areas are detected using
values of hillshade function.
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3. DATA

The research area is located in the Washington State Park
Arboretum at the south end of the University of Washington and
east of downtown Seattle, WA. The total area is 0.93 km2. The
terrain of this study area is moderate in slope, and the site is in a
relatively urban setting. Arboretum is in the city so that building
and other distinctive objects are readily available for Ground
Control Points (GCPs) over the site for the aerial triangulation
process for the data fusion technique.

Aerial photos show an electromagnetic reflectance of solar
radiation. The reflectance depends on the angle between sun and
the projection center of each photo relative to the objects on and
above the ground. These reflectance values are not calibrated
like multispectral images. Each aerial photo collects one central
projected perspective view. The camera settings used in this
study are shown in Table 1. Three consecutive aerial photos
(named Image1, Image2, and Image3 from the South) along the
flight line are used with 60% overlap (endlap) between photos
from south to north of the Arboretum. Note that the capture
dates of the photos and LiDAR were different. The year was,
however, the same. The solar horizontal and vertical angle are
calculated by their timestamp using a solar position calculator
provided by NOAA (National Oceanic and Atmospheric
Administration) Surface Radiation Research Branch.

Airborne LiDAR data was acquired in the same coverage area
of aerial photos at the same year. LiDAR sensor setting is
shown in Table 2. Aerial photo was taken during leaf-on season
and LiDAR was acquired during leaf-off season. Stands of this
study area are heterogeneous, multi-aged mixtures of coniferous
and deciduous tree species. The seasonal error can by caused
over the deciduous tree area.

Camera of aerial photos
Date of acquisition July 26th, 2005
Camera type Jena LMK 2021
Average flying height ~2531 m
Focal length 210.914 mm
Scan Resolution 15 cm

(photo scale was 1:12,000)

Table 2. Airborne LiDAR sensor setting

LiDAR sensor setting
Acquisition data March 17th, 2005
Laser sensor Optec ALTM 3100
Laser wavelength 1064 nm (Near-infrared red)
Laser point densisty
range

3 to 20 points/m2

Table 1. Camera settings of aerial photos

4. METHODOLOGY

4.1 Aerial triangulation process

Stereo photos were used to rectify the image to make
orthophotos using a series of control and tie points. The aerial
triangulation process depends upon known exterior orientation
parameters determined by the relationship between image
coordinates and known ground coordinates. These parameters
determine the orientation of each aerial photo and the location
of the perspective point (camera location). The aerial photos

were triangulated using Leica Photogrammetric Suite (LPS,
Leica Geosystems, Inc.).

4.2 LiDAR derived DSM

A 1 m by 1 m planimetric grid was generated over the research
area. Within each grid cell, the local maximum heights of
LiDAR points were distinguished and the maximum height
value was stored at each grid location to create a Digital Surface
Model (DSM). The DSM was smoothed by a 3x3 Gaussian
filter (Hyyppä, et al., 2001) to reduce local variation on the
surface. With this 1 m by 1 m smoothed DSM, the slope and
aspect were calculated using the function of ArcGIS (ESRI Inc.).
The slope and aspect were evaluated by the 3x3 neighboring
pixels of DSM (Burrough and McDonnell, 1998).

4.3 Backprojection process

The ground coordinates of grid points from LiDAR derived
DSM were transferred to photo-pixel coordinates using the
collinearity equations below and an affine transformation. The
collinearity equations are:

(1)

(2)

(Mikhail et al. 2001)

where m is the rotation matrix based on omega (ω), phi (φ), and
kappa (κ ) values of exterior parameters, the subscripts of mij

are the ith row and jth column number of the rotation matrix m.
Xa and Yb are image space coordinates, X0 and Y0 are photo
centers, f is the focal length, XEX, YEX, and ZEX are the
coordinates of perspective centers, and X, Y, and Z are the
sampled coordinates from LiDAR derived DSM.

To transfer from image space to photo pixel coordinates, an
affine transformation (Mikhail et al. 2001) based upon the
camera fiducial points was applied.

Note that the resolution of DSM (1 m) and the image pixel
resolution of aerial photo (0.15 m) are different. To match the
pixel resolution for this fusion technique, the different sizes of
spatial filter were applied on the image to find the appropriate
size. The following section describes more about the spatial
filter.

4.4 Hillshade to cast the shadow on LiDAR derived DSM

With slope and aspect angle derived from the DSM, the shadow
was cast using a hillshade function which is a modified version
of the equation developed by Burrough and McDonnell (1998).
This function is also used for ArcGIS hillshade function of
spatial analysis.

Hillshade = 255 * (( cos(Zenith) * cos(Slope) ) +
(sin(Zenith) * sin(Slope) * cos(Azimuth - Aspect) ) ) (3)

(Burrough and McDonnell, 1998)

where Zenith is 90 – (altitude of the light source), Slope is the
surface slope angle derived from the DSM, Azimuth is the
azimuth angle of the light source, and Aspect is the surface
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aspect derived from the DSM.

The hillshade surface was created in the view of sun and camera
location. The hillshade surface used by ArcGIS uses the parallel
light ray to calculate Zenith and Azimuth angle over the entire
landscape, because the sun altitude is assumed to be at infinity
and the azimuth angle is parallel from the sun. However, the
camera location mounted on the airborne vehicle has a lower
altitude and the azimuth is the radial direction from the camera
location. Equation 4 was, therefore, customized to cast the
shadow from the camera location in this study.

4.5 Image composition scheme using hillshade function

After respective true orthophotos were created from the three
photos, the three true orthophotos were merged to make a
composite image. In this study a novel image composition
scheme was developed using visible side of hillsahde surface of
each acquisition time. The camera view and the sun oriented
hillshade surfaces were generated for all images. There were
three sun oriented hillshade images and three camera view
oriented hillshade images. Each hillshade pixel has the value
ranged between 0 and 254. Generally, a hillshade value more
than 177 implies the exposed/visible side of the surface towards
the sun or camera view and a value less than 177 implies the
obscured/occluded side of the surface. These hillshade values
among images in the overlapped area were used to compare
values and select the higher (or the highest) values to make a
composite image from the respective orthophotos.

During the backprojection process, a spatial filter was applied to
the filtered region centered at the exact location of drape points
on the original perspective photo. This was done because the
slight misalignment between draped location from the draped
point and exact location should be considered to obtain the color
from the original perspective photo. Four different filter sizes
were used. The four were the exact location, a 3 by 3 pixels
(3x3) filter, a 5 by 5 pixels (5x5) filter, and a 7 by 7 pixels (7x7)
filter area (1 pixel cell size is 15 cm). These four cases were
used for color acquisition from the original perspective photos.

5. RESULTS

5.1 Aerial Triangulation process of aerial photos

The accuracy from the block triangulation report is shown in
Table 2. This shows the variations of GCPs and the location of
tie points between each paired image. Table 2 shows the overall
RMSE of the block triangulation as 37 cm. The error of
comparison with the ground coordinates resulting from the
triangulation approach were 37 cm, 48 cm, and 53 cm for the X
axis, Y axis, and Z axis respectively.

Ground X coordinate error 37 cm
Ground Y coordinate error 48 cm
Ground Z coordinate error 52 cm
Image X coordinate error 0.13 mm
Image Y coordinate error 0.03 mm
The total RMSE 38 cm

Table 2. The accuracy assessment of aerial triangulation process.

5.2 True orthophoto generation

The improvement of this technique is shown with USGS
orthophoto provided by the USGS National Map seamless

server. Their orthophoto was captured in the same year (2005)
as the aerial photos used in this study. The difference between
USGS orthophoto and the true orthophoto was shown on Figure
3. To demonstrate the true projection, the rectified trees in the
upright position on the true orthophoto, while trees in the USGS
ortho photo were tilted only to show one side.

Figure 3. The true orthophoto generation. The final product of
true orthophoto for the entire area (A). Single tree shown on the
trueortho (B) and the same tree shown on USGS orthophoto (C).
A group of trees shown on the trueortho (D) and the same trees
shown on USGS orthophoto (E).

5.3 Filter size

Color was obtained for four cases: exact location of draped
LiDAR points, a 3x3 filtered region centered at the location of
draped LiDAR points on each photo, a 5x5 filtered region, and a
7x7 filtered region. The color variation is smaller and the noise
of color values becomes smoother as the size of filter becomes
larger. The 7x7 filter is, therefore, appropriate for this case
because the color contrast is larger than for the other size of
filters. The 7x7 pixel size filer (1 pixel size is 15 cm) is also
close to the 1 m by 1 m cell size of LiDAR derived DSM used
in this study. A composite image was made from three true
orthophotos. Figure 3 shows the resulting composite image with
the 7x7 filter and shows the composited true orthophoto for one
tree and a group of trees.

6. DISCUSSION

6.1 Accuracy

The RMSE for all axes was less than 50 cm from the block
triangulation report that is less error than that reported by St-
Onge et al. (2004). The Z coordinates error was larger, because
the surveying GPS unit is more error prone in the Z coordinate.

In this study, the conventional way to make an orthophoto was
taken using field observed GPS for GCP during aerial
triangulation process. GCP can, however, be identified and
selected from the LiDAR three dimensional point cloud, if the
point density is high enough to visualize objects. Liu et al.
(2007) took this approach to derive GCPs from the aerial photos
without the actual field survey. They found that LiDAR derived
GCPs and DTM from LiDAR significantly reduced positional
errors in the orthorectification process. If the GCP location is
well identified by LiDAR itself, the error of the mismatch
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between field measured GPS and LiDAR elevation acquired by
INS can be decreased and the accuracy of the backprojection
can be improved. With such an improvement, a smaller filter
could be applied to obtain the colors from aerial photos during
the composite process and the pixel resolution of DSM could be
higher with high density LiDAR points.

With regard to the seasonal difference between the two datasets,
the DSM was created with the leaf-off LiDAR data and aerial
photos were captured in the leaf-on season. The seasonal
difference may have caused some of the noise in the composite
image. For example, the noise around trees along the road may
be caused by this seasonal difference since the misalignment of
the backprojection process was greater. It would be ideal to
capture both the LiDAR data and aerial photos at the same time
or in the same season.

6.2 Occlusion detection and compensation using hillshade
function

As reported by Sheng et al (2003) and Kane et al. (2008), the
LiDAR derived DSM does not represent the exact shape of the
crown. Especially for parts lower than the lowest branches, the
tree shape provided by the DSM is not realistic. To show this
effect, Figure 4 shows the hillshade surface using the DSM.

The lower part of the crown had low hillshade values because
the hillshade was calculated based on slope and aspect of the
surface. If the DSM had abrupt slope change at the sides of tree
crown shown on Figure 4, the slope and aspect were never
exposed to the camera and sun direction. To show the effect, the
edges of tree crowns had black frames which represent the
lower values of hillshade in three dimensional view of Figure 4.

Figure 4. Shadowing effect using hillshade surfaces. Shadows
are casted on the side of the DSM, clearly seen from the figure.

The hillshade value is calculated by slope and aspect angles
which are evaluated by the gradient of the neighbouring pixels.
The abrupt angles at the edge of tree canopy tend to be occluded
area. If the tree canopy model is improved to cover the bottom
of tree crown, more realistic hillshade values can be calculated
and used for the composite process. The wrapped surface (Kato
et al., 2009) can provide a more realistic surface to avoid this
situation.

Hillshade surfaces provided useful information to find
occlusions. If these hillshades are used for the orthorectification
process of digital aerial photo with LiDAR taken at the same
time, a fully automated true orthophoto process is possible.

6.3 True orthophoto

For the group of trees in Figure 3, the seam (cut) lines appeared
on the USGS ortho photo. Conventionally, the final orthophoto
tiles were mosaiced from more visually appealing parts of
several individually rectified images. These mosaics will exhibit
“seam lines” where the individual images met, and tree images
at the seam boundaries did not match due to the displacement of
tree tops. Even though the aerial photos have been controlled
and rectified, the images of trees along the edges of tiles or at
seam lines will appear tilted on orthoimages due to perspective
angles and the use of DTMs that represent the ground elevations
rather than the surface of the tree canopy. This resulted in an
orthophoto where ground features were placed in the correct
planimetric position, while the treetops were distorted
horizontally. Most orthophotos are produced in this manner.

The data fusion using hillshade introduced here can be applied
to the data fusion between LiDAR and the other optical spectral
datasets at landscape level. The multi- and hyper-spectral
images acquired by airborne sensors can have improved
rectification with this true orthophoto creation process, even
though they are not captured by stereo-pair. The high hillshade
values of both camera view and sun angle can be used for
spectral calibration. The advantage of this technique is that it
selects the pure spectral signature of tree crowns for further
species identification with less shadow and shaded pixels,
because the exposed side of tree crowns is identified with
camera view and sun oriented hillshade surfaces.

7. CONCLUSION

A technique of data fusion between aerial photos and LiDAR
was developed. In particular, a true orthophoto was created
using the LiDAR derived DSM and hillshade function on the
DSM. To make the true orthophoto, backprojection process was
used to transfer the ground coordinate to the photo coordinate
on the perspective aerial photos using a collinearlity equation.
However, to fuse LiDAR derived DSM with aerial photos, only
the visible sides of DSM to photo perspectives were required to
be identified and selected. The camera view and the sun
oriented hillshade surfaces were generated using the LiDAR
derived DSM and used to distinguish between the exposed and
the occluded side of the DSM. An adapted technique can be
applied to the data fusion between LiDAR and multispectral
high resolution images, even though the images are not
collected with full stereo coverage. If the camera or sensor
location is reported, the hillshade function is useful to detect the
occluded side of an object to compensate for and correct the
color from aerial photos. The pure spectral signature collected
with the hillshade surface can also be useful for species
identification. Furthermore, the spectral value derived only from
the visible side of DSM can be used for color calibration among
aerial photos or multi-temporal spectral images. Therefore, this
technique dramatically increases the opportunities for the data
fusion between LiDAR and any spectral image for the image
composition and color calibration.
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ABSTRACT: 
 
The overall objective of this work is to provide maps based on the spatial organization of built-up areas and to achieve the 
comparative spatial analysis of built-up areas on east of Algiers in 1985 and 1996. Landsat TM images from both dates are 
processed here in order to characterize spatial and temporal change in built-up areas. Contextual supervised classification method is 
used for built-up areas extraction. Built-up density mapping is provided by local granulometric analysis, based on binary 
mathematical morphology. This method enables the classification of entities according to their granulometric descriptors generated 
by opening granulometries.  
 
 

1. INTRODUCTION 

Built-up areas in Algiers have markedly increasing during the 
last decades. Growth of urban built-up area is accompanied by 
an evolution of land use. Remote sensing images are relevant 
materials for observation and thematic mapping by 
multispectral and multi-textural classification. The objective 
here consists in mapping the spatial organisation of one single 
component of the landscape under study, such as built-up areas. 
Many techniques have been developed for built-up analysis 
(Zhang, 2002; Zha, 2003). Different parameters can be used to 
define the spatial organisation of a set: the size of convex 
entities forming the set, their form or their ordering. Texture is 
the characterizing feature of built-up areas in satellite imagery. 
For some researchers (Matsuyama, 1983; Wood-1996), there 
exist two categories of methodologies to analyze the textures, a 
statistical and a structural one. The former model the textures as 
a random function without a regular structure and are utilized 
for the detailed textures. The structural methods describe the 
textures produced by the regular structure of textural elements 
(Philipp, 1994).  
In the local or global analysis of the texture, the textural 
parameters computed from the local or global statistics of the 
image with grey tone images are used as classifying descriptors. 
However, computation of the texture parameters from grey-tone 
values is not relevant for the feature extracted data used in this 
study. The work presented in this paper is about the 
development of a methodology for the quantification of the 
spatial organization of built-up areas from binary images. Such 
spatial organization is called macro-texture. On a binary image, 
Busch et al. (Busch, 1998) define the feature density as the 
number of pixels matching this feature that are contained in an 
image window. The proposed approach is based on 
mathematical morphology (Serra, 1982; Soille, 2003), and has 
been used successfully in vegetation density mapping 
(Kemmouche, 2004). In a first step, after extraction of the built-
up areas by multi-spectral analysis, we define the descriptors of 
the macro-texture from the concept of the granulometric 

analysis of binary images representing built-up areas. To 
describe the macro-texture around a pixel of the image, we have 
calculated the local granulometric density over a window 
centred on the pixel. The result of this granulometric 
computation is a vector associated with each pixel and new grey 
level images generated.  
In a second step, all the pixels of the original, described by the 
macro-texture parameters are classified by the K-means method 
to produce the final map, which can be considered as a map of 
the density of the built-up areas. The method has been applied 
to map built-up areas density from satellite data on east of 
Algiers in 1985 and 1996. Such maps are efficient tools to study 
the spatial dynamics of built-up areas.  
The paper is organized as follows. In section II, the 
classification of satellite data with high spatial resolution from 
urban areas is described. The proposed mathematical 
morphology approach to built-up areas density mapping is 
discussed in section III. Experimental results are given in 
section IV. 
 

2. BUILT-UP AREAS EXTRACTION  

In this section image analysis methods used for extraction of 
built-up areas from Landsat images are described. The first part 
is devoted to image processing adapted to urban areas 
classification from multispectral images, and the second part 
describes built-up areas extraction. Landsat images 
corresponding to seven band multispectral mode (Thematic 
Mapper) were explored over eleven-year period. 
 
2.1 Classification of urban areas from satellite data  

There are many different approaches to classifying remotely 
sensed data. They all fall under two main topics: unsupervised 
and supervised classification. Supervised classification methods 
are two kinds: punctual or blind methods and contextual 
methods (Pieczynski, 1989; Richards 1993). Punctual 
classification methods are conventional classification 
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techniques which classify each pixel independently by 
considering only its observed intensity vector. The result of 
each method has often a “salt and pepper” appearance 
characterizing misclassification. It means that intensity vector is 
insufficient and then leads to incorrect classification of pixels. 
In particular of remotely sensed data, adjacent pixels are related 
or correlated, both because imaging sensors acquire significant 
portions of energy from adjacent and because ground cover 
types generally occur over a region that is large compared with 
the size of a pixel. Using coherent contextual information for 
classification efficiency and accuracy in remote sensing has 
long been desired. Contextual information is important for the 
interpretation of a scene. When a pixel is considered in 
isolation, it may provide incomplete information about the 
desired characteristics. However, the consideration of the pixel 
in its context, more complete information might be derived. The 
basic idea of spatial context is that the response and class of two 
spatially adjacent pixels are highly related. For example, if (i, j) 
and (m, n) are two neighbouring pixels and if (i, j) belongs to 
class k, then there is a high possibility that pixel (m, n) also 
belongs to the same class k. Therefore, the decision for a pixel 
is taken based not only on the observation at (i, j) but also on all 
observations at (m, n) where (m, n) is neighbour of (i, j). Among 
contextual methods, the most widely applied to remote sensing 
images is the Markov random Field (MRF) approach , which 
has given very promising results (Schistad  1999a; Schitad 
1996b, Khedam 2001). MRF is given as the best 
methodological framework to describe the correlation of 
neighbouring pixels.  
 
2.2 MRF contextual classification model 

We assume that a classified image X and observed data Y are 
realisations of stochastic processes X and Y, respectively. 

{ }K21 Y ..., ,Y ,YY =  are multispectral data observed 

through K spectral bands and are supposed to be acquired on a 
finite rectangular lattice ( ){ }Ss1 :ji,sW ≤≤== , s is the 
site of the ijth pixel and S is lattice's area. The multispectral 
data can be described with { }Ss1 yY s ≤≤=  ,  where 

{ }K
ssss yyyy  ..., ,2 ,1=  is a feature vector observed on the site 

s. Our goal is to find the optimal classified image 

{ }Ss xxX  ..., ,* =  based on the observed data Y. Each site of 
the segmented image is to assigned into one of M classes; that 

is, { } M..., 2,  1,xs =  where M is the number of classes 
assumed to be known in supervised classification process. This 
optimisation is executed from the view point of the maximum a 
posterior (MAP) estimation as follows: 

 
( ){ }YXPargmaxXX

X
MAP

Ω∈
==*     (1) 

 
Where Ω is labelled configurations set. Following Bayes 
theorem, equation (1) becomes: 
 

( ) ( )
( ) 








=
Ω∈ YP

XPXYP
argmaxX

X
MAP            (2) 

 
The modelling of both class conditional distribution P(Y/X) and 
prior distribution P(X) becomes an essential task. P(Y) is the 
probability distribution of the observed data and doesn't depend 

on the labelling X. Note that the estimate (2) becomes the pixel–
wise non–contextual classifier if the prior probability doesn't 
have any consequence in formulating (2). P(Y/X) is the 
conditional probability distribution of the observation Y given 
the labelling X. A commonly used model for P(Y/X) is that the 
feature vector observed Ys is drawn from a “Gaussian 
distribution”. For a Markov random field X and so, according 
to the Hammerslay-Clifford theory, P(X) can be expressed as a 
Gibbs distribution with “Potts model” as energy function 
model. The global MAP estimate given by equation (1) is 
equivalent to the minimisation of the followed a posterior 
global energy function: 

 
( ){ } min arg

Ω 
 YX U X

X
MAP

∈
=     (3) 

 

Once MAP classification problem is formulated as an energy 
minimisation problem, it can be solved by an optimisation 
algorithm. Among the most effective algorithms for 
optimisation in the framework of image MRF modelling are 
Simulated Annealing (SA) (Geman, 1984) whose the 
computational demands are well known and Iterated 
Conditional Modes (ICM) (Besag, 1986) which is a 
computationally feasible alternative of the SA with a local 
minimum convergence of the energy function. To use ICM 
algorithm, global minimisation energy function of equation (3) 
must be transformed on the followed local minimisation energy 
function:

( ) ( ) ( )
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−+ ∑

∈ sVr
 x  ,x1 rs δβ      (4) 

Where xsµ  and 
sx∑  are class sx  are respectively mean vector 

and covariance matrix of class xs estimated during training 
process. β is a regularisation parameter and is frequently user 
specified. δ is Kroeneker symbol calculated on the 
neighbourhood Vs of site s.  
 
ICM algorithm can be resumed on five steps as follows: 
Step 1: Estimate statistic parameters set ( xsµ ,

sx∑ ) from the 

training samples of each class from M classes 
Step 2: Based on xsµ  and 

sx∑ , estimate an initial 

classification using the non-contextual pixel-wise maximum 
likelihood decision rule. We use the first term of equation (4) 

Step 3: Choose an appropriate value of β, an appropriate shape 
and size of neighbourhood system Vs and an appropriate 
convergence criterion. 

Step 4: Perform the local minimisation defined by equation (4) 
at each pixel in specified order: update ys by the class xs that 
minimises equation (4) 

Step 5: Repeat step (3) until convergence. 
 
2.3 Built-up area extraction from classified urban areas 

The described algorithm is applied to classify satellite images 
of the selected region of interest. Multispectral and 
multitemporal images were acquired in 1985 and 1996 by 
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ETM+ sensor of Landsat-7 satellite. The images cover the 
north-eastern part of Algiers (Algeria). The RGB compositions 
of these two images are given on figure 1. Six thematic classes 
dominate the study site: Dense Urban (DU), Bare Soil (BS), 
Less Dense Urban (LDU), Vegetation (V), Clear water (CW), 
and Pollute Water (PW). Using a 2-D scatterogram of ENVI 
software, data samples are selected automatically from each 
class for training and testing the proposed classifier. The MRF 

contextual classification results (8-connexity and β = 0.75) are 
shown on figure 2. Statistical assessment of these results 
relatively to the considered test data gives an appreciate KHAT 
parameter of 91.6% for data acquired on 1985 and 90.2% for 
data acquired on 1996. 
 

 

a   b 

Figure 1. RGB composition of ETM+ images for 1985(a) and to 1996(b) scenes 
 

a   b 

Figure 2. MRF classification result for 1985(a) and to 1996(b) scenes 
 
From the obtained classified images (Figure 2), built-up area is 
extracted using a simple masking operation. Except dense urban 
(DU) class, all the other classes (BS, LDU, V, CW, PW) are 
masked which means that except DU pixels, all other pixels are 
assigned label “0”. 

The resulting binary images are presented in figure 3 (a and b) 
for both dates 1985 and 1996.  
 

 

a            b 

Figure 3. Built-up areas extracted from TM scene corresponding 1985(a) and to 1996(b) 
 

 

3. GRANULOMETRIC ANALYSIS FOR 
QUANTIFICATION OF THE BUILT-UP DENSITY 

The process of built-up areas density mapping is organised in 
two parts. In the first one, granulometric analysis is computed 

on binary images with built-up areas in order to define the 
macro-texture parameters. In the other part, a density map is 
built by automatic classification of granulometric images.  
 

      Dense Urban 
      Less Dense Urban
      Vegetation 
      Bare Soil 
      Clear Water 
       Pollute Water  
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3.1 Granulometric analysis on binary images 

A binary image can be described as a set of the Euclidean space 
2R . Such a set consists of many subsets, which are the 

connected components of the image. We choose here a 
criterion, which is the size distribution of the subsets in order to 
perform the textural analysis of the set. It is obtained by global 
transformations and measurments on the image. This analysis 
called Granulometric analysis is very similar to quantitative 
analysis of soil granulometry by sieving and weighting. The 
concept of granulometry for Euclidean set analysis was 
introduced by Matheron (Matheron, 1967) as a new tool for 
studying porous media. The principle of binary morphological 
granulometric size distributions was conceived by Matheron 
(Matheron, 1975) as a way to describing image granularity. The 
sieving of grains within the image was accomplished by a series 
of morphological openings with convex structuring element of 
increasing size. 

A series of openings BOλ  with a family of structuring 
elements 1B , 2B , .... nB , is a granulometry if it satisfies the 
following axiom: 
 

ji BB OOjiji ≥⇒≤∀ ),(     (6) 
 
Many parameters are provided by granulometric analysis, such 
as granulometric distribution. In order to assess the size 
distribution of the connected components of a set X , we use 
the method of granulometry by opening with a convex 
structuring element B . It consists in a successive application 
of morphological openings on the set X  using an increasing 
structuring element B . As the size of the structuring element 
B  increases, more and more details in the image are 
suppressed. The connected components, which are smaller than 
B , are eliminated. By increasing the size λ  of B , the 
elements of size )1( −λ  are successively eliminated as though 
they were sieved. Computation of the area of elements 
suppressed at each opening step on the whole image leads to the 
evaluation of the size distribution )( XGλ  of the set X , 
which is: 
 

( )[ ] )()()()( XAXOAXAXG Bλ
λ −=    (7) 

 
where, )(XA  indicates area on the initial image and 

( ))(xOA Bλ  is the area of the set X  opened by structuring 

element of size λ .  
Experiments such as studies on porosity of rocks from thin 
section images (Serra 1982) show that, in case of finite 
sequence of openings (i.e. for finite values of λ ), the 
granulometric density is more relevant than the granulometric 
distribution for providing-g efficient descriptors of the size of 
the components of the binary image. The granulometric density 

)(Xg λ  of a binary image 2RX ⊂  relative to a convex 

structuring element B  is defined as:  
 

( ) ( )[ ] )()()()( )1( XAXOAXOAXg BB +−= λλ
λ   (8) 

 
Granulometric density )(Xgλ  represents the fraction of total 

area of X that is rejected between two successive openings of 
respective radius λ  and )1( +λ . It provides a statistical 

evaluation of the area of the components of X : the maxima of 
)(Xg λ  indicate that there are a high proportion of subsets of 

X  having a radius inferior to λ .  
This analysis generates a finite and homogeneous set of 
quantitative descriptors )(Xgλ  that can be easily used to 
quantify the density. 

 
3.2 Computation of macro-textural descriptors 

The application of granulometric analysis has focused on taking 
local granulometric density around individual pixels. The use of 
local granulometric analysis to define texture descriptors was 
introduced by Dougherty et al (Dougherty, 1992; Chen, 1992). 
Rather than computing granulometric density across an entire 
image, as the global granulometry, pixel counts are only taken 
locally in windows about each pixel, thereby generating local 
granulometric density at each pixel: for each pixel of the binary 
image the local granulometric density )(Xgλ  was measured 
over a window centred on the pixel P  at each stage of the 
granulometry. 
This value is computed for the windows )(PF  around all the 

pixels P . The resulting texture representation is a vector 
{ })(PVi

. The texture variables describing a pixel P  will be 

{ } Iii PV ,.....,2,1)( =  where, 
 

))(()( PFgPV ii =     (9) 
 

))(( PFgi  is the value of the local granulometric density 
computed inside the window )(PF  centred on pixel P  at 
opening step i . 
I is the size of B  such that all the pixels of )(PF  are 

eliminated after the opening by IB . 

By this way, each pixel P  of the binary image is described by 
the I  values of Vi  where, Ii ,....,2,1= . Local granulometric 
densities for all the pixels of the binary image were computed 
and results were reassembled to form an image. Such a 
processing is performed for Ii ,....,2,1=  then I  gray-tone 
images are generated. This set of images will then be used as 
input for the classification step. 
Seven images of granulometric density were obtained by this 
way. An example is shown on figure 4, which corresponds to 
the image of the granulometric density of size 1=λ  
computed from the binary images of built-up areas of figure 3.  
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     a               b 

Figure 4. granulometric density images computed from binary images of built-up in figure 3 
 
 
3.3 Built-up density mapping from macro-textural 

indicators 

In order to obtain a built-up density map, we applied 
granulometric image processing and produced I gray tone 
images from binary images of built-up areas extracted on 
section 2.3. The map is then obtained by a multi-channel 
classification on density ganulometric images. An unsupervised 
classification of each pixel is performed by a K-means method 
(Diday, 1974). Classification of macro-texture at a pixel P is 
based upon the descriptor vector of granulometric densities at P. 
The ‘macro-textural descriptors’ are the input variables for the 
classification process. The result is a k-colours image. Each 
class is interpreted according to the mean granulometric density 
values and it contains pixels having similar macro-textural 
signatures. When the neighbouring contains only small 
components, it corresponds to high values for smaller size of 
sieving. At the opposite, it may correspond to high value for 

biggest size of sieving, if the neighbouring contains mainly 
large components. Such an analysis leads to the legend of the 
map in terms of density. The classes are coloured with a red to 
green colour scale to show the progressive decreasing in the 
density of built-up zones. For both dates green colour represents 
the smaller built-up areas while red colour corresponds to the 
bigger areas. 
 
 

4. RESULTS 

We have analysed the macro-texture of the two binary images 
(figure 3 a and b) and mapped the different types of macro-
texture. K-means classification was performed for both dates 
into five classes of built-up density. The result of these maps 
according to the density is represented in figure 5 (a and b). 
 

 

a           b 

Figure 5- Built-up density map computed from binary images in figure 3 for 1985 (a) and 1996 (b) 

 

The five classes show that progressive decreasing density can 
be summarized as follow: 
Class 1: this class corresponds to nearly bare soils. 
Class 2 : this corresponds to sectors of transition between areas 
essentially of bare soil to those with weak density. 
Classes 3, 4 and 5: representing areas from intermediate to 
highest built-up density. 

To differentiate the classes which represent the different 
densities of urban zones in Algiers, it is possible to use the 
notion of covered area over each of the two classes, the mostly 
dense and the least dense, for both dates. The area of the least 
dense class covers only 7.68% of the territory for the year 1996, 
while in 1985 it covers 11.5%. The occupation of the dense 
class represents only 13% in 1985 compared to areas occupying 
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16% in 1996 (see Table 1). The result of these analyses shows 
that the method of quantification of the density of the urban 
space using satellite images makes it possible to separate urban 
zones based on their density. 
 

Class Very dense Least or not dense  

Number of 
structures  17 44 
Number of 
pixels 75034 64567 

Percentage 13 % 11.5 % 

A
lg

iers 1
9

8
5

 

 
Number of 
structures  11 29 
Number of 
pixels 93017 43033 
Percentage 16 % 7.68 % 

A
lg

iers 1
9

9
6

 

 
Table 1 Comparative result of the highest and lowest dense 

classes 
 

5. CONCLUSION 

The above-described method maps the built-up areas 
organizations by using the macro-textural descriptors of the 
classified images. In the produced map, the patterns are 
characterized by their relative macro-textures. The method has 
been applied for analysing and mapping the spatial variations of 
built-up areas using Landsat TM multispectral data. It provides 
a striking illustration of spatial organisation of urban zones 
from binary images. The produced maps for two dates leads to 
the analysis showing the evolution of built-up density during 
the period under study. The works will be focused in 
reproducing this method at a regional scale, in order to study 
built-up growth on the Algerian littoral by satellite image 
processing.  
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ABSTRACT:

The directional reflectance characteristics of the land surface can be described based on concepts of the Bidirectional Reflectance
Distribution Function (BRDF). This contribution concentrates on directional reflectance effects in aerial photos of forests. Since the
advent of digital metric aerial photography, major efforts have been made to apply quantitative digital automatic methods for the
analysis of aerial photos. Directional reflectance effects are important for this: on the one hand, they make analysis more
complicated, on the other hand they may provide additional information for deducing land cover (e.g. forest) parameters. Digital
aerial photos, when taken with high forward and side overlap, may provide a convenient tool for analysing directional reflectance
effects. The main aim of this contribution is to demonstrate the usefulness of digital aerial photos taken with a Vexcel UltraCamD for
analysing directional reflectance characteristics of forests. 11 BRDF models are tested for 6 different land cover types focusing on
forest cover. The models were evaluated using the coefficient of determination (R²) and the symmetric mean absolute percentage
error (sMAPE). It has been shown that the parameters of BRDF models describing individual forest plots can be estimated from
digital aerial photos taken with a frame camera with large forward and side overlap. Differences in the performance of the models for
different forest plots could be explained taking into account the special assumptions on which the models are based and the special
properties of the observed forest stands.

1. INTRODUCTION

In the analysis of remotely sensed images, information on land
cover is mainly deduced from the reflectance properties of the
terrain surface. Reflectance is a function of wavelength and of
irradiation and observation directions. These directional
reflectance characteristics can be described based on concepts
of the Bidirectional Reflectance Distribution Function (BRDF)
(Schaepman-Strub et al., 2006).
While BRDF aspects often can be neglected in the analysis of
satellite images sensed with vertical view direction and with a
small angular field of view (e.g. of Landsat images), the
directional reflectance properties are important for image data
from sensors with steerable view direction (e.g. Ikonos) and
from sensors with a large angular field of view (e.g. MODIS, or
aerial scanners and aerial cameras). BRDF effects are
particularly noticeable in the case of surfaces of a pronounced
vertical structure, e.g. forest canopies.
This contribution concentrates on the directional reflectance
effects in aerial photos of forests. A quantitative treatment of
this subject is of interest for the following reasons:
(1) In the past, aerial photos were recorded in analogue form on
photographic film. They were of poor radiometric quality.
Digital automatic image analysis therefore did not seem very
promising and was hardly applied operationally for the
evaluation of aerial photos. Rather, the usage of aerial photos
(e.g. in forestry) primarily relied on labour-intensive and
subjective visual interpretation. It is only now, after the advent
of digital metric aerial photography, that major efforts are made
to apply quantitative digital automatic methods also for the
analysis of aerial photos. The BRDF-related effects (including
the well-known hot spot phenomenon) in aerial photos which
are usually taken with a large angular field of view pose a major
challenge in this undertaking. These effects on the one hand

make analysis more complicated, on the other hand they may
provide additional information for deducing land cover (e.g.
forest) parameters. It is desirable to expand the knowledge in
this field.
(2) Directional reflectance data on different types of land-cover
usually are obtained by measurements either in the laboratory
on small samples or in the field by employing special platforms
and constructions. It is impossible to perform directional
measurements on forest canopies in the lab, and it is very
difficult to implement outdoor directional reflectance
measurements on timber trees and old stands. However, digital
aerial photos, when taken with high forward and side overlap,
provide a convenient tool for analysing directional reflectance
effects. It is an additional special advantage of using aerial
photography that analysis may be performed at different scales:
Working with full resolution of the aerial photos (e.g. pixel
sizes of 20 cm to 100 cm), one may study directional
reflectance at individual trees and parts of trees (sunlit
branches, treetops, etc.). When using reduced resolution (by
averaging over pixel windows of the order of 20 m x 20 m or
50 m x 50 m), directional reflectance characteristics including
the shadow effects of forest canopies due to crown shape,
crown closure and ground vegetation may be analysed. On the
other hand, a limitation of aerial photography is given by the
restriction to (usually) 4 spectral bands in the visible and near
infrared parts of the spectrum.
The main aim of this contribution is to demonstrate the
usefulness of digital aerial photography with frame cameras for
analysing BRDF-related characteristics of forests. In particular,
a number of BRDF models are tested for their usefulness to
describe the directional patterns of pixel values as obtained with
a Vexcel UltraCam aerial frame camera. The directional
reflectance functions obtained can be considered as
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approximations to BRDF only, as the hemispherical irradiance
component (diffuse sky radiation) is present in addition to the
directional irradiation from the sun.
Large windows of pixels are used, causing the directional
reflectance functions to include shadow effects due to crown
shape, crown density etc.

2. METHOD

Basically there are two possibilities to employ wide-angular-
view-sensors for studying directional reflectance effects: Single
images may be used, if large homogeneous stands covering the
entire area of an image are available. In this case, a sample of
plots distributed over one image (and therefore viewed from
different directions) is analysed, and the BRDF model
parameters are deduced from the pixel values of this sample
(Dymond and Trotter, 1997). Alternatively, if images with
sufficient forward and side overlap are available, the same plot
on the ground is viewed from different directions on different
images. In this second case, the BRDF model parameters of
every single terrain element may be derived. No assumptions on
the homogeneity of stands beyond the area of an individual plot
are required. This second approach was chosen for the work
described here.
There are two different types of digital camera systems
available: line cameras (e.g. ADS40 by Leica Geosystems) and
frame cameras (e.g. DMC by Intergraph/ZI-Imaging,
UltraCamX by Vexcel Imaging). In BRDF analysis, the number
of different directions of view on a terrain element that can be
obtained at one overflight is decisive. In case of a line scanner,
this number is determined by the number of CCD lines in the
focal plane. E.g. the ADS40 camera is a 3-line-camera leading
to 3 different directions of view per terrain element and
overflight. In case of a frame camera, the number of directions
of view is dependent on the percentage of forward overlap.
Digital frame cameras achieve forward overlaps of 90 % and
higher and, as a consequence, 10 directions of view and more.
The number of viewing directions also increases with the
overlap between the flight lines (side overlap). E.g. in a mission
with 90 % forward overlap and 30 % side overlap, any terrain
element is observed from 10 to 20 view directions depending on
the object’s position within the path (Figure 1).

Figure 1. Directions of view on a terrain element in aerial
photography with forward and side overlap

Another key parameter for BRDF-related investigations is the
angular field of view (FOV) both along and across the track as
it defines the range of viewing angles (from vertical) at which
the terrain elements can be observed.

In this study, images taken with the digital metric camera
Vexcel UltraCamD were used. Relevant parameters of camera
and images are listed in chapter 4.
While the input data (pixel values) for many BRDF models may
be given in arbitrary units, models accounting for multiple
scattering require reflectance values for input (e.g. the WAK
model by Dymond et al. (2001)). For this reason, the image data
were (in an approximation) radiometrically calibrated, i.e.
converted to reflectance values.
The empirical line method was used (Smith and Milton, 1999).
Reflectance values of reference plots were measured on the
days of the image flights. Reference plots were selected for
which Lambertian reflectance characteristics can be assumed,
e.g. bright surfaces of concrete roads and dark surfaces of
asphalt roads. The radiance values measured at these surfaces
were converted to reflectance values by comparison (ratioing)
with radiance values measured at a horizontal Spectralon
reference panel of known reflectance. As the images used for
this study were taken at different times, the differences in sun
zenith angle at these times had to be taken into account. The
following algorithm was used for this:
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Here, pi are the pixel values from the positions of the plots on
the images and i are the corresponding reflectance values from
the terrestrial spectroradiometric measurements. Si is the zenith
angle of the direction to the sun at the time the aerial photo
showing the pixel value pi was taken, and SO is a standard
value of the zenith angle of the sun used as a common
reference: All pixel values of the plots for radiometric
calibration, pi, are converted to fictitious values piO they would
have for this standard sun zenith angle. a and b are the
coefficients of linear regression of the values piO to the values
i. With this model, any pixel value p from an image taken at
sun zenith angle S can be converted to the reflectance value of
the corresponding surface element assuming that it has
Lambertian characteristics and that it was irradiated by the sun
at the standard zenith angle. SO = 30° was assumed for this
work. This radiometric calibration procedure is approximative
only, as it does not account for direction-dependent influences
of the atmosphere. As a consequence, the BRDF functions
obtained in this analysis include the direction-dependent
influence of the atmosphere.
For BRDF analysis, sample plots of different forest types and,
for comparison, of other land cover types were selected and
located on all images on which they are recorded. Details on a
selection of sample plots are presented in chapter 4. The view
azimuth angle and the view zenith angle were calculated for the
centre of each plot considering the location of the plot in the
image (distance to image centre in x and y), the principal
distance of the camera and the orientation angles ω, φ, and κ 
(roll, pitch and yaw) of the image. Finally, the mean of the pixel
values was extracted for each plot, for each image on which the
plot appears, and for each spectral band. These pixel values
were converted to spectral reflectance values as described
above.
The models listed in chapter 3 were fitted to the data and
compared with regard to their suitability to estimate the model
parameters from the relatively small number of directional
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reflectance data and to predict the directional reflectance
characteristics of the plots. The Levenberg–Marquardt
optimization algorithm was used for retrieving the model
parameters. The MPFIT package by Markwardt (2009)
programmed in IDL (RSI, 2004) was applied. It allows placing
constraints on parameter values and fixing parameters. The
model parameters were partly restricted to physically
meaningful values.
The models were evaluated using the coefficient of
determination (R²) and the symmetric mean absolute percentage
error (sMAPE) that is defined as
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where yi is the measured reflectance, ŷi is the modelled
reflectance, n is the number of observations and p is the number
of model parameters. The sMAPE was chosen instead of the
RMSE, because it can be used to compare the error of sample
plots that have different reflectance levels. The division by (n-p)
instead of n incorporates model complexity in the error measure
by penalizing a model for each model parameter.

3. BRDF MODELS

Over the past years, extensive efforts have been made to
investigate the directional reflectance properties of surfaces.
The result is a huge variety of models that predict the
directional reflectance for all viewing geometries. The
convention for denoting directions and angles is shown in
Figure 2. The illumination and view directions are specified by
4 angles, the sun azimuth and zenith angle (s and s) as well as
the view azimuth and zenith angle (v and v). The difference
between the sun azimuth and the view azimuth angle is the
relative azimuth (r=s -v).

Figure 2. Convention for denoting directions and angles

The models employed in this study were selected according to
the following criteria: physical, empirical and semi-empirical
models should be included. The models should be suitable to
describe the directional reflectance properties of vegetation in
general and of forest canopies in particular and they should
work for both visible and near-infrared light.
The following models were included in the comparison:

(1) Second-order polynomial (2DP): This model is a simple
five-parameter second-order polynomial that is symmetric to the
principal plane with two independent variables, the view zenith
angle v and the relative azimuth angle r. The sun zenith angle
s is not considered.
(2) Walthall (WH): The Walthall model, derived by Walthall et
al. (1985) and modified by Nilson and Kuusk (1989) to be
reciprocal, is a purely empirical model for bare soil surfaces and
vegetation canopy with four parameters. Liang and Strahler
(1994) criticize that the model does not represent some
important BRDF features such as the hot spot and amend the
modified Walthall model by adding a hotspot component
modelled by an exponential function with two additional
parameters (WHL).
(3) Dymond (WAK): The model by Dymond et al. (2001) is a
physical model that aims at reconstructing the bidirectional
reflectance of homogeneous and closed vegetation canopies
with randomly oriented leaves. Three parameters are used, one
for the leaf reflectance and two to characterize the canopy phase
function. The model is applicable to visible light and near-
infrared light. It includes a term derived by Hapke (1981) to
account for multiple scattering that is relevant in the near-
infrared part of the spectrum. Two versions are proposed, WAK
I and WAK II. The WAK II model rounds the hotspot as
observed in the reflectance data of full size canopies, where
there is both direct and diffuse illumination.
(4) Roujean (ROUJ): The model of Roujean et al. (1992) was
the first kernel-driven model. It consists of a volume scattering
kernel and a geometric-optical kernel. The volume scattering
kernel is deduced from a formula by Ross (1981) and is suitable
rather for optically thick than thin domains, i.e. for canopies
with high values of leaf area index (LAI). Maignan et al. (2004)
propose a modification of the volume scattering kernel to
account for the hot spot more effectively (ROUJM). In contrast
to the modification proposed by Chen and Cihlar (1997), no
additional parameter is required.
(5) Ross-Thick/Li-Sparse (RTLS): This model combines the
volume scattering kernel by Ross (Ross-Thick kernel) as
described above with a geometric-optical kernel deduced from
the model by Li and Strahler (1992), which considers the
shadowing produced by randomly located trees with spheroid
crowns on a Lambertian background. Wanner et al. (1995)
deduced the Li-Sparse kernel, an approximation for sparse
ensembles of such trees. Additionally to the three parameters
usually used in kernel-driven models, there are two internal
parameters describing the shape (oblate/round/prolate) and
relative height of the tree crowns. The crown parameters in the
best way describing the actual scene can be found by testing
various sets of parameters. Both kernels, the Ross-Thick kernel
and the Li-Sparse kernel, are implemented in AMBRALS, a
modelling tool for the MODIS bidirectional reflectance and
albedo products (Wanner et al., 1997).
(6) Rahman-Pinty-Verstraete (RPV): The RPV model (Rahman
et al. 1993) is, in contrast to kernel-driven models, a
multiplicative semi-empirical model. The base model uses three
parameters (RPV3P). This model can be modified to a four-
parameter model (RPV4P) that can improve modelled
bidirectional reflectance values especially in the hotspot region
when the hotspot effect is very pronounced. The RPV model is
used for the processing of MISR surface products (surface BRF,
albedo, LAI, FPAR) (Diner et al 2008).
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4. DATA

The study is based on images taken with a Vexcel UltraCamD
camera (Leberl et al., 2003). The multispectral bands without
pansharpening were used. Parameters of the camera relevant for
this study are listed in Table 3. The forward overlap was >80 %
and the side overlap was 30 %.

Parameter
FOV across track 37.5o

FOV along track 55o

Max. view zenith angle (diagonal) 31o

Pixel size (multispectral) at flying height of
3.900 m

75 cm

Radiometric resolution 12 bit

Table 3. Specifications of the UltraCamD digital aerial camera

The images were taken in the Rax-Schneeberg region in the
south of Lower Austria in July 2006. For this study, six sample
plots of different forest types and land cover types listed in
Table 4 were selected. Criteria for the selection were moderate
slope angles (<25 degree) and homogeneity in terms of tree
species composition, development class and crown canopy
closure. Furthermore, it was important that each plot is shown
on images of two neighbouring flight lines to assure that the
number of observations from different points of view is
sufficient for the model fitting procedure. In Table 4, the area of
each plot, the number of points of view and the range of the
phase angle (i.e. the angle between the sun and view vector) is
specified. The variation of the sun zenith angle is small for the
entire image data set (27.1 to 30.7 degree), as the images were
taken within a time interval of a few hours only.

SP Area
[m²]

View
directions

Phase
angle

1 Asphalt 130 16 8o - 48o

2 Grassland 160 13 16o - 57o

3 Young deciduous stand 350 12 5o - 38o

4 Old deciduous stand 700 11 5o - 50o

5 Young coniferous stand 650 10 6o - 52o

6 Old coniferous stand 2500 14 13o - 54o

Table 4. Sample plots

5. RESULTS

Due to limited space, only results for the near infrared band are
given here.
As shown in Table 5, R² is quite high for all models and all
sample plots. It lies between 0.852 (grassland, WAK I) and
0.999 (old coniferous stand, WHL). As R² is dependent on the
variance of the observed values, here mainly caused by the
direction-dependent reflectance, R² is generally lower for those
sample plots that show smaller direction-dependent reflectance
properties (asphalt, grassland). Thus, R² can only be compared
for different models applied to the same sample plot. WHL
achieves the highest R² for all sample plots but one (old
deciduous stand), where WAK II outperforms the other models.
However, it has to be considered that WHL is the model with
the biggest number of model parameters (6). Obviously, the
WHL model tends to overfitting due to the relatively small

number of available observations (Table 4). Furthermore, the
value of this purely empirical model is limited, because the
model parameters cannot be applied to conditions (e.g.
illumination geometry) that are outside the range covered by the
observations, and because it does not permit the retrieval of
biophysical parameters (e.g. LAI).
In contrast to R², the symmetric mean absolute percentage error
(sMAPE; Equation 2) takes into account the model complexity,
i.e. the number of parameters (Figure 8). However, it has to be
noted that the different number of observations per sample plot
still affects the comparison of different sample plots based on
this measure.
The errors for the most successful models were between 3 and
6 %. The poorest results were achieved for SP5 (old coniferous
stand).
For two sample plots (old coniferous stand, young coniferous
stand) the difference in R² and sMAPE between ROUJ and
ROUJM as well as between RPV3P and RPV4P is clearly
visible. The hotspot effect is very pronounced for these test sites
and it can be concluded that the hotspot-modification of these
models is very effective. On the other hand, there is hardly any
difference between RTLS and RTLSM, sMAPE is low for both
models. The performance of ROUJ and RTLS, both kernel-
driven models that apply the same volume scattering kernel,
differs significantly. This indicates that the geometric-optical
kernel of RTLS outperforms that of ROUJ, which is probably
achieved by incorporating the two crown parameters. The
simple second-order polynomial model performs surprisingly
well except for the two sample plots with pronounced hotspot
effect (young coniferous stand, old coniferous stand).
Figure 6 and 7 show examples for the BRDF (or, to be more
specific, approximations to the BRDF, as noted above) at
constant sun zenith angle for SP5 and SP6 modelled with the 3-
parameter RPV model (RPV3P). The observations used to
retrieve the model parameters are plotted (empty squares) and
connected with the modelled values (filled squares) by a
vertical line. The BRDF of the young coniferous stand is bowl-
shaped with a slightly-developed hotspot effect, whereas the
BRDF of the old coniferous stand is more bell-shaped and
shows a pronounced increase of reflectance in the hotspot
region. The reflectance modelled for the old coniferous stand is
significantly lower than that of the young coniferous stand
(apart from the hotspot region) which may be due to shadows.
The model parameters of the semi-empirical and physical
models in most cases were plausible and touched the pre-set
boundaries only in a few cases. Problems emerged if
observations close to the hotspot were missing.

Model SP1
asphalt

SP2
grass

SP3
y dec

SP4
old dec

SP5
y con

SP6
old con

2DP 0.914 0.856 0.938 0.990 0.958 0.975
WH 0.870 0.905 0.958 0.976 0.980 0.960
WHL 0.919 0.919 0.980 0.986 0.994 0.999
WAK I 0.903 0.852 0.965 0.989 0.975 0.995
WAK II 0.907 0.869 0.966 0.993 0.955 0.972
ROUJ 0.882 0.861 0.926 0.978 0.908 0.888
ROUJM 0.893 0.860 0.924 0.982 0.970 0.960
RTLS 0.897 0.870 0.927 0.985 0.989 0.997
RTLSM 0.893 0.867 0.927 0.983 0.989 0.998
RPV3P 0.909 0.857 0.921 0.981 0.944 0.968
RPV4P 0.909 0.858 0.927 0.985 0.980 0.998

Table 5. Coefficient of determination (R²)
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Figure 6. BRDF modelled with the 3-parameter RPV model
(RPV3P) for a young coniferous stand (SP5), s = 30o

Figure 7. BRDF modelled with the 3-parameter RPV model
(RPV3P) for an old coniferous stand (SP6), s = 30o

Figure 8. Symmetric mean absolute percentage error (sMAPE) for different BRDF-models and different land cover and forest types
(SP1-SP6)
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6. CONCLUSIONS

It has been shown that the parameters of BRDF models
describing individual forest plots can be estimated from digital
aerial photos taken with a frame camera with large forward and
side overlap. The obtained results are plausible. Differences in
the performance of the models for different forest plots can be
explained taking into account the special assumptions on which
the models are based and the special properties of the observed
forest stands.
The following improvements and extensions are to be
considered in future work:
(1) The number of test plots in the current study is small. More
plots will be evaluated in order to deduce information on the
variation of the derived model parameters for test plots of
identical forest types, to assess the potential of BRDF
characteristics obtained from aerial photos for discriminating
forest types and determining forest parameters, and to verify
this with independent test plots.
(2) The performance of the models in describing the
dependence of the BRDF on the sun zenith angle will be
studied using data sets with a higher variation of this parameter.
(3) The radiometric calibration will be improved by accounting
for the non-Lambertian characteristics of the sample plots and
the direction-dependent influence of the atmosphere.
(4) The analysis will be extended to pixel windows of different
sizes down to full resolution provided by the camera (single
pixels), in order to obtain more insight into the functioning and
the performance of the models.
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LAND COVER IDENTIFICATION USING POLARIMETRIC SAR IMAGES

A. Kourgli a, *, M. Ouarzeddine a, Y. Oukil b, A. Belhadj-Aissa a

a Image Processing laboratory, FEI, U.S.T.H.B., 16111 Bab-ezzouar, Algiers, Algeria
b Geography Department, ENS, Bouzareah, Algiers, Algeria

a_kourgli@lycos.com

KEY WORDS: SAR, Classification, Texture, Modelling, distributed

ABSTRACT:

Synthetic Aperture Radar (SAR) has been proven to be a powerful earth observation tool. Due to its sensitivity to vegetation, its
orientations and various land-covers, SAR polarimetry has the potential to become a principle mean for crop and land-cover
classification. A variety of polarimetric classification algorithms have been proposed in the literature for segmentation and/or
classification of polarimetric SAR images into classes reflecting canonical scattering processes and/or some statistical properties.
However, classification based on polarimetric data alone does not provide sufficient sensitivity for the separation of some classes
such as forests. The use of other kinds of characteristics like texture provides better sensitivity for class separation. In this paper, we
wish to address this issue, testing and comparing some polarimetric SAR classification algorithms using texture. Such an analysis
will allow us to evaluate the importance of texture considering and to prove if the chosen texture model parameters describe, also,
physical properties of the targets. Thus, the proposed approach is compared with the Wishart classifier showing interesting results.
The test area used is the Oberpfaffenhofen in Munich and the SAR images are acquired in the P band.

* Corresponding author.

1. INTRODUCTION

Synthetic Aperture Radar (SAR) has been proven to be a
powerful earth observation tool. In many remote sensing
applications important additional information can be derived
from multipolarised imagery. The number of studies and
applications involving polarimetric SAR data is increasing
steadily. Radar polarimetry has for long been known as a
powerful method for soil moisture and surface roughness
identification, sea ice detection and delineation of vegetation
and land cover (Ferro-Famil, 2003; Macri, 2003; Hoekman,
2003; Lee, 2004; Martini, 2004; Wakabayashi, 2004; Alberga,
2007; Liang, 2008). Many features such as intensities,
coherency matrix, correlation and phase differences have been
used in various classification experiments.
The first algorithms developed for classification of polarimetric
SAR images have ignored the spatial information (texture) and
used the Whishart distribution as the basis of the classification
scheme. But, th last decade, several research papers revealed the
contribution of texture in polarimetric classification
improvement. Thus, some authors used texture for classification
without a decomposition method. Yu and Acton (2000)
presented a partitioning scheme using an initial texture
segmentation based on watershed algorithm. Ersahin et al.
(2004) have proposed a neural network unsupervised
classification scheme using covariance matrix parameters and
texture features derived from gray level co-occurrence matrices.
Recently, some authors proposed to employ texture features
calculated from polarimetric data after decomposition. So,
Beaulieu and Touzi (Beaulieu, 2004) introduced a segmentation
algorithm that takes into account texture information where the
K-Wishart distribution is used to model textured areas.
Rodionova (2007) demonstrated that textural features defined in
every scattering categories of Freeman and Durden
decomposition make better object discrimination of SAR
polarimetric images. In (Khan, 2007), good classification results

have been achieved using neural network with a feature set
including undecimated wavelet, transform-based features and
texture features along with nonlinear features and a partial set
from the elements of the coherence matrix. Liang (2008) also
investigated the performance of different texture features using
neural network classifier. Bombruno (2008) demonstrated that
the use of an appropriate texture distribution is useful to
segment textured PolSAR images. Dabboor et al. (2008), also,
combined the textural features in each scattering category
obtained from the Freeman-Durden decomposition with the
number of the scattering mechanisms from the entropy
calculated from the Cloude-Pottier decomposition. in order to
perform the segmentation process. Zhang et al. (Zhang, 2009)
combined the scattering powers of MCSM (Multiple-
Component Scattering Model) and selected texture features
from Gray-level co-occurrence matrices using SVM (Support
Vector Machine) classifier and neural network (Zhang, 2009).
The objective of this paper is to evaluate the performance of
texture modelling of polarimetric SAR images in land-cover
classification by two steps scheme: the first step is Cloude and
Pottier decomposition and the second one is markovian textural
classification applied on decomposed images. For evaluation
purpose, the result is compared to a classification obtained
using Wishart classifier.

2. POLARIMETRIC SAR CLASSIFICATION

Many supervised and unsupervised classification methods have
been proposed, such as methods based on the maximum
likelihood (ML), artificial neural networks (NN), support vector
machines (SVM), fuzzy methods, etc. An usual approach is to
classify polarimetric SAR images based on the inherent
characteristics of physical scattering mechanisms using
decomposition theorems (Cloude, 1996; Touzi, 2004). Several
decomposition techniques were proposed. These techniques are

In: Wagner, W., Székely, B. (eds.): ISPRS TC VII Symposium – 100 Years ISPRS, Vienna, Austria, July 5–7, 2010, IAPRS, Vol. XXXVIII, Part 7A
Contents Author Index Keyword Index

106



based on three principal approaches known as coherent
methods, Huynen decomposition (Huynen, 1970) and non
coherent methods. These methods split the scattering matrix
into the sum of elementary scattering matrices, each one
defining a deterministic scattering mechanism (Touzi, 2007). As
we are dealing with texture which is a neighbourhood property,
we choose to compare the textural classifier to a classifier based
on incoherent decomposition. Indeed, non coherent
decompositions permit to take into account the context, thus
neighbourhood. For this purpose, we used whishart classifier. In
fact, the characteristic decomposition of the Hermitian target
coherency matrix allowed Cloude and Pottier to derive key
parameters, such as the scattering type α and the entropy H,
which have become standard tools for target scattering
classification and for physical parameter extraction from
polarimetric SAR data.

2.1 Textural Classifier

Image texture, defined as a function of the spatial variation in
pixel intensities, is useful in a variety of applications and has
been a subject of intensive study by many researchers. The
texture parameter is extremely important for radar imagery
interpretation, especially in terrain mapping. In fact, Radar
image depends heavily on the scattering of ground objects and
its textures/structures strongly vary with different objects. Many
models have been employed in texture analysis including
autoregressive model, Markov random fields (MRF), Gaussian
random fields, Gibbs random fields, World model, wavelet
model, multichannel Gabor model, fractal model, etc (Chellapa,
1993; Bader, 1995; Arivazaghan, 2003). In this study, we use a
non parametric Markovian model that has been successfully
applied to SAR image classification (Kourgli, 2009) and adapt
its formulation to polarimetric images.

2.1.1 Texture model: Markov theory states that each pixel in
an image has an independent local spatial property
characterized by its surrounding neighbours. A discrete Markov
field {X} is defined on a 2-D lattice S with a neighbourhood
structure NS. Its global properties () are controlled by means
of local properties which are defined by local conditional
probabilities (Derin, 1987; Li, 2000) The Markov property
describes local conditional dependence of pixels image as:
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Another attractive property of an MRF is that, by the
Hammersley-Clifford theorem (Hammersley, 1971) an MRF can
be characterized by a global Gibbs distribution that is usually
defined with respect to cliques. A clique C is a particular spatial
configuration of pixels, in which all its members are statistically
dependent of each other:
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 is called energy and is

obtained by summing potential functions VC(x) while ZS is a
normalizing constant. A probability model is usually specified
by a parametric probability distribution. The model is to be
identified, in order to find best values for unknown parameters
of the model for a given training texture. Due to usually
complex mathematical form of texture distribution and because
almost natural textures are quasi-stationary, parametric models
fail to model them. Hence, we adopted an energy formulation
defined by a Neighbourhood Likeness Measure (NLM) which is
estimated between the neighbourhood NS and all the
neighbourhoods NY contained in the texture sample Y.

This measure is given by:
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Texture modelling can be performed in order to reproduce
natural textures, but it can also be used as a tool for a
classification or for a segmentation purpose.

2.1.2 Classification: The texture segmentation problem is
the labelling of pixels in a lattice to one of texture classes, based
on a texture model and the observed intensity field. Bayesian
approaches, where maximum a posteriori (MAP) estimation is
usually involved to image segmentation, have been proven
efficient. In addition, we adopted the assumption presented in
(Bouman, 1994) which states that the joint probability of a pixel
in a window FS can be approximated by the product of the
neighbourhood probabilities over this window:

),/(),( 
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As a combined use of physical scattering characteristics and
statistical properties for terrain classification is desirable, we
apply textural classification on Pauli decomposed vector.
The Pauli vector, for a full polarimetric data, is given by:
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The first element of the vector expresses odd bounce scatterer
type such as the sphere, the plane surface or reflectors of
trihedral. The second one is related to a dihedral scatterers or
double isotropic bounce and the third element is related to
horizontal and a cross polarising associated to the diffuse
scattering or volume scattering.

Using the probability defined above and Pauli decomposition,
we performed a classification scheme which is described as
follows:
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 Select from each texture image a sample.

 Scan the mosaic texture using a window sized FS with
a step of one pixel in the row and column directions,
and calculate the joint probabilities defined by
equation (4) for each sample in the three decomposed
images

 The central pixel of the window considered will be
assigned to the class maximizing the joint probabilities
calculated.

2.2 Wishart classifier

In this work we are using the non coherent decomposition
proposed by Cloude and Pottier. It is based on the coherency
matrix calculated using the Pauli basis and given by (Cloude
and Pottier, 1997):

  T
Pp kkT


 (6)

This is a multilook 3x3 positive semi-definite hermitian
coherency matrix where the superscript T denotes the matrix
transpose, and < > indicates multilook averaging. The 2 on
the term is to ensure consistency in the span (total power)
computation. The eigenvectors and eigenvalues of the
coherency matrix [T] can be calculated to generate a diagonal
form of the coherency matrix which can be physically
interpreted as statistical independence between a set of target
vectors.

2.2.1 Entropy, alpha and anisotropy: The eigenvalues of
[T] have direct physical significance in terms of the components
of scattered power into a set of orthogonal unitary scattering
mechanisms given by the eigenvectors of [T], which for radar
backscatter form the columns of a 3 x 3 unitary matrix. Hence,
we can write an arbitrary coherency matrix in the form
(Papathanassiou, 1999):
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where [∑] is a 3x3 diagonal matrix with nonnegative real
elements:
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[U3]= [u1 u2 u3] is a unitary matrix, where u1, u2 and
u3 are the three unit orthogonal eigenvectors

After eigen vector decomposition of the coherency matrix the
entropy H, which is a measure of the randomness of the
scattering process, is deduced from the eigen values as:
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where Pi are the probabilities obtained from the
eigenvalues i :
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The entropy H represents the randomness of the scattering. H =
0 indicates a single scattering mechanism (isotropic scattering)
while H = 1 indicates a random mixture of scattering
mechanisms with equal probability and hence a depolarising
target.
The parameter α is indicative of the average or dominant
scattering mechanism. It describes the dominance of the
scattering mechanism in terms of volume, double bounce or
surface scattering types. The  angle is obtained from the i

angles of each of the eigen vectors as follow:
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The anisotropy A is a parameter complementary to the entropy.
It measures the relative scattering of the second and the third
eigenvalues of the eigen-decomposition. It is given by:
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If the pair H −α plotted on a plane then they are confined to a
finite zone. This plane is subdivided into eight zones
characterizing different classes corresponding to different
scattering mechanisms.

2.2.2 Classification: The basic scattering mechanism of each
pixel of a polarimetric SAR image can be identified by
comparing its entropy and parameters to fixed thresholds. The
different class boundaries, in the H-alpha plane, have been
determined so as to discriminate surface reflection (SR), volume
diffusion (VD) and double bounce reflection (DB) along the 
axis and low, medium and high degree of randomness along the
entropy axis. When the anisotropy parameter is introduced, it
allows the possibility to distinguish different clusters where the
centers belong to the same H −α partition (Ouarzeddine, 2007).

The eight classes resulted from the H−α decompositions are
used as training sets for the initialization of the unsupervised
Wishart classifier. For a coherency matrix <Ti> of a pixel i of a
multilook image (L-looks) knowing the class ωi, the Wishart 
complex distribution is given by:
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Nm is the pixel number of ωm
K(L,q)is the factor of standardization given by :
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Where q=3 in the case of reciprocity (i.e., Shv=Svh),   and tr
(.) indicate the determinant and the trace of the matrix
respectively, and Γ(.) is the gamma function.
A probabilistic measurement of the distance between the a
coherence matrix of an unspecified pixel <Ti>, and the average
coherence matrix Σm of the class candidate ωm , is obtained
using:

       immmi TtrTd 1ln,  (15)

Mathematically, each coherency matrix of an individual pixel is
assigned with the most likely class ωm with the minimal
distance, if and only if :

     jimi TdTd  ,, (16)

for all m=n.

The clusters of the first itération are used us a training set for
the second itération until a consequent result is obtained.

3. DATA USED

The data is related to the site of Obepfaffenhofen and is
captured on May 2000. It is covering the southern part of
Munich, Germany and an area that embraces about 1 Km2 was
chosen in this study. The radar used is the Aeos1 of the Ex
private Aerosensing GmBH company. An airborne radar with
the P band (72 cm). The SAR images are acquired in fully
polarimetric mode and are of important value to supply
information on the terrain type. An area of 600×600 pixels has
been extracted for this study (Figure 1).

Figure 1: A colour composite of the test site using the Pauli
basis.

4. CLASSIFICATION RESULTS

From Wishat classification result, we selected six samples sized
12×12 pixels, three forest types (magenta, yellow and cyan),
two for base area (blue and green), and the last represents built
up area (red). First, we considered each image from Pauli vector
decomposition apart and performed textural classification in
each scattering category. The result obtained for each
decomposed image is shown in Figure 2.a, 2.b and 2.c, while
Figure 2.d is a colour composite of the three probability images
before labelling.

a) b)

c)

Figure 2: The textural classification using Pauli images (a,b and
c) and their colour composite (d)

The different classes are well segmented in all the three
scattering channels. Indeed, the result obtained is interesting
since all the classes are almost correctly recognized, however,
some confusion occurs at the boundaries of different classes.
These preliminary results show that the model texture is
sensitive to the polarization (the classification results are
different for each scattering type) and that the different
scattering mechanisms have also been discriminated. The
composite colour (Figure 2.d) of the different segmented
decompositions provides a first classification that is interesting.
In a second step, we classified the image on the basis of the
three Pauli images simultaneously maximizing probability over
the three images. The results are illustrated in Figure 3. We
have reduced the classification result of Wishart classifier to the
same number of classes. The polarimetric textural classification
(Figure 3.b) appears consistent with the result obtained from
Wishat classifier (Figure 3.c). We notice a large similarity for
base area (in blue and in green) and built-up area (in red).
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a) b)

c) d)

Figure 3: A colour composite of the test site (a) using the Pauli
basis decomposition, polarimetric classification (b : textural
classifcation, c : Wishart-A-α classification) and an image

extracted from google earth software of the test site

For a comparison purpose and to check the efficiency of our
textural classification, we computed the classification
percentage for each class (table 4) taking the Wishart
classification result as a reference.

Classes Color+rate
Built-up Red 89.53
Mixed forests Cyan 44.45
Deciduous forests Yellow 86.86
Bare soil Blue 47.73
Grass and fields Green 91.56
Coniferous forests magenta 68.28

Table 4: Classification percentage

While showing good rates for three classes (>86%), textural
classification performs less better for the other samples. The
weak rates obtained for bare soil (in blue) and mixed forests (in
cyan) could be justified by a bad localization of the
corresponding samples used in textural classification process.
Furthermore, we give at Figure 3.d an optical image (Google
Earth) of the same area. We can see that buit-up area (in red)
has well identified by the textural classification, but some
confusion occurs between decidious forests (in yellow) and
built-up area. This gives a clear indication of how the
classification algorithm has performed. Thus, textural modelling
performed in every scattering type of Pauli decomposition
makes good object discrimination of SAR polarimetric images

if samples are correctly chosen. This can be done, for example,
by using H −α partition.

5. CONCLUSION

The different polarisations respond in different ways to the
orientation and shape of the objects from which scattering takes
place. It is obviously important to have tools that make full use
of this information. The main purpose of this paper was to test
object separability performance by using texture modelling in
each scattering type. As the information in the fully polarimetric
data can not be completely represented by one single feature,
the combination of different polarimetric features incorporating
spatial information seems to give interesting results. Indeed,
textural modelling of polarimetric images provides a possibility
to separate different classes and proves the texture features
polarization dependence. It was shown that texture significantly
contributed to land cover discrimination where backscattering
coefficient could fail. Thus, our results confirm previous
findings that texture incorporating can improve polarimetric
images interpretation and help in land cover identification.
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Abstract:

Different resolution of remote sensing images will give rise to different perspectives and spatial characteristics. The objective of this
study is to compare the spatiotemporal difference of the vegetation index extracted from TM and MODIS images by time series
analysis and spatial statistics, and find the relationship among between the vegetation, climate factors, coal mining etc..The study
area is located at an arid mine area, where the mining activities and ecology reconstruction is ongoing. It is found that the MODIS-
NDVI (monthly or 16 days) products can provide results close to the NDVI derived from atmosphere corrected TM images. Time
series analysis found that the monthly NDVI, rainfall and temperature are consistently subject to annual periodical rhythm under the
impacts of coal mining. And there is a significant correlation between NDVI and rainfall & temperature in the arid mine area.
However, MODIS-NDVI (1 km) is not suitable for spatial statistics for the study area of 3200 km2, because of the coarse spatial
resolution. NDVI-TM (30 m) or NDVI-MODIS (250 m) are feasible for spatial statistics at this study area. Higher value of NDVI is
accompanied by higher spatial variation of NDVI with a squared correlation coefficient (R2 =0.6983). It is probably because the
natural arid landform was damaged by human activities, e.g. vegetation construction and industry.

1. INTRODUCTION

Vegetation changes play an important role in the environmental
processes, and also is a sensitive indicator for environmental
and global changes (Van Wijngaarden, 1991). The vegetation
monitoring can provide useful clues concerning our changing
environment and help natural resource management. Traditional
method to monitor the vegetation is by field investigation. It is
low efficiency and high labor demanding, especially for large
scale area, and impossible to conduct continuously investigation.
Nowadays, advanced Remote Sensing (RS) is a powerful
monitoring tool for its convenience and high efficiency.
Thereby, it has been widely employed to monitor the vegetation
changes (e.g. Justice & Hiernaux, 1986; Townshend & Justice,
1986; Hobbs, 1995; Al-Bakri & Taylor, 2003).
Vegetation coverage, leaf area index and vegetation index are
the main indices of vegetation information. However vegetation
coverage and leaf area index are often obtained based on
vegetation index. Vegetation index is a simple numerical
indicator, which can be derived directly from RS image. For
example, there are ARVI (atmospherically resistant vegetation
index, Kaufman & Tanre, 1992), SAVI (soil adjusted vegetation
index, Huete, 1988), NDVI (Normalized Difference Vegetation
Index, Rouse et al 1974), EVI (Enhanced Vegetation Index, Liu
& Huete 1995), etc. NDVI is one of the most important and
commonly used vegetation indexes, defined as equation (1).

)REDNIR(
)REDNIR(NDVI




 (1)

where RED is the reflectance in the red channel and NIR is the
reflectance in the near-infrared channel. The RED and NIR
band contain more than 90% of vegetation information. (Baret
et al, 1989)
The NDVI can be derived from many different kinds of RS
images, e.g. Landsat, Spot, MODIS, NOAA/AVHRR, etc. with

different spatial and temporal resolution. For example, the
NDVI derived from TM image is 30 m spatial resolution and 16
days temporal resolution. The MODIS (Moderate Resolution
Imaging Spectroradiometer) is at lower spatial resolution, but
with a daily temporal resolution. Previous researches showed
that multi-temporal NDVI images are useful for analyzing
spatial vegetation pattern and for assessing vegetation dynamics
(e.g. Justice & Hiernaux, 1986; Townshend & Justice, 1986).
Time-series analyses of satellite data enable the observation of
seasonal and annual trends of vegetation cover (Vicente et al,
2004). Su et al. (2001) pointed that the results or conclusions
for the same area may change with different spatial resolution of
research scale. And it is important to understand the effect of
different resolution images on the analysis of spatial variation.
Suitable resolution of RS image is needed for spatial analysis at
a given scale.
Therefore, the objective of this study is to find the spatial and
temporal variation of vegetation under the influence of local
arid climate, vegetation reconstruction and mining activities, at
a mine area with arid and semi-arid climate and located in north
of China.

2. METHODOLOGY

2.1 Case study area

The experimental area is Shendong coal mine area located at the
border of Shanxi province and Inner Monogolia (figure 1). The
total area size is about 3200 km2; and the elevation is between
1000 m to 1500 m. The average annual rainfall is about 436.7
mm, about 70% of which happens in July, August and
September (Cui et al., 2001). And the groundwater is deep
below the surface and intermittent. The surface is aeolian
landform with sparse vegetation which is typical sandy land
vegetation. There is also some grasses and planted vegetation,
such as poplar and Salix psammopbylla. In general, this area

_________________________________________________________________________________________________________________________________________________________________________________________________________
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has a fragile and unstable ecological environment and low-level

social development, characterized by arid and semi-arid climate.
Figure 1. The location of Shendong coal mine area

2.2 Dataset

(1) Landsat TM/ETM+ satellite data
Three Landsat TM images acquired on August 24th 2000,
August 6th 2002 and July 5th 2005 were processed. The
atmosphere effect was corrected by using FLAASH model (Fast
Line-of-sight Atmospheric Analysis of Spectral Hypercubes)
(Berk et al., 1998) in ENVI 4.3. The NDVI can be calculated
based on equation (1), then the mean NDVI of the study area
can be obtained by statistics.
(2) MODIS-NDVI products
MODIS launched in December 1999 has high temporal
resolution (at least twice per day,) and can be free downloaded
(Lu and Zhao, 2005). There are several types of MODIS-NDVI
products with different spatial and temporal resolution produced
by Earth Observation System (EOS). The spatial resolution of
MODIS-NDVI-16days-250m is 250 m. The NDVI images were
converted into the projection of WGS84, UTM from Sinusoidal
projection, and tailored by the boundary of study area with
ENVI4.3. Further study found that the MODIS-NDVI-monthly-
1km imagery has the similar average NDVI values as the
MODIS-NDVI-16days-250m imagery. In this study, 67
MODIS-NDVI-monthly-1km and several MODIS-NDVI-
16days-250m images from January 2000 to August 2005 were
processed.

2.3 Spatiotemporal statistics

Temporal changes of mean NDVI were derived from monthly
MODIS vegetation products to reflect the vegetation change
varying with time. Moreover, the correlations between the
NDVI and the climates factors, e.g. monthly rainfall and air
temperature were analyzed to determine the influences of
climate factors on the vegetation in this arid mining region.
A semivariogram analysis was used to describe the spatial
variance and spatial structure of the NDVI. The semivariance
statistic was calculated as one half of the average squared

difference between data values at pairs of points a given
distance apart (Journel and Huijbregts, 1978). It is calculated as:
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where γ(h) is the empirical semivariance for the distance h, N(h) 
the number of points separated by the distance h, and Z(Xi) is
the NDVI at location Xi. In this case, the Xi is the pixel. The γ(h) 
was then plotted against the lag distance h, yielding the
empirical semivariogram, which characterizes the spatial
variability of NDVI as a function of distance. For predictions,
the empirical semivariogram is converted to a theoretic one by
fitting a statistical model. For example, equation (3) is the
exponential model.

 )(exp0exp10)( |h|+CC
a

|h|
+CChγ 
















 (3)

where C0 is the nugget, the semivariance at a distance 0. a is the
distance at which the semivariogram levels off. C0+ C =
Sill .Sill is the value at which the semivariogram levels off.
Higher sill indicates higher spatial variation of NDVI. The
semivariance can be calculated in ENVI 4.3, and the empirical
semivariogram was regressed in SPSS (Statistical Package for
the Social Science).

3. RESULTS AND DISCUSSION

3.1 Temporal change of NDVI

Table 2 shows the NDVI derived from Landsat TM and MODIS
images at the same period. It is noticed that the NDVI with
FLAASH correction provides a much closer and more
reasonable fit with the MODIS-NDVI than the uncorrected
NDVI. Therefore, it is necessary to remove the atmosphere
effect before calculation of NDVI. Moreover, the difference
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between the corrected NDVI and MODIS-NDVI is due to the
different methods of NDVI acquisition. Specifically, the NDVI
of Landsat is for one day; but MODIS-NDVI is the maximum
NDVI over a period, e.g. 16 days or one month.

Time uncorrected FLAASH
corrected

MODIS-NDVI
Monthly

MODIS-NDVI
16days

2000-8-24 0.0549 0.3480 0.2542 0.2926
2002-8-6 0.0534 0.3251 0.3346 0.3288
2005-7-5 0.1098 0.2432 0.2894 0.2823

Table 2. Comparison of different NDVI at the same period

Time series of NDVI-MODIS of the study area from January
2000 to August 2005 are presented in figure 3. It is found that
the vegetation of the whole Shendong mine area has been
improved in recent years, under the influence of climate, mining
and ecological restoration. The improvement of vegetation was
also found by Hu & Chen (2008). Figure 3 also shows that the
NDVI, rainfall and air temperature are well subject to annual
periodical rhythm. And there are significant correlations
between monthly NDVI and two climate factors. The
correlation coefficient of NDVI with rainfall and temperature is
0.760, and 0.84, respectively under the impact of coal mining.

Figure 3. Comparison between monthly NDVI-MODIS and
temperature & rainfall

3.2 Spatial characteristics

Different spatial resolution of images will result in different
spatial semivariance of NDVI. So it is important to choose the
right resolution for spatial characteristics analysis. Figure 4
presents the difference of the semivariance of NDVI-MODIS
(250 m and 1 km). For the 250 m NDVI, it is revealed that

when the distance is at 1750 m (250 m*7 pixels) the
semivariogram levels off. However, for the 1 km NDVI, the
semivariogram does not level off, even the distance is up to 50
000 m (1 km*50 pixels). It indicates that NDVI-MODIS with
250 m resolution is feasible for spatial variance analysis in the
study area. But the NDVI with 1 km resolution is not suitable
for spatial analysis of the study area.
Moreover, the vegetation variance will be reflected by the
semivariance. Figure 4 also shows that the semivariance of
NDVI in the December (0.1113) is lower than that in summer
(0.1932). That is because the study area is in the arid area with
sparse vegetation. In winter, most of the vegetation are wilted or
died, and the ground is almost bare. Therefore, the homogeneity
of ground surface decreases the spatial variation.

Figure 4. Semivariogram comparison of NDVI-250 m and 1 km.
X axis is the lag distance of pixel, the unit of NDVI-1km is 1

km, NDVI-250m is 250 m)

The spatial characteristics obtained from different spatial
resolution (30 m, 250 m, 1 km) of NDVI were analyzed and
compared by semivariance analysis. The semivariance of NDVI
was presented in figure 4 and figure 5. It was found that the
NDVI of 2002 and 2003 in July are of higher semivariance,
because of the higher value of NDVI. Detailed analysis can be
made by using a empirical semivariance model. The exponential
model was determined as optimal empirical semivariance model,
the key parameters of which were provided in table 6.

Figure 5. Semivariogram of NDVI-MODIS (250 m), in July,
from 2000 to 2005; X axis is the lag distance, 250 m per pixel

In: Wagner, W., Székely, B. (eds.): ISPRS TC VII Symposium – 100 Years ISPRS, Vienna, Austria, July 5–7, 2010, IAPRS, Vol. XXXVIII, Part 7A
Contents Author Index Keyword Index

114



Table 6. Key parameters of exponential semivariance model for
NDVI-TM (30 m) and NDVI-MODIS (250 m), a is pixel

distance. For the exponential semivariance model, when the
distance is 3*a, the semivariogram levels off.

A high correlation (R2=0.6983) between NDVI and Sill (C+Co)
was found, shown in figure 7. It indicates that the higher value
of NDVI is accompanied by higher spatial variation of NDVI.
For example, the mean NDVI in July 2003 is 0.3403, and the
C+Co is 0.00579. But the C+Co is only 0.00275 for July 2001,
when the NDVI is 0.1932. It is probably because the sparse
vegetation coverage of the study area is lower than 50%. And
the wide natural bare landform is damaged by different kinds of
human activities, which will increase the spatial variation, e.g.
vegetation construction or mining industry, etc.

Figure 7. Correlation between NDVI and Sill (C+Co)

4. CONCLUSIONS

MODIS-NDVI and Landsat-TM images were processed to
study the spatiotemporal variance of vegetation in an arid
mining area. It is found that MODIS-NDVI (monthly or 16 days)
products can provide results close to the NDVI derived from

atmosphere corrected TM images. Time series analysis found
that the monthly NDVI, rainfall and temperature are
consistently subject to annual periodical rhythm. The arid
climate variables are still the dominating factors, instead of
underground coal mining. Furthermore, there is a high
correlation between NDVI and rainfall & temperature in arid
mine area, where the mining activities and ecology
reconstruction is ongoing. Therefore, the NDVI-MODIS (1 km)
is good for time series analysis at large scale, e.g. region scale
or global scale.
Different resolution of images, e.g. TM (30 m), MODIS (250 m
or 1 km) will give rise to different spatial characteristics.
However, 1 km MODIS-NDVI is not suitable for spatial
statistics for the study area, which is about 3200 km2, because
of the coarse spatial resolution. NDVI-TM (30 m) or NDVI-
MODIS (250 m) are feasible for spatial statistics at local scale.
Higher NDVI is accompanied by higher spatial variation. A
high positive correlation (R2 =0.6983) between the value of
NDVI and the spatial variation of vegetation (sill) was found. It
is probably because the homogeneous natural arid landform was
damaged by human activities, e.g. vegetation construction and
industry.
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ABSTRACT:

The usual polarimetric speckle filters optimally combine the polarization channels into a single-channle image or only restore the
radiometric information. The phase differences and the polarization channel correlation coefficients are lost. Though simple boxcar
filter and extended Lee filter for covariance matrix can be used to preserve polarimetric information without changing the data form,
the results are not satisfying enough. In this study, we proposed a new framework for polarimetric SAR filter in which phase and
intensity information are filtered independently based on the independence of intensity and polarimetric information. Firstly,
polarimetric covariance matrix is divided into the product of a scalar z and a matrix C0. The sum of diagonal elements in C0 is 1 and
z denotes the sum of diagonal elements in covariance matrix which is also called total power or SPAN. SPAN z and C0 include
intensity or texture information and polarimetric information respectively which both are relatively independent. Secondly, SPAN
image is filtered as singly polarized imagery, for example using Lee filter. To preserve the polarimetric information, the boxcar filter
is applied to C0, which can be considered as averaging pixels in a moving window using equal weights for each pixel. Also, the
filtered C0 must be normalized by dividing each element by the sum of its diagonal elements. Finally, the filtered result is obtained
by multiplying the filtered SPAN and filtered C0. Experiment results show that the proposed filter is valid, and polarimetric
information is well preserved. And compared with extended Lee filter, the performance of the proposed method is better.

* Corresponding author.

1. INTRODUCTION

Synthetic aperture radar (SAR) is an active radar imaging
system working on microwave band and can be operated under
all weather condition without daylight. Thus it is now widely
used as a tool of earth observation. However, for its coherent
imaging mechanism, SAR images are inevitably corrupted by
speckle noises (Lee, 2009). Speckle noise makes it more
difficult to recognize terrain target and classify land cover than
other remote sensing images. It is necessary and useful to
suppress speckle noise before application. In recent years, many
methods have been developed to reduce speckles in SAR
images. For example, Lee, Frost, Kuan filters are effective in
speckle suppression (Lee, 1980; Frost, 1982; Kuan, 1987). In
order to preserve edges, lines or point targets, many new
adaptive methods were proposed, and worked well. However,
most of them are only fit for singly polarized real images.

On the other hand with the development of airborne and
spaceborne radar, users can obtain fully polarized SAR
(PolSAR) images more conveniently. The same as non-fully
polarized images, the application of PolSAR data is also
restricted for its speckle. There are several speckle filters which
are often applied to PolSAR images. Polarimetric whitening
filter proposed by Novak is often used to detect targets (Novak,
1990). And Multi-texture polarimetric whitening filter was
developed by G.Q. Liu (Liu, 1995). The disadvantage of these
methods is that the data form is changed to single- or multi-real
channels. So the phase difference disappears, and polarimetric
information is not well preserved. Another filter frequently used
is optimal weighting filter developed by J.S. Lee. It requires that

the input data is real by which it is impossible to preserve phase
difference. In order to keep the data form, assembling averaging
and many improved assembling averaging method such as
sigma filter are applied. Lee filter is also extended to
polarimetric images. Other preferable filter is intensity driven
adaptive neighbourhood filter (Vasile, 2006). Using these
methods, speckle is well suppressed when data form is kept.
Nevertheless the result is unstable in heterogeneous areas;
especially there are some point targets in the neighbourhood.
The filtered covariance matrix of centre pixel is often
predominated by these point targets. So is the polarimetric
information. That is the problem which exists in most filters
developed before.

In this study, we assume that all information in PolSAR images
is made of intensity and polarimetric information or phase
difference expressed by a covariance matrix of which the sum of
diagonal elements is 1. Both are relatively independent. The
filtering is based on this assumption model. The intensity image
and polarimetric information are filtered respectively. Finally,
combining the filtered two parts, we obtain the speckle
suppressed image with the same data form as the input image.

2. FRAMEWORK OF POLARIMETRIC FILTER

2.1 Model of PolSAR data

A fully polarized synthetic aperture radar measures both
amplitude and phase of the four polarized backscattered signal
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HH, HV, VH VV, producing a 2×2 complex matrix or Sinclair
matrix:

HH HV

VH VV

S S
S

S S

 
  
 

(1)

where , , ,HH HV VH VVS S S S = complex backscattering coefficients
of HH, HV, VH, VV polarization
channel respectively.

In the reciprocal backscattering case, HV VHS S . The Sinclair
matrix can be transformed to a three dimensional vector:

 
T

HH HV VVy S S S (2)

where T = the transpose of a vector.

In order to describe the polarimetric information more explicitly,
the polarimetric data is usually converted to a 3×3 covariance
matrix from polarimetric vector (Lee, 2009):

HC yy (3)

where C = covariance matrix
Y = backscattering vector
H = the conjugate transpose of a complex vector.

The PolSAR data expressed by (1) contains two kinds of
information. One is the information of the three intensities
which is the diagonal elements of covariance matrix in (3)(3),
and the other one is the information of the three phase
differences between the three polarized channels which are
included in the non-diagonal elements of the covariance matrix.
Actually there are two independent differences because:

12 23 13arg( ) arg( ) arg( )C C C  (4)

where arg(∙) = argument of a complex number
12C = complex covariance of SHH and SHV
23C = complex covariance of SHV and SVV
13C = complex covariance of SHH and SVV.

We consider that the PolSAR imagery in the form of covariance
matrix is made of two parts:

0C zC (5)

where z = total power of backscattering coefficients (SPAN)
C0 = normalized covariance matrix (or polarimetric

information part, or phase differences part)
C = observation of covariance matrix.

The first part z is a scalar, denoting the intensity or the total
power and is the sum of the diagonal elements of C as

11 22 33z C C C   .

The total power z also called SPAN includes the information of
texture. The other part C0 is a matrix denoting the phase
differences between the three polarimetric channels, including
polarimetric information. The sum of diagonal elements in C0 is
1. When each element of covariance matrix is divided by z, C0
is obtained.

As depicted above, backscattering from a target is made of two
parts, the intensity and polarimetric information. And because
different targets may have different intensity, and the
polarimetric information may be different, that is to say, the two
aspects have no definite correlations, and both can be
considered independent from each other. The filter proposed in
this paper is base on this product model. The filtered covariance
matrix is also made up by two part, SPAN and normalized
covariance matrix.

2.2 Filter Framework Based on Independency of Intensity
and Polarimetric Information

In unfiltered PolSAR images, not only intensity is degraded by
speckle, but also the polarimetric information is degraded by
speckle. In section 2.1, we know that intensity and polarimetric
information or phase differences in PolSAR data are
independent. Therefore, the two parts could be filtered
separately.

2.2.1 Filter for intensity image. For intensity image, the
distribution was discussed in many articles in detail, and many
filters are developed based on the probability density function
of clutters. Lee, Kuan, gamma and sigma filter are very useful.
In order to preserve details, for example lines, edges and point
targets, refined filters were developed, and the performance was
improved. In a word, all filters which could be applied to singly
polarized SAR intensity images could also be used for the
filtering of the intensity part.

In this study, J.S. Lee filter was selected for the filtering of
intensity part for its good adaptability. Lee filter is based on
Statistic in a moving window:

ˆ (1 )x b Z bZ   (6)

Where x̂ = the estimation of true value for backscattering
intensity

Z = the observation in window centre
Z = the mean of the intensity in the moving window.

Coefficient b in (6) can be calculated (Lee, 1980):

2 2

2

1 / var( )
1

v

v

Z Z
b









(7)

where var( )Z = the variation of Z in the moving window
2
v = the variation of ideal speckle based on

multiplicative model. For single look complex
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(SLC) SAR images, 2 1v  .

2.2.2 Filter for polarimetric information. Polarimetric
information is mainly included by the covariance matrix. There
are two primary factors. One is phase difference between
different polarized channels. The other one is the modulus of
complex covariance of different polarized channels. Actually,
both are also represented in the normalized covariance matrix
C0 of which the SPAN is considered as 1.

To make the description above more understandable, SPAN
could be considered as a weight. In C0, the weight is set to 1
while in original covariance matrix the weight is the total power,
SPAN. Apparently, It is more reasonable to assuming that the
weight of each pixel for polarimetric information are equal to 1
than equal to SPAN if polarimetric information is primarily
concerned. Therefore, Normalized covariance matrix is
preferable comparing with original covariance matrix when
polarimetric information preservation is considered as one of
the most indexes of performance for PolSAR filter.

In homogeneous areas, each matrix for a resolution unit
represents polarimetric information with equal weight. So the
boxcar filter has top-priority. However, actually for SAR images,
pixels in the neighbourhood are not always homogeneous. If we
use origin covariance directly again as the polarimetric boxcar
filter and extended J.S. Lee filter, the intensity plays a real role
as weight actually, and the mechanism of strong targets such as
points is magnified. Therefore polarimetric information is
confused, and errors may be brought to the results. That is why
the improvement was limited although many adaptive
techniques were introduced.

But when the representation of polarimetric information,
covariance matrix is normalized and averaged with equal weight,
the influence of pixels with mechanisms different from centre
pixel is restricted. In other words, polarimetric mechanisms for
different pixels are assigned the same weight in the boxcar filter
of normalized polarimetric covariance matrix.

Thus, in homogeneous or heterogeneous areas, the normalized
boxcar filter for polarimetric information in the data form of
covariance is better. In this step, we only need to apply boxcar
filter to the normalized covariance matrix. In addition, after
boxcar filtering, the filtered covariance matrix 0Ĉ should also
be normalized divided by the sum of its diagonal elements:

0 0 011 022 033
ˆ /( )C C C C C   (8)

where 0C = the mean of 0C in the moving window

0Ĉ = estimation of normalized covariance matrix

0iiC = the diagonal elements of C0 at Colum i and
Row i.

So that, each pixel of filtered normalized covariance matrix has
the same intensity, or the same weight as the input normalized
covariance matrix.

2.2.3 Combination for the filtered two parts. According to the
model represented in section 2.1, multiplying the filtered

intensity x̂ by filtered normalized covariance matrix 0Ĉ , we
get the final filtering result for PolSAR images:

0
ˆ ˆˆC xC (9)

where Ĉ = estimation of polarimetric covariance matrix
x̂ = estimation of SPAN (or intensity)

0Ĉ = estimation of normalized covariance matrix (or
polarimetric information).

2.3 General Steps for Filter based on Intensity and
Polarimetric Information

Generally speaking, there are three primary steps in the
framework for filter based on the independence of the intensity
and polarimetric information which are described in Figure 1.
Now we discuss the sequences of the general three steps as
follows:
1) Calculate intensity and normalized covariance matrix

from Sinclair matrix according to (5), as the top of Figure
1.

2) Apply filters to intensity image and normalized covariance
matrix respectively according to (6) and (8). For Intensity
image, filters such as Lee, Kuan, sigma and gamma are
compatible. For Normalized covariance matrix, in order to
preserver polarimetric information, the mean filter with
equal weight is the best. This step is described in the
middle of Figure 1.

3) Combine the two filtered results obtained in step 2, and
then get the final filtered PolSAR images as (9) and the
bottom of Figure 1 which also contains the texture and
polarimetric information with the same data form as the
input data.

Figure 1. The follow chart of filtering based on intensity and
phase difference model

2.4 Some Improvement for the Filter in the Framework

Although there is some disadvantages for polarimetric
information preservation in the filter proposed above. Some
improvements are possible and necessary.
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In order to preserve textures or other details, techniques which
are used in singly polarized intensity images to preserve
textures or edges can also be extended to this filter framework.
One method is changing the pixel set in neighbourhood or the
moving window shape adaptively in which statistics are
calculated. Taking refined Lee filter for example, firstly we need
to determine which one of the eight non-square sub-windows
the centre pixel belongs to, and then we calculate the statistics
in the non-square sub-windows, finally we obtain the filtered
covariance matrix as (9).

In addition, point target preservation is another index for the
performance of a filter. A const false alarming rate (CFAR)
method can be applied to the SPAN image to detect point
targets firstly. Then in the process of filtering, the covariance
matrix of point target is remained the same as that of the input.
At the same time, point target is excluded from the
neighbourhood where the local mean and variance is calculated
in both intensity and normalized covariance matrix.

SPAN is usually assumed to have a gamma distribution, the
CFAR used in this paper is based on this distribution. The
threshold T is obtained by solving the equation (Gigly, 2002):

1

0

11 exp( )
( )

n
T

n
fa

n nt
p t dt

n  
 

   
  

 (10)

where fap = the false alarming rate,
n = the number of looks, for SLC data n=1
 = normalized standard derivation in a moving

window, var( ) / ( )Z E Z  .

For a const false alarming rate, for example 0.005fap  , the
centre pixel of which the intensity is larger than T is determined
as point targets.

3. EXPERIMENTAL RESULTS

3.1 Data Description

The single look C band Radarsat 2 PolSAR image used in this
study was acquired in 2007 over some suburb. The image is in
the form of Sinclair matrix with the size of 512 by 512 pixels
with a spatial resolution of about 10 meters.

For PolSAR imagery, Pauli decomposition is usually used to
produce a colour image because this decomposition can be used
to visualize PolSAR data based on the three primary scattering
mechanisms (Lee, 2009). Pauli decomposition can be described
as:

 2HH VV HH VV HVk S S S S S   (11)

where k = coherent polarimetric vector
, , ,HH HV VH VVS S S S = complex backscattering coefficients

of the four polarized channel
respectively.

Using the three elements of the polarimetric vector as red, green
and blue channel, for example, Red = |SHH+SVV|, Green = |SHH-
SVV|, Blue = |SHV| where |∙| denotes calculating the modulus of a
complex, we can obtain a colour image based on Pauli
decomposition.

Figure 2 shows the original PolSAR image based on Pauli
decomposition.

Figure 2. Original PolSAR image with Red = |SHH+SVV|, Green
= |SHH-SVV|, Blue = |SHV|

3.2 Experimental Results and Analysis

In the experiment, we use a 11×11 window with the const false
alarming rate 0.005 to detect point target, and then apply the
proposed method with a 7×7 window. Finally, filtered
covariance matrix is obtained.

Covariance matrix can be transformed to coherent matrix of
which the diagonal elements are the intensities of elements in
polarimetric vector k. Therefore we also can obtain a colour
image using Pauli decomposition. Figure 3 shows the filtered
PolSAR image with Pauli decomposition colour composition
where speckle is reduced greatly, and colour remains very
similar to that in figure2.

Figure 3. Filtered image using filtered proposed in this paper
with Red = |SHH+SVV|, Green = |SHH-SVV|, Blue = |SHV|
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In order to test the validity of the proposed method, J.S. Lee
filter is compared. Table 4 shows the mean, variance and the
equivalent number of looks (ENL) for original, J.S. Lee filter
and proposed filter in this paper. Both methods have similar
performance for mean preservation and speckle reduction.

filter original J.S. Lee proposed

mean 0.4928 0.4564 0.4876
variance 0.2880 0.0203 0.0262

ENL 0.84 10.27 9.06

Table 4. Mean and variance for intensity

The extent of preservation for polarimetric information is
another important index for polarimetric filter. The ratio of
different polarized channel is one of the most important
polarimetric information indexes. In this study, in order to
determine whether the proportion of each polarized channel is
changed we use the percentage of each channel in SPAN to
substitute the channel ratio. Table 5 shows the comparisons
between original image and the two images filtered using J.S.
Lee filter and the proposed filter. It shows that both methods
can preserve the ratio between different polarizations. But the
ratio for the proposed filter is closer to original ratio than that
for J.S. Lee filter. It is demonstrated that polarimetric
information is better preserved.

Ratio E(HH/SPAN) 2×E(HV/SPAN) VV/SPAN
original 30.86% 37.17% 31.97%
J.S. Lee 31.97% 37.59% 30.44%

proposed 31.23% 37.22% 31.54%

Table 5. Percentage for each channel in SPAN

4. CONCLUSIONS

A new filter framework for PolSAR imagery has been proposed
in this paper. This algorithm is based on the multiplicative
model of SPAN and polarimetric information for PolSAR data.
SPAN and normalized covariance matrix are filtered
respectively, and finally is combined to be the restored
covariance matrix. Experimental results show that this method
has the performance of speckle reduction similar to extended
J.S. Lee filter and polarimetric information preservation better
than extended J.S. Lee. Nevertheless, more studies to preserve
edges, details in PolSAR filters propose in this paper are
necessary.
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ABSTRACT: 
 
The use of appropriate features to characterize an output class or object is critical for all classification problems. This paper 
evaluates the capability of several spectral and texture features for object-based vegetation classification at the species level using 
airborne high resolution multispectral imagery. Image-objects as the basic classification unit were generated through image 
segmentation. Statistical moments extracted from original spectral bands and vegetation index image are used as feature descriptors 
for image objects (i.e. tree crowns). Several state-of-art texture descriptors such as Gray-Level Co-Occurrence Matrix (GLCM), 
Local Binary Patterns (LBP) and its extensions are also extracted for comparison purpose. Support Vector Machine (SVM) is 
employed for classification in the object-feature space. The experimental results showed that incorporating spectral vegetation 
indices can improve the classification accuracy and obtained better results than in original spectral bands, and using moments of 
Ratio Vegetation Index obtained the highest average classification accuracy in our experiment. The experiments also indicate that 
the spectral moment features also outperform or can at least compare with the state-of-art texture descriptors in terms of 
classification accuracy. 
  
 

                                                                 
*  Corresponding author.   

1. INTRODUCTION 

Interpretation of remotely sensed images has played an 
important role in vegetation mapping in the past decades, 
however the use of coarser spatial resolution satellite imagery 
have proven insufficient or inadequate for discriminating 
species-level vegetation in detailed vegetation studies (Yu et al., 
2006). Airborne high spatial resolution imagery provides more 
information for detailed observation of vegetation. However, 
traditional classification algorithms based on single pixel 
analysis are often not capable of extracting the information we 
desire from high spatial resolution images. In recent years, 
object-based approaches become popular in high spatial 
resolution image classification, which has proven to be an 
alternative to the pixel-based image analysis and a number of 
publications suggest that better results can be expected 
(Blaschke, 2010). When applying object-based method to 
vegetation species classification, individual trees are expected 
to be segmented as image-objects and after that classification 
will be conducted in object-feature space.  
The use of appropriate features to characterize an output class 
or object is fundamental for all classification problems.  How to 
extract representative object-features in arbitrary-shaped 
regions is still an open issue for object-based image 
classification. Texture is a fundamental feature to describe 
image, but most texture descriptors are based on regular images 
or regular regions (e.g. small blocks) and do not consider the 
color information (Liu et al., 2006). Shape features are very 
significant features which are very close to human perception. 
However due to the inaccuracy of image segmentation and view 
angle variations, shape features are not widely used in natural 
image analysis. We believe that statistical measurement is a 
better way to summarize arbitrary-shaped image regions in 
object-based image classification. Color histograms are the 

most widely used statistical features in computer vision. They 
are often used for the illumination independent characterization 
of the color distribution of the pattern. However, color 
histograms do not exploit the spatial layout of the colors. A 
good way to include such lost information is to use statistical 
moments as features. Color moments improve the 
characterization the shape and color distribution of the pattern 
and have proven to be effective features under changing 
viewpoint and illumination (Moons, 2004).  
 
Most previous feature extraction methods were conducted in 
original spectral bands (e.g. RGB color space), which were 
often fragile in visually complex environments. Incorporating 
domain knowledge might be a better way in real-world image 
analysis projects. From the literature review, the dominant 
method for interpreting vegetation biophysical properties from 
optical remote sensing data is through spectral vegetation 
indices. Plants have distinctive spectral signatures which is 
often modelled by combinations of reflectance measured in two 
or more spectral bands (Myneni et al., 1995). To our knowledge, 
little work has been done on utilizing vegetation indices as 
visual feature descriptors to combine multiple spectral bands for 
vegetation species classification from remote sensing images.  
In this paper, we take the advantage of vegetation spectral 
properties and use spectral moment features for object-based 
vegetation species classification. To evaluate the usefulness of 
spectral moment features, the state-of-art texture features such 
as Gray-Level Co-Occurrence Matrix (GLCM) and Local 
Binary Patterns (LBP) are also extracted for comparison 
purpose. Different feature descriptors were compared by means 
of classification accuracy. A Support Vector Machines (SVM) 
classifier is employed for the classification in object-feature 
space. Multispectral images are collected in a power line 
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corridor for vegetation management purposes and an extensive 
experiment on this dataset is conducted. 

2. STUDY AREA AND DATA 

The data used in this research were collected in rural 
Queensland Australia in October 2008 for research into 
vegetation management in power line corridors. The reason 
why we need species information of individual trees is that 
vegetation management in power line corridors is based on their 
potential risks to power lines. Some tree species are of 
particular interest and are generally categorized as undesirable 
and desirable species. For example, species with fast growing 
rates and that also have the potential to reach a mature height of 
more than four meters are defined as undesirable species. These 
undesirable species often pose high risks to power lines and 
therefore should be identified and removed.  
The images were captured in a 1.5 kilometres corridor by a high 
resolution 3-CCD digital multi-spectral camera mounted on 
fixed wing aircraft. Figure 1 shows a mosaic of the test area 
generated from aerial images acquired from the trial. The four 
spectral bands of the camera are: NIR (800-966 nm), red (670-
840 nm), green (540-640 nm), and blue (460-545 nm). The 
spatial resolution of the captured images is about 15 cm. The 
ground truth data of vegetation species were obtained from a 
field survey with domain experts’ participation. 

 
Figure 1. Experiment test site 

 
It should be noted that classifying all types of species in power 
line corridors requires significantly more resources than are 
currently available, however, classifying species in a given test 
area as a proof of concept is possible. In this research, we focus 
on three dominant species in our test field: Eucalyptus 
tereticornis, Eucalyptus melanophloia, and Corymbia tesselaris. 
These three species Here we abbreviate the species names to 
Euc_Ter, Euc_Mel and Cor_Tes. According to the field survey, 
these three species account for over 80% of all the trees in the 
test corridor.  
 
 

3. METHODS 

In this research, object-based image analysis is adopted which 
consists of a three-stage processing: image segmentation, 
spectral and texture feature extraction, and supervised 
classification employing SVM. 
 
3.1 Image Segmentation 

Successful object-based image analysis results largely depend 
on the performance of image segmentation. Since we are going 
to classify the species among trees, tree crowns are the only 
image-objects of interest in our research. The aim of 
segmentation is, therefore, to detect and delineate all trees from 
images while eliminating other image regions. We have 

developed an automatic tree crown detection and delineation 
algorithm by utilizing spectral features (i.e. band ratio of near-
infrared and red) in a pulse coupled neural network (PCNN) 
followed by post-processing using morphological 
reconstruction (Li et al., 2009). Since PCNN is capable to 
capture the proximity of image structure and texture, this 
method can automatically detect and delineate tree crowns from 
multi-spectral images and has been proved to be superior to 
some classic segmentation algorithms. Figure 2 shows an 
example of the segmentation results generated by our automatic 
segmentation algorithm.  
Although the automatic segmentation is satisfied from visual 
assessment, decomposition of tree clusters is occasionally poor. 
Since the main aim of this research is evaluate the effectiveness 
of different feature descriptors for detailed vegetation species 
classification, manual segmentation is used to minimize the 
influence of inaccuracy in segmentation. The background is 
removed and each tree crown is labelled with a unique label to 
identify the tree which is paired against individual tree species 
obtained from field surveys. After segmentation, different 
feature descriptors are extracted from the segments (i.e. tree 
crowns) and used for training classifiers.  

 
Figure 2. Example of automatic segmentation results 

 
3.2 Spectral and Texture Feature Extraction  

The object-based classification is substantially different from a 
per-pixel classification as it is done in object-feature space. 
Once the image-objects are segmented, both spectral and spatial 
attributes of each image-object (polygon) are extracted and used 
as input to a variety of classification algorithms for analysis. 
The basic approach to compute object-features from a multi-
spectral image is to calculate separately the derivatives of the 
spectral channels. However, to generate features which could 
have high discriminative power among tree species is difficult 
as they all look green from visual spectrum. In addition, there 
can be large variations in lighting and viewing conditions for 
remotely sensed images, which may greatly affect the 
classification results if the feature descriptors used are not 
robust to these changes.  
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3.2.1 Spectral Moment Features:  Color histograms are 
often used for the illumination independent characterization of 
the color distribution of the pattern. However, color histograms 
do not exploit the spatial layout of the colors. A good way to 
include such lost information is to use moments. Probability 
theory identifies that a probability distribution is uniquely 
characterized by its moments. Based on this idea, moment 
features have been proposed for color indexing (Stricker et al., 
1995). However, moment features are mostly extracted from 
image as global features for image retrieval purpose, few work 
has been done on trying to represent image-object using 
moment features in object based image classification. 
 
Since most information is concentrated on the low-order 
moments, only four central moments are considered as feature 
vectors in this research. They are defined as (Weinbach et al., 
2007): 

∑
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where in equations (1-4) N is total number of pixels within the 
image-object (i.e. tree crown), μ is the arithmetic mean, and 
σ represents the standard deviation, sk  stands for the  third 
moment skewness, and ku  indicate the fourth moment kurtosis.  
 
Plants have distinctive spectral properties. In the past decades, 
many spectral vegetation indices have been developed as 
measurements of relative abundance and activity of green 
vegetation. These vegetation indices are developed for purposes 
such as to estimate vegetation biophysical properties, to 
normalize or model external effects like viewing and sun angle 
variations and internal effects like background and soil 
variations (Jensen, 2000). Most of these vegetation indices are 
calculated from the near-infrared and red band of the spectrum. 
These vegetation indices have been successfully applied to 
measure biophysics of green vegetation. However, there has 
been very limited work on using these vegetation indices as 
feature descriptors for detailed vegetation species mapping, 
especially from the individual tree perspective. 
 
In this paper, moments extracted from three widely used 
vegetation indices maps are evaluated: Ratio Vegetation Index 
(RVI) (Jordan, 1969), Normalized Difference Vegetation Index 
(NDVI) (Rouse et al., 1973) and Perpendicular Vegetation 
Index (PVI) (Richardson et al., 1977). They are defined as:  
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where NIRρ  and redρ are the spectral reflectance of near-
infrared and red band respectively.  The parameters of PVI are 
set to be a=0.96916,b=0.084726 according to literature (Seo et 
al., 1998). 
3.2.2 Texture Features: Texture contains important 
information in image classification, as it represents the content 
of many real-world images. Textures are characteristic intensity 
(or color) variations that typically originate from roughness of 
object surfaces (Davies, 2008). As a powerful source of 
information, texture features have been intensively studied in 
remote sensing image classification (Zhang et al., 2004, 
Franklin et al., 2000, Reulke et al., 2005, Samal et al., 2006). 
There are many different methods used to extract model texture 
from images. In this paper, we evaluated the widely used 
GLCM texture measures and state-of-art texture descriptor 
Local Binary Patterns (LBP) and its extensions: uniform LBP, 
rotation-invariant LBP, dominant local binary patterns (DLBP). 
In this section, an overview of these texture descriptors is given. 
 
The image-objects generated from segmentation is arbitrary-
shaped, however, texture measurements are usually extracted 
based on the texture property of pixels or small blocks within 
the rectangular shaped region. Therefore, in this paper, the 
arbitrary-shaped objects are extended to a rectangular area for 
texture extraction. This can be achieved by padding zero or 
mean value outside the object boundary, or obtaining the inner 
rectangle from the object. Zero padding introduces spurious 
high frequency components leading to degrading the 
performance of the texture feature, while the inner rectangle 
cannot usually represent the property of the entire object well. 
Mean-intensity padding has shown better performance than the 
other two approaches (Liu et al., 2006) and thus is adopted in 
this paper. Firstly, the minimum bounding rectangle is obtained 
from the image segment, and then the area which is outside of 
the segment and inside of the minimum bounding rectangle is 
padded using the mean value of pixels in the region. 
 
Grey-level co-occurrence matrices (GLCM) have been 
successfully used for deriving texture measures from images. 
This technique uses a spatial co-occurrence matrix that 
computes the relationships of pixel values and uses these values 
to compute the second-order statistics (Haralick et al., 1973). 
The GLCM approach assumes that the texture information in an 
image is constrained in the overall or “average” spatial 
relationships between pixels of different grey level. In this 
paper, we use mean and standard deviation of four measures 
from the grey-level co-occurrence matrices: energy, entropy, 
contrast, and homogeneity. 
 
LBP is first proposed by Ojala et al. to encode the pixel-wise 
information in the texture images (Ojala et al., 2002). The LBP 
method attempts to decompose the texture into small texture 
units and the texture features are defined by the distribution 
(histogram) of the LBP code calculated for each pixel in the 
region under analysis.  Figure 3 gives an example of binary 
code in a  33×  neighbourhood which generates 28 possible 
standard texture units. The LBP value for the centre pixel is 
calculated using the following equation: 
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where P is the total number of neighbouring pixels, R is the 
radius used to form circularly symmetric set of neighbours. In 
this paper, we use 1R,8 ==P . 
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Although LBP has proven to be a powerful texture descriptor, a 
number of extensions have been proposed to improve or 
supplement the classic LBP operators. We also evaluated 
several extensions to the conventional LBP operator including: 
uniform LBP, rotation-invariant LBP, and dominant LBP 
(DLBP) (Ojala et al., 2002, Liao et al., 2009).  The uniform 
LBP is used to represent the most important microstructures, 
which contain at most two bitwise (0 to 1 or 1 to 0) transitions. 
The rotation-variant LBP is produced by circularly rotating the 
original the original LBP code until its minimum value is 
attained, making LBP code invariant with respect to rotation of 
the image domain. DLBP only considers the most frequently 
occurred patterns, and try to avoid the information loss caused 
by just considering the uniform LBP and the unreliability by 
considering all possible patterns.  

 
Figure 3. Example of binary code calculation in a 33×  

neighbourhood. The binary labels of the neighbouring pixels is 
obtained by applying a simple threshold operation with respect 

to the centre pixel ct . )( ci ttu −  represents a step function, 
where 1)( =xu when 0≥x ; else, 0)( =xu . 

 
3.3 Supervised Classification Using SVM 

In this research, the species distribution in the test area is 
known a priori through the field survey and thus supervised 
classification is adopted to evaluate the discriminative power of 
different features in vegetation species classification. From our 
field survey, a vegetation database has been generated by 
giving each tree in the test field a unique ID and recording 
several attributes of each tree (e.g. species name and values of 
all extracted object-features).  
 
In our research, Support Vector Machines (SVMs) are 
employed as the classification methodology. SVM is an 
machine learning technology which has been successfully used 
in a variety of pattern recognition tasks and often outperforming 
other classification methodologies (e.g. Artificial Neural 
Networks) (Mills, 2008). The basic idea of SVM is to find an 
optimal decision function (a hyperplane) with the largest 
margin to separate the training data },...,,{ 21 nxxx with a label 

}1,1{ +−∈iy  into the positive (+1) or negative (-1) classes. The 
decision function is described as equation (9), and decision 
could be made according to that when 0)( =xf , x is classified 
as +1, otherwise, x is classified as -1. Figure 4 illustrates a 
simple linear separable case.  
 

bxwxf +⋅=)(                             (9) 
 
For data not linearly separable in the input space, SVM would 
map the data from the initial space to a (usually significantly 
higher dimensional) Euclidean space H by computation of 
inner-product kernels ),( xxK i .  After the mapping, the data, 
which is not linearly separable in the input space, become 

linearly separable in the H space. Thus, the SVM classifiers can 
be described as equation (10). Various classification methods 
are constructed by employing different kernel 
functions ),( xxK i  (e.g., linear, polynomial, RBF, sigmoid, etc.). 
Radial basis function (RBF) is selected in this paper as it often 
suggested as the first choice since it has several advantages over 
other common kernel functions (Hsu et al., 2008): 1) unlike 
linear kernel, RBF nonlinearly maps samples into a high 
dimensional space, so it can handle the case when the relation 
between class labels and attributes is nonlinear; 2) RBF kernel 
has less hyperparameters than the polynomial kernel which 
make it less complex in model selection; 3)   
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RBF kernel 2||)y-x||exp(-),( γ=yxK         (11) 
where Ci ≤≤ α0  is the maximal margin hyperplane in the H 
space. When the maximal margin hyperplane is found, only 
those points that lie closest to the hyperplane have Ci ≤≤ α0 , 
and these points are the support vectors. 
 

 
Figure 4. A linearly separable binary classification problem. 

The optimal hyperplane is with the maximum margin ε between 
the separating hyperplane and a hyperplane through the closest 
points of each of the two classes. These closest points are called 
the support vectors ( 1x and 2x are examples of support vectors). 
 
 

4. EXPERIMENT AND RESULT 

4.1 Experiment Setup 

The proposed spectral moment features are evaluated against 
the LBP and GLCM texture features on the multispectral data 
set discussed in section 2. The experiments are conducted in an 
open source SVM toolbox (SVMKM) (Rakotomamonjy et al., 
2008). For the decision function of SVM, two parameters γ and 
C are specified using a grid search scheme. The ‘one against 
one’ strategy is employed for multi-class classification. The 
training samples include 75 trees with 25 for each species. Two 
testing datasets were used for evaluation with 60 samples in 
each dataset. Totally 10 region feature descriptors are extracted 
from the segments (polygons), of which LBPs and GLCM 
texture features are extracted from grey channel which is 
derived by averaging the four spectral bands.  The LBP and its 
extensions are calculated in a 33×  neighbourhood. All the 
feature descriptors are extracted from the regions of interest 
(segmented tree crowns). Figure 5 shows an example of LBP 
texture feature extraction from tree crowns. The extraction of 
other feature descriptors also follows the same procedure. Table 
6 lists the evaluated features in the experiment, their 
abbreviations and feature dimensions.   
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(a) Original image   (b) region of interest  (c) LBP code image 

 
(d) LBP histogram on the region of interest 

Figure 5. Example of feature extraction from tree crowns 
 

Feature Abbr. Dimension 
Grey-level co-occurrence matrices GLCM 8 
Local Binary Pattern LBP 256 
Dominant Local Binary Patterns DLBP 205 
Uniform Local Binary Patterns ULBP 59 
Rotation-invariant Local Binary 
Patterns ri_LBP 10 

Spectral moments in RGB space m_RGB 12 
Spectral moments in CIR space m_CIR 12 
Spectral moments in RVI space m_RVI 4 
Spectral moments in NDVI space m_NDVI 4 
Spectral Moments in PVI space m_PVI 4 

Table 6. Evaluated features 
 
4.2 Results and Discussion 

The overall classification accuracy is obtained by comparing 
the classified data and the ground truth reference data. The 
overall accuracy is defined as: 

samplesofnumberTotal
spredictioncorrectofNumberAccuracy =        (12) 

Figure 6 compares the average classification accuracies in two 
datasets by using different feature descriptors. Classification 
accuracies in testing dataset1 using four central moments of 
RGB, CIR, RVI, NDVI and PVI spectral sub-space, LBP, 
uniform LBP, rotation-invariant LBP, DLBP and GLCM are 0.5, 
0.533, 0.65, 0.567, 0.533, 0.45, 0.45, 0.467, 0.383, and 0.5 
respectively. From the results we can see that the use of 
moments in spectral vegetation indices indicate higher 
classification accuracy than using original spectral bands and 

 the state-of-art texture descriptors. Similar results were 
obtained in dataset2 with the average classification accuracy of 
0.683, 0.717, 0.733, 0.717, 0.683, 0.733, 0.75, 0.617, 0.717, and 
0.717 respectively for the 10 feature descriptors. From the 
experiment, we can see that incorporating spectral vegetation 
index in moment feature extraction improved the classification 
accuracy and the spectral moments in RVI showed the best 
performance. 

 
Figure 8. Evaluation of feature descriptors on two testing 

datasets. The horizontal axis indicates the average classification 
accuracy and the vertical axis compares different features 

descriptors. 
 
Table 7 presents the average classification accuracies of the 10 
features per category. It is noted that the evaluated features 
have different discriminative powers for different tree species. 
Therefore, it would be interesting to investigate whether the 
integration of multiple features will improve the classification 
result and how to select and fuse different features. A possible 
solution is to use feature subspace selection methods such as 
principal component analysis (Lu et al., 2007) and  locally 
linear embedding (Roweis et al., 2001). These algorithms have 
been reported to be effective in reducing the dimensions of 
input space and achieving better performance which might be 
helpful when multiple features are used. 
 
Trees can often show different appearances in different seasons 
and even the same tree species may vary due to the their health 
status. Nevertheless, from our experiment we can conclude that 
the spectral moment fetures derived from spectral index maps 
have the potential to improve the accuracy in detailed 
vegetation mapping tasks. Our future work is to fuse multiple 
spectral and texture features to further improve the 
classification accuracy. 
 
 

 m_RGB m_CIR m_RVI m_NDVI m_PVI LBP ULBP ri_LBP DLBP GLCM 

Euc_Ter 0.725 0.675 0.65 0.8 0.65 0.375 0.375 0.325 0.35 0.4 
Euc_Mel 0.6 0.6 0.675 0.625 0.575 0.65 0.475 0.425 0.45 0.475 
Cor_Tes 0.45 0.6 0.75 0.5 0.6 0.75 0.95 0.875 0.85 0.95 

Table 7. Overall classification accuracies of 10 features per category 

 
5. CONCLUSION 

This paper evaluates the capability of spectral moment and 
texture features for object-based vegetation species 
classification. Totally 10 spectral and texture feature descriptors 

were evaluated using SVM by means of classification accuracy. 
The experimental results showed that spectral moment features 
has the potential to improve the accuracy in individual tree 
species classification from high resolution multispectral images. 

Category 
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The use of spectral moment in RVI indicates the highest 
classification accuracy in our experiment.  
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ABSTRACT: 
 
This paper reports on the empirical comparison of seven machine learning algorithms in texture classification with application to 
vegetation management in power line corridors.  Aiming at classifying tree species in power line corridors, object-based method is 
employed. Individual tree crowns are segmented as the basic classification units and three classic texture features are extracted as 
the input to the classification algorithms. Several widely used performance metrics are used to evaluate the classification algorithms.   
The experimental results demonstrate that the classification performance depends on the performance matrix, the characteristics of 
datasets and the feature used.  
 

                                                                 
*  Corresponding author.  This is useful to know for communication with the appropriate person in cases with more than one author. 

1. INTRODUCTION 

Vegetation management activities in power line corridors 
including tree trimming and vegetation control is a significant 
cost component of the maintenance of electrical infrastructure. 
Currently, most vegetation management programs for 
distribution systems are calendar-based ground patrol (Russell 
et al., 2007). Unfortunately, calendar-based tree trimming 
cycles are expensive. It also results in some zones being 
trimmed more frequently than needed and others not cut often 
enough. Moreover, it is seldom practicable to measure all the 
plants around power line corridor by field methods. Satellites 
and aerial vehicles can pass over more regularly and 
automatically than the ground patrol. Therefore, remotely 
sensed data have great potential in assisting vegetation 
management in power line corridors (Li et al., 2008). Remote 
sensing image classification is one of the key tasks for 
extracting useful information to assist power line corridor 
monitoring.   
 
Texture contains important information for image classification, 
as it represents the content of many real-world images. Texture 
feature extraction and classification have been intensively 
studied for interpreting vegetation properties from remote 
sensing imagery (Franklin et al., 2000, Coburn and Roberts, 
2004). Selection of appropriate texture measurements and 
classification algorithm are two critical steps in a texture 
classification problem. However, most previous research 
focused on how to representing texture in an image, few 
research verified the discriminatory power of different 
classification algorithms using these texture features. Lu and 
Weng reviewed a number of image classification techniques for 
improving classification performance and suggested that the use 
of multiple features and selection of suitable classification 
method are especially significant for improving the 
classification accuracy. However, no empirical comparison and 

quantitative results have been presented. It would be interesting 
to investigate which one have more impact on the classification 
results, the features or the classifiers? 
 
Machine learning techniques are now widely used in remote 
sensing classification. A machine learning algorithm is one that 
can learn from experience (observed examples) with respect to 
some class of tasks and a performance measure (Mitchell, 1997). 
Different performance metrics are often used and it is possible 
for one learning method to perform well on one metric, but be 
suboptimal on other metrics. For example, SVMs are designed 
to optimize accuracy, whereas neural networks typically 
optimize squared error or cross entropy (Caruana and 
Niculescu-Mizil, 2004). Moreover, in many applications 
Accuracy are used as the only measure to assess the 
performance of the built classifier. However, there are many 
other evaluation methods such as Precision/Recall and ROC 
analysis. We need to understand the advantage and 
disadvantage of these measures before using them for 
evaluation. Sometimes we may need to find tradeoffs on these 
methods and try to select a model that best suit the problem.  
 
The motivation behind this paper is to develop a better 
understanding of the machine learning process in object-based 
image classification, to evaluate the performance of different 
machine learning algorithms in a specific texture classification 
application, and to compare the results not only in terms of their 
classification accuracy but also the benefit and cost and some 
other properties such as computational cost. 
 

2. METHODOLOGY 

2.1 An overview of object-based image classification 

Since remote sensing images consist of rows and columns of 
pixels, conventional land-cover mapping has been based on a 
per-pixel basis (Mas et al., 2006). Unfortunately, classification 
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algorithms based on single pixel analysis often are not capable 
of extracting the information we desire from high spatial 
resolution images. For example, the spectral complexity of 
urban land-cover materials results in specific limitations using 
per-pixel analysis for the separation of human-made materials 
such as roads and roofs and natural materials such as vegetation, 
soil, and water (R.Jensen, 2005). We need information about 
the characteristics of a single pixel but those of the surrounding 
pixels so that we can identify areas (or segments) of pixels that 
are homogeneous. Object-based approaches become popular in 
high spatial resolution remote sensing image classification, 
which has proven to be an alternative to the pixel-based image 
analysis and a large number of publications suggest that better 
results can be expected (Blaschke, 2010).  

 
A typical object-based image classification consists of a three-
stage processing: image segmentation, object feature extraction, 
and pattern classification. Successful object-based image 
analysis results largely depend on the performance of image 
segmentation. Since we are going to classify the species among 
trees, tree crowns are the only image-objects of interest in our 
research. The aim of segmentation is, therefore, to detect and 
delineate all trees from images while eliminating other image 
regions. We have developed an automatic tree crown detection 
and delineation algorithm by utilizing spectral features in a 
pulse coupled neural network followed by post-processing 
using morphological reconstruction (Li et al., 2009). Although 
the automatic segmentation is satisfied from visual assessment, 
decomposition of tree clusters is occasionally poor. Since the 
main aim of this research is evaluate different machine 
classifiers, manual segmentation is used to minimize the 
influence of under-segmentation and over-segmentation. The 
background is removed and each tree crown is labelled with a 
unique label to identify the tree which is paired against 
individual tree species obtained from field surveys.  
 
2.2 Texture Feature Extraction Methods 

Texture patterns are defined as the characteristic intensity  
variations that typically originate from roughness of object 
surfaces (Davies, 2009). According to a recent review  texture 
feature extraction methods can be divided into three categories: 
statistical, structural and signal processing based approaches 
(Xie and Mirmehdi, 2009). In this paper, three widely used 
texture features are extracted from the segments (polygons) and 
then input to the classifiers: GLCM, Gabor wavelet features, 
and Uniform LBP. In this paper, all three texture features are 
extracted from grey channel which is derived by averaging the 
four spectral bands of the original image. 
 

GLCM: Grey-level co-occurrence matrices (GLCM) have 
been successfully used for deriving texture measures from 
images. This technique uses a spatial co-occurrence matrix that 
computes the relationships of pixel values and uses these values 
to compute the second-order statistics (Kubo et al., 2003). In 

this paper, we use mean and standard deviation of four 
measures from the grey-level co-occurrence matrices: energy, 
entropy, contrast, and homogeneity. The GLCM feature vector 
has 8 dimensions. 

Gabor Wavelet Features: 24 Gabor wavelet filters are 
employed with center frequencies [0.05, 0.4], 4 scaling factors, 
and 6 orientations at angles of 0 and 180 degrees to achieve 
optimal coverage in the Fourier domain. The mean and standard 
deviation of magnitude of each filtered image region are used as 
feature components. The feature vector has 48 dimensions.  

ULBP: Local Binary Pattern (LBP) is first proposed by 
Ojala et al. to encode the pixel-wise information in the texture 
images (Ojala et al., 2002). The LBP value for the centre pixel 
is calculated using the following equation: 

∑
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=

×−=
1

0
, 2)(

p

i

i
ciRP uuuLBP                    (1) 

where P is the total number of neighbouring pixels, R is the 
radius used to form circularly symmetric set of neighbours. In 
our experiment, we use the uniform LBP (ULBP) contains at 
most two bitwise (0 to 1 or 1 to 0) transitions The occurrence 
histograms of the ULBP are computed using 24,16,8=P , with 

3,2,1=R respectively, which is claimed to have the best 
performance of the local binary patterns in the experiments 
conducted by Ojala et al. (Ojala et al., 2002). The features are 
obtained by combining the three sets of features together. 
 
2.3 Machine Learning Algorithms 

During the past decades, a variety of machine learning 
algorithms have been proposed for classification tasks. 
Although the potential advantages and disadvantage of these 
techniques have been addressed in many published work, most 
of them are from the theoretical view under some assumption 
about data distribution, characteristics of the classification task, 
signal-to-noise-ratio, etc. In reality, these assumptions are often 
hard to be verified. Therefore, a practical solution for selecting 
an appropriate model for a given classification task is to 
experimentally compare these algorithms. In this paper, we 
compared seven widely used machine classifiers which are 
implemented in DTREG (Sherrod, 2009): K-Means Clustering, 
Linear Discriminant Analysis (LDA), Radial Basis Function 
Networks (RBFN), Multilayer Perceptron Neural Networks 
(MLPNN), Support Vector Machines (SVM), Single Decision 
Tree (SDT), and Decision Tree Forest (DTF). Only a brief 
introduction of these algorithms is presented in this section, and 
may safely be skipped by readers since they are all well known 
techniques. 
 

K-Means Clustering (KM): K-Means is a classic 
unsupervised clustering technique. When used for supervised 
classification, the model is built by minimizing the 
classification error (distances between the predicted cluster and 
the actual cluster membership.  In DTREG, the training is done 
by searching the optimal number of clusters and each category 
may have several corresponding clusters. 

Linear Discriminant Analysis (LDA) The basic idea of 
Linear Discriminant Analysis (LDA) is to find the linear 
combination of features (“linear transformation”) which best 
separate desired classes.  

Multilayer Perceptron Neural Networks (MLP): Neural 
networks are predictive models loosely based on the action of 
biological neurons. Artificial neural network usually refers to 
multilayer percetron neural network which is typically full-

Object 
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Figure 1 Framework of object-based image classification
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connected, three layers, feed forward, perceptron neural 
network.  

Radial Basis Function Networks (RBFN): The basic idea 
of RBFN is that a predicted target value of an item is likely to 
be about the same as other items that have close values of the 
predictor variables. A RBFN typically has three layers: an input 
layer for each predictor variable, a hidden layer that uses 
Gaussian function as radial activation function and an output 
layer that implements weighted sum of hidden layer outputs.  

Support Vector Machines (SVMs): The basic idea of SVM 
is to find an optimal decision function (a hyperplane) that 
separates clusters of vector in such a way that cases with one 
category of the target variable are on one side of the plane and 
cases with the other category are on the other size of the plane. 
The vectors near the hyperplane are the support vectors.  

Single Decision Tree (SDT): Decision tree is a binary tree 
structure whose internal nodes correspond to input patterns and 
whose leaf nodes are categories of patterns. The tree can be 
induced by iteratively splitting the dataset into subsets based on 
classes attributes. The decision tree assigns a pattern category to 
an input pattern by filtering the pattern from the root to the leaf 
in the tree.   

Decision Tree Forests (DTF): It is also known as Random 
Forests, which is an ensemble of tree-type classifiers. A 
decision tree forest grows a number of independent trees in 
parallel, and they do not interact until after all of them have 
been built. For classification, each tree in the DTF casts a unit 
vote for the most popular class at input, while the output of the 
classifier is determined by a majority vote of the trees.  
 
2.4 Performance Metrics 

Given a certain application, more than one method is applicable. 
This motivates evaluating the performance of these 
classification methods empirically in a specific application. 
That is, given several classification algorithms, how can we say 
one has less error than the others for a given application? 
Having selected a classification algorithm to train a classifier, 
can we tell an expected error rate with enough confidence that 
later on when it is used in a new dataset?  
 
In this section, we consider several most commonly used 
metrics for evaluating different classification algorithms: 
overall accuracy, precision/recall, F-measure, ROC analysis, 
and computational cost. All of these measures are based on the 
definition of a confusion matrix. An example of confusion 
matrix for binary classification is described in Table 1. To help 
the definition that follows, we define the following symbols: TP: 
True Positive count; FN: False Negative count; FP: False 
Positive count; TN: True Negative count.  
 
The overall accuracy is the simplest and most intuitive 
evaluation measure for classifiers. It is defined as  

NP
TNTP

samplesofnumberTotal
spredictioncorrectofNumberAccuracy

+
+

==  

It is worth noting that the overall accuracy does not distinguish 
between types of errors the classifier makes (i.e. False Positive 
versus False Negative) (Japkowicz, 2006). For example, two 
classifiers may obtain the same accuracy but they may behave 
quite differently on each category. If one classifier obtains 
100% accuracy on one category but only 41% on the other 
category, while another classifier generate 70% for each 
category, it is hard to claim that the first classifier is better. 
Therefore, overall accuracy may not be use blindly as the 
evaluation method for classifiers on a dataset. Precision and 

Recall can avoid the problem encountered by Accuracy. 
Precision can be seen as a measure of exactness or fidelity, 
whereas Recall is a measure of completeness. Their definitions 
are: )(Pr FPTPTPecision += , PTPcall =Re . Usually, 
Precision and Recall scores are discussed jointly and a single 
measure can be derived by combing both measures (e.g. F-
measure). F-measure is the weighted harmonic mean of 
precision and recall. In this paper, we use the 1F  measure in 
which the precision and Recall are evenly weighted. It is 
defined as: 

callecision
callecisionF

RePr
RePr21 +
⋅

⋅=  

The goal of Precision/Recall space is to be in the upper-right-
hand corner, which means that the higher value of 1F  measure, 
the better classifier’s performance.  

Table 1 A confusion matrix 
Predicted  Actual Category 
Category Positive Negative 
Positive TP FP 
Negative FN TN 

 P=TP+FN N=FP+TN
 
Precision and Recall do not judge how well a classifier decides 
that a negative example is, indeed, negative. Receiver 
Operating Characteristic (ROC) analysis can solve both the 
problems of Accuracy and Precision/Recall. ROC analysis plots 
the False Positive Rate (FPR) on the x-axis of a graph and True 
Positive Rate (TPR) on the y-axis. TPR is equal to Recall and 
FPR is defined as NFPFPR = . An ROC graph depicts 
relative trade-offs between true positive (benefits) and false 
positive (costs), and the goal in ROC space is to be in the 
upper-left-hand corner (Davis and Goadrich, 2006). The (0,1) 
point of the ROC space is also called a perfect classification. 
The diagonal line from the left bottom to the right top corner is 
also called the random guess line, which can be used to judge 
the whether it is good or bad classification. Points above the 
random guess line indicate good classification results, while 
points below the line are considered as bad classification results. 
In this paper, we calculate the distance of the each point and the 
(0,1) point and rank it. The shorter the distance, the better the 
classification is.      

 
Figure 2 Illustration classifier evaluation in ROC space 

Computational costs of the classification algorithms also need 
to be considered in a real-world problem. Although in most 
remote sensing image classification tasks real-time processing 
is not required, it is certainly not unnecessary to choose a 
computational efficient classification algorithm. In this paper, 
we compare the computation cost of different machine learning 
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algorithms by recording the analysis time in both training and 
testing stages. 

 
3. EXPERIMENT AND DISCUSSION 

3.1 Data Collection  

The experiment dataset used in this research were collected in 
rural Queensland Australia in October 2008 for research into 
vegetation management in power line corridors. The reason 
why we need species information of individual trees is that 
vegetation management in power line corridors is based on their 
potential risks to power lines. Some tree species are of 
particular interest and are generally categorized into undesirable 
and desirable species. For example, species with fast growing 
rates and that also have the potential to reach a mature height of 
more than four meters are defined as undesirable species. These 
undesirable species often pose high risks to power lines and 
therefore should be identified and removed. The images were 
captured in a 1.8 kilometres corridor by a high resolution 3-
CCD digital multi-spectral camera mounted on fixed wing 
aircraft. Figure 3 shows a mosaic of the test area generated from 
aerial images acquired from the trial. The spatial resolution of 
the captured images is about 15cm. The ground truth data of 
vegetation species were obtained from a field survey with 
domain experts’ participation. 

It should be noted that classifying all types of species in power 
line corridors requires significantly more resources than are 
currently available, however, classifying species in a given test 
area as a proof of concept is possible. In this research, we focus 
on three dominant species in our test field: Eucalyptus 
tereticornis, Eucalyptus melanophloia, and Corymbia tesselaris. 
We abbreviate the species names to Euc-Ter, Euc-Mel and Cor-
Tes. Through field survey with botanist’s participation, 121 
trees were selected and labelled for the experiment with 64 Euc-
Ter, 30 Euc-Mel and 27 Cor-Tes. The criterion is that tree 
crowns are big enough so that they can be visually identified 
from the aerial images. Visual classification of these species 
often uses features such as leaf shape and bark type which are 
not available from the data used. However, texture analysis can 
be very useful to identify these species from digital imagery. 

 
Figure 3 Experiment test site 

 
3.2 Results and Discussion 

To evaluate the performance of different machine learning 
algorithms in texture classification, we use the implementation 
of these algorithms in DTREG. For all classifiers the default 
setting of DTREG is used. V-fold cross validation technique is 
employed in the experiment, and 10 folders were selected for 
the cross validation. The dataset is partitioned into 10 groups, 
which is done using stratification methods so that the 
distributions of categories of the target variable are 
approximately the same in the partitioned groups. 9 of the 10 

partitions are collected into a pseudo-learning dataset and a 
classification model is built using this pseudo-learning dataset. 
The rest 10% (1 out of 10 partitions) of the data that was held 
back and used for testing the built model and the classification 
error for that data is computed. After that, a different set of 9 
partitions is collected for training and the rest 10% is used for 
testing. This process is repeated 10 times, so that every sample 
has been used for both training and testing. The classification 
accuracies of the 10 testing datasets are averaged to obtain the 
overall classification accuracy. 
  
Table 2 summarizes the overall classification accuracy of each 
machine classifier on the three feature vectors respectively. As 
is shown in the experimental results, of the seven methods 
investigated in this paper, the left three (KM, LDA and RBFN) 
show relatively low overall classification accuracy, whereas the 
MLP SVM classifiers generate higher accuracy on all three 
features.  It is also noted that the SDT and DTF methods also 
give relatively good results when using Gabor and ULBP 
features, however, the classification accuracy drop off 
considerably when using GLCM features.  
 
We also compare the average 1F  measure of three categories 
from different classification algorithms (Figure 4). As discussed 
in the previous section, a higher value of 1F  measure indicates 
a better classifier. From the figure it is clear that MLP and SVM 
generally perform well for all three features, while the 
performance of other classifiers largely depends on the data 
used. For example, RBFN obtains reasonable result for Gabor 
and ULBP features but generates terrible result when using 
GLCM feature.    

 
Figure 4 Average F1 measure of different classifiers 

  
Figure 5 presents the analysis results of different classification 
algorithms for three texture features in ROC space. The plots of 
different algorithms use different markers specifiers, and within 
which the three categories are shown as different colours. 
Different from the analysis results of using overall accuracy and 

1F  measure (Precision/Recall), ROC space provide more 
details of the classifier performance. As we can see from the 
figures, the performance of the classifier depends on the 
category and the feature used. By calculating the distance of 
points to the upper-left-corner point (point (0,1) in ROC space), 
the performance of the classifiers is ranked. From the 
experimental results, most classifiers perform the best for 
classifying Cor-Tes. The MLP classifier with ULBP features, 
the KM classifier with GLCM features, and the KM classifier 
with ULBP features obtained the best performance for 
classifying Euc-Ter, Euc-Mel and Cor-Tes respectively. The 
analysis result from ROC space is different from that derived 
from overall Accuracy and average 1F  measure, where SVM 
and MLP are supposed to be superior to other classifiers.   
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Table 2 Comparison of the overall classification accuracies 

 KM LDA RBFN MLP SVM SDT DTF 

GLCM 55.37 64.46 62.81 69.42 69.42 58.68 56.20 
Gabor 65.29 62.81 57.02 71.90 71.07 71.90 71.07 
ULBP 69.42 50.41 52.89 72.73 71.07 66.12 71.07 

Table 3 Comparison of the computational costs (in seconds) 
 

KM LDA RBFN MLP SVM SDT DTF 

GLCM 2.64 0.23 43.53 2.72 22.89 0.3 0.55 
Gabor 44.06 0.47 139.14 5.81 15.97 0.56 1.13 
ULBP 385.97 7.41 113.19 136.41 230.93 2.53 2.31 

 
Table 3 compares the computational cost of each machine 
classifier on the three feature vectors respectively. The analysis 
time is recorded by DTREG software under a desktop PC 
configuration of core duo 2.66GHz CUP and 2GB memory. 
From the results, we can see that the analysis time varies a lot 
for each machine classifiers and feature vectors. Overall, LDA, 
SDT and DTF are very computational efficient, whereas RBFN, 
MLP and SVM are computational much more intensive. It 
should also be mentioned that with the dimensions of feature 
vectors increase, the computational cost increase considerably 
(The dimensions of GLCM, Gabor and ULBP are 8, 48 and 607 
respectively). For example, the analysis time of KM algorithm 
increase considerably when using ULBP feature.  
 
From the evaluation results, it is noticed that: 1) The selection 
of an approriate performance metrix is critical to evaluate the 
discriminatory power of different classifiers. Simply choose 
accuracy as the only measure often cause some misleading 
evaluation results. ROC analysis provide more details about the 
benefit and cost of a classifier. 2) The classification 
performance not only depends on the discriminatory power of 
classifiers but also the characteristics of datasets and the 
feature(s) selected. The evaluation results suggest to select 
approprate feature and classification algorithm for different 
categories. For example, to classify Euc-Ter the MLP classifier 
and ULBP feature are suggested. 3) Choosing a ‘best model’ is 
a complex issue and need to consider many factors such as the 
tradeoff between discriminatory power and computational cost. 
4) Overall, the classification accuracies of all classifiers and 
texture features are not as good as expected. Trees can often 
show different apperances in different seasons and even the 
same tree species may vary due to the their health status. 
Nevertheless, using texture feature and machine learning 
techniques has shown the potential in analyzing vegetation in 
power line corridors by means of digital remote sensing 
imagery.  
 

4. CONCLUSION 

This paper evaluates the capability of seven machine learning 
algorithms and 3 texture features by means of classifying 
vegetation species in a power line corridor using high resolution 
aerial imagery. Object-based method is employed that local 
texture features are extracted from image-objects (i.e. tree 
crowns) and the classification is done in object feature space. 
Several performance matrixes are used to evaluate the 
performance of classifiers. The experimental results showed 
that the classification performance depends on the performance 
matrix, the characteristics of datasets and the feature(s) used.  

 

 
(a) GLCM feature 

 
(b) Gabor feature 

 
(c) ULBP feature 

Figure 5 The analysis results in ROC Space 
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ABSTRACT:

The objective of this work was to evaluate the potential use of the Multiple Endmember Spectral Mixture Analysis (MESMA) when
applied to EO-1 Hyperion hyperspectral data to discriminate land covers in the southern state of Rio Grande do Sul, Brazil. The
methodology involved: (a) pre-processing and atmospheric correction of Hyperion data; (b) sequential use of the Minimum Noise
Fraction (MNF), Pixel Purity Index (PPI) and n-Dimensional Visualizer techniques in the 454-2334 nm range for the initial selection
of a general group of endmember candidates (first spectral library) and of another group of pixels to be used for model validation; (c)
use of the Visualization and Image Processing for Environmental Research Tools (VIPER Tools) to perform the final selection of
endmembers based on the first spectral library and to obtain MESMA models; and (d) evaluation of resultant fraction images and
root mean square error (RMSE) values to determine the optimal number of components of the MESMA model. Results showed that a
four-endmember MESMA model (soil = dunes and dry fields; green vegetation = pinus, eucalyptus and grasslands; water = without
sediments, with sediments, and with chlorophyll; and shade) adequately described the diversity of the scene components, including
that of materials within the same class (e.g., pinus and eucalyptus) and produced the largest fractions and the lowest RMSE values on
a per-pixel basis. Results demonstrated the potential use of the MESMA with EO-1 Hyperion hyperspectral data to discriminate land
covers in the coastal plains of Rio Grande do Sul, even considering the low signal-to-noise ratio of the instrument, especially in the
shortwave infrared range.

1. INTRODUCTION

Numerous techniques for the classification of orbital images
have been used in the extraction of land surface data (land
covers and land use, for instance). Multispectral sensors such as
the Enhanced Thematic Mapper (ETM+, Landsat 7) with 8
spectral bands are generally used in such studies. However,
these sensors do not allow for a more detailed study of the
spectral behavior of the targets.

On November 21st, 2000, the Hyperion sensor was launched
aboard the National Aeronautics and Space Administration’s
(NASA) Earth Observing-1 satellite (EO-1), becoming the first
hyperspectral sensor to operate from the Earth’s orbit. With 242
spectral bands laid out between 0.4 and 2.5 µm, the sensor
enables the extraction of a practically seamless detailed
reflectance spectrum for each scene element (pixel) in the image
(Goodenough et al., 2002; Galvão et al., 2005).

On the other hand, the spectral response of a pixel is, in fact, the
integrated sum of the spectral response of the scene components
as registered in the field of view of the sensor (Instantaneous
Field of View - IFOV) such as those of the soil, vegetation,
water and of the shade projected on the land, as well as
atmospheric contributions (Shimabukuro and Smith, 1991).

In order to identify the ratio of the different materials that
comprise a pixel, one can use models which decompose the
pixel into its pure components or endmembers. The Spectral

Mixture Analysis (SMA) (Smith et al., 1985) is a digital image-
processing tool that can separate the relative ratio of each
material within a pixel by using a set of pure components of the
image (Pereira et al., 1998). Nevertheless, the SMA fails in that
it considers all pixels to be a mixture of a single initial set of
endmembers, thereby possibly allowing a pixel to be modeled
by endmembers which might not actually be present therein.

In order to correct such error, the Multiple Endmember Spectral
Mixture Analysis model (MESMA) (Roberts et al. 1998a) was
proposed as it allows the number and type of endmembers, as
well as their prevalence, to vary from pixel to pixel and
establishes the best-fit mixture model for each pixel
individually.

In this context, the objective of this research was to assess the
potential of the data deriving from the Hyperion orbital sensor
and from the MESMA model for the discrimination of land
cover classes in the Coastal Plains of Rio Grande do Sul.

_________________________________________________________________________________________________________________________________________________________________________________________________________
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2. MATERIAL AND METHODS

This study used an EO-1 Hyperion stock image, level L1R
(USGS), which was acquired on May 2nd, 2004 and depicts the
northern area of the Coastal Plains of Rio Grande do Sul (Figure
1).

Figure 1. Location of the study area

In order to identify the type of materials present in the scene and
characterize land cover classes and subclasses, two two ground
truth measurements took place in 2007.

The stages of the preprocessing of Hyperion data involved:
correction of anomalous pixels (stripes) by interpolation;
exclusion of the bands which had no data of the L1R product
and which were positioned around the atmospheric absorption
bands (1,400 nm and 1,900 nm); conversion of data into surface
reflectance values through the use of a radiative transfer model
based on the MODTRAN-4; and image georeferral using a
GeoCover image of the study area as the reference.

The Minimum Noise Fraction (MNF), the Pixel Purity Index
(PPI) and the n-Dimensional viewer processing sequence was
applied over the 143 bands selected from the 454 to 2334 nm
interval in order to compose the first spectral library and
generate a group of samples for the validation of the results
obtained by MESMA.

For the selection of the most representative spectra of the first
spectral library, the following metrics were used: EAR
(Endmember Average RMSE), MASA (Minimum Average
Spectral Angle) and CoB (Count Based Endmember Selection),
all included in the VIPER (Visualization and Image Processing
for Environmental Research) Tools program (Roberts et al.,
2007). The spectra that had the best performance in each metric
were selected to generate the second spectral library.

From this second spectral library, the two, three and four
endmember MESMA models were applied to the Hyperion data

using the “Run SMA/MESMA” module of VIPER Tools.
Restriction parameters required by the program regarding the
type of shade (photometric or non-photometric), minimum and
maximum fractions of the non-shade component, maximum
shade fraction, and maximum RMSE allowed are all shown on
Table 2.

Shade Photometric
Minimum Allowable Fraction -6%
Maximum Allowable Fraction 106%
Maximum Allowable Shade Fraction 80%
Maximum Allowable RMSE 0,025
Residual Threshold 0,025
Number of Contiguous Bands 7

Table 2. Parameters used in the “Run SMA/MESMA” module
of the VIPER Tools for the application of the MESMA models.

In order to generate the fraction image for each subclass
represented in this study as well as a classified image, a MatLab
routine was developed, in which the subclass with the greatest
ratio was attributed to the pixel.
The accuracy assessment was obtained in relation to the “pure”
pixel demixing (Validation Sample) resulting from the PPI
process. Thus, the fractions produced by each model for each
subclass were compared in relation to the RMSE produced so as
to assess the performance of the MESMA mixing models.

3. RESULTS AND DISCUSSION

3.1. Components of the Scene

Lacustrine wetlands are the most present elements in the study
area (Figure 3), accounting for approximately 50% of it.
Basically, three distinct shades of water were identified and
labeled in this study as follows: water with sediments, water
without sediments and water with chlorophyll. Current land use
is dominated by rice crops and pinus and eucalyptus plantations
in small and mid-sized properties. The open field areas are
composed of low vegetation, namely grasslands, identified by
the bright green shades located among the lacustrine wetlands
spread across the image. The dry field areas are characterized
by disperse dry vegetation made up of dry pinus branches and
rice straw. Finally, a small lot of the urban area of Tramandaí
can be seen between the Lagoa das Custódias and Lagoa do
Armazém.
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Figure 3. Normal color composition with bands positioned at
638 nm (red), 546 nm (green) and 465 nm (blue). Main

components of the scene are highlighted

3.2. First Spectral Library and Validation Sample

In total, 14,101 pixels were selected as endmember candidates
by the PPI technique (6.12 % of the imaged area), applied over
the 9 first MNF components. Those pixels occurred especially
in portions of the scene of 8 subclasses related to three main
classes (water, vegetation and soil): water with sediments, water
without sediments and water with chlorophyll (water); pinus,
eucalyptus and grasslands (vegetation); and dunes and dry fields
(soil).

The number of “pure” pixels selected manually from the
Hyperion image, with the aid of the n-Dimensional viewer to
compose the first spectral library and the validation sample is
shown on Table 4.

Classes Subclasses

Number of
pixels

(1st Spectral
Library)

Number of
pixels

(Validation
Sample)

water with
sediments 105 80

water without
sediments 105 80Water

water with
clorophyll 105 80

pinus 105 80
eucalyptus 105 80Vegetation
grasslands 105 80

dunes 105 80Soil
dry fields 20 80

Total of pixels 755 640

Table 4. Classes, subclasses and number of pixels selected to
compose the First Spectral Library and the Validation Sample,
resulting from the sequential application of MNF, PPI and n-

Dimensional viewer techniques

3.3. Second Spectral Library

Using the EAR, MASA and CoB metrics, 23 spectra were
selected from the first spectral library. Those endmembers
corresponded to the most representative spectra of each
subclass, that is, those which presented the lowest RMSE
(EAR) and spectral angle and the highest CoB index when
modeling the same subclass.

The spectra which presented the best performance in each
metric (EAR, MASA and CoB) were selected for each subclass.
Therefore, each subclass received three representing spectra
(endmembers), except the dune subclass, which, due to the low
CoB index produced, had its spectrum selected by the EAR and
MASA techniques only.

3.4. MESMA spectral mixture models

The performance result of the 2, 3 and 4 endmember models
generated from the second spectral library (Table 5) can be
observed in Figure 6. The 4 endmember models obtained the
lowest RMSE and the largest fraction when modeling “pure”
pixels in the validation sample.

Number of
endmembers 1st endmember 2nd endmember 3rd endmember 4th endmember Number of

models
2 water/vegetation/soil shade 23
3 water/soil vegetation shade 126
4 soil vegetation water shade 405

Table 5. Number of MESMA models generated from the 2nd spectral library for performance assessment.
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Figure 6. Result obtained by the 2, 3 and 4 endmember
MESMA models on the validation sample

Approximately 85% of the Hyperion image was modeled by the
4 endmember MESMA, which corresponds to 195,725 pixels
(a total of 230,400 pixels). Most pixels of the water, dry field,
pinus, grasslands and eucalyptus subclasses were properly
modeled and classified. The dune subclass only had 46.25 % of
its sample modeled (Table 7).

Classes Subclasses % modeled
Water with Sediments 100,00%

Water without Sediments 100,00%Water
Water with Clorophyll 100,00%

Pinus 100,00%
Eucalyptus 100,00%Vegetation
Grasslands 97,50%
Dry Fields 100,00%

Soil
Dunes 46,25%

Table 7. Result obtained by the 4 endmember MESMA model
on the validation sample

The RMSE image indicated that the most significant mistakes
were produced by MESMA when modeling grasslands and
dunes due to the high spectral variation of those targets. With
the aid of histograms of the fraction images of each subclass, it
was found that most of the pixels of the Water Body Class were
modeled with fractions superior to 90%. In the Vegetation
Class, the average fractions produced varied between 60%
(grasslands) and 90% (pinus and eucalyptus). The Soil Class
presented the smallest fraction values, with approximately 50%
for the dry field subclass. The dune subclass had a practically
linear distribution, with intervals between 20% and 104%.

The final classification (Figure 8) obtained from the land
vegetation and water fraction images depicts the spatial
distribution of the eight subclasses presented in this study. It
was observed that some areas that actually corresponded to the
cultivation of eucalyptus were erroneously classified as pinus,
yet the opposite did not occur. For the water classification, the
result seems to be consistent with the normal color image in
Figure 3. Nevertheless, in shallow waters (margins), there was a
slight confusion between the subclasses Water with Sediments
and Water with Chlorophyll, mainly due to the background
effect. Similarly to what happened in the validation samples,
dune-covered areas were mostly not modeled. The urban area,
which was not represented in the mixing models, was partially
modeled as dry field (soil).

Figure 8. Result obtained by the 4 endmember MESMA model.
Image classified from the component with the highest fraction

4. CONCLUSIONS

When applied over a Hyperion image and over the validation
sample, the 4 endmember MESMA model (soil = dunes and dry
field; green vegetation = pinus, eucalyptus and grasslands;
water = with sediments, without sediments and with
chlorophyll; shade) properly described the diversity of the scene
components, including that of materials within the same class
(e.g.: pinus and eucalyptus).

The Fractions produced by the MESMA models when modeling
“pure” pixels corresponded to the expected values, mostly
reaching fractions above 90% with low RMSE.

The results, as a whole, demonstrate the potential of the
application of the MESMA model with EO-1 Hyperion sensor
hyperspectral data, even considering the low signal-to-noise
relationship of the instrument, especially in the SWIR.
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ABSTRACT: 
 
Road surfaces are seriously disturbed by a variety of noises on the very high resolution (VHR) remotely sensed imagery in urban 
areas, e.g., abrupt geometric deformation and radiometric changes caused by sharp turning, shadows of tall buildings, and 
appearance of vehicles, which leads to frequent failures for most of current road tracking methods. In this paper, a semi-automatic 
method is proposed for urban road tracking on VHR imagery. Initially, a human operator inputs three seed points on a selected road, 
and then necessary information, such as road direction, road width, start point, and a reference template, is automatically derived. 
The automatic tracking is consequently triggered. During the process, the reference template is moved to generate several target 
templates. For each target template, a binary template is derived by classifying the target template using support vector data 
description (SVDD). Subsequently, region adjacency graphs (RAG) is used to eliminate the small disturbing features on the road 
surfaces in each binary template, which is helpful to search the optimal road centerline points. The above tracking process is 
repeated until a whole road is completed. Two VHR images were used for the test. The preliminary results show that our method can 
extract roads more robustly than existing least-squares template matching method in urban areas.  
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1. INTRODUCTION 

The increasing availability of commercial very high resolution 
(VHR) satellite imaging sensors such as QuickBird, GeoEye-1 
and TerraSAR, demands the availability of suitable automatic 
interpretation tools to extract and identify cartographic features 
(Lin et al., 2009). Roads are one of the most important 
cartographic features, and automatic extraction of them is 
meaningful for various applications such as Geographic 
Information System (GIS) database updating, transportation 
analysis and urban planning (Huang and Zhang, 2009). 
Nevertheless, attempts on developing fully automatic road 
extraction method for VHR digital imagery have been made for 
decades (e.g. Hinz and Baumgartner, 2003; Song and Civco, 
2004; Jin and Davis, 2005). It still involves several major 
scientific and technical challenges (Mena, 2003). Therefore, 
despite a lot of research work on fully automatic approaches 
for road extraction, the desired high level of automation could 
not be achieved by now and even in the near future 
(Baumgartner et al., 2002). One more practical solution to this 
problem is to adopt a semi-automatic approach that retains the 
“human in the loop” where the computer vision algorithms are 
used to assist human extracting the roads (Zhou et al., 2006). 
Currently, dozens of semi-automatic methods are proposed for 
road extraction from VHR imagery, and many of them reach 
various levels of success. In general, these semi-automatic 
approaches may be grouped into two categories: path 
optimizers and road trackers or path finders (Amo et al., 2006). 
A path optimizer is applied to determine an optimal trajectory 
between manually selected seed points, and it is often realized 
by improving the dynamic programming and snakes or active 
contour model (Gruen and Li, 1997) for VHR images. In these 
models, geometric and radiometric characteristics of roads are 
integrated by a cost function or an ‘energy’ function, and then 

the road extraction is equivalent to seeking the global energy 
minimum. Amo et al. (2006) improved the active contour 
model by the region competition algorithm to extract the 
ribbon roads on aerial images. Dal Poz and do Vale (2003) 
made a modification of merit function of the original dynamic 
programming approach, which is carried out by a constraint 
function embedding road edge properties. However, it is hard 
to define the reasonable ‘energy’ function for each road on 
each VHR image. 
Compared to the path optimizers, path finders are more popular. 
A path finder is an iterative line growing process: it often starts 
with some seed points, then the local information is used to add 
new segments into the road network based on the pixel 
intensities of the image, and typically a human operator is 
needed to help the path finder go through the various types of 
image noises such as cars and shadows. For example, 
McKeown and Denlinger (1988) described one of the most 
general road finder based on the cooperation between the 
intensity profile correlation of road cross sections and road 
edges following. Vosselman and Knecht (1995) imposed the 
profile matching by using least squares template matching and 
Kalman filter. Baumgartner et al. (2002) also presented a 
human-computer interactive prototype system by the above 
method. Similarly, Zhou et al. (2006) used two profiles, one 
perpendicular to road direction and the other parallel to road 
direction, to enhance robustness of the tracker and applied 
extended Kalman filter and particle filter to solve profile 
matching issues for road tracking. Slightly different from the 
above methods; Kim et al. (2004) employed a rectangular 
reference template of road surfaces to track roads by least 
squares template matching, and road path is modelled as 
similarity transform; Hu et al. (2004) presented a road finder 
using a piecewise parabolic model and least-squares template 
matching; Zhou et al. (2007) utilized one on-line learning 
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method based on the principle of one-class support vector 
machines (SVMs) to find the optimal matched template in road 
tracking; and Lin et al. (2009) described a road finder by both 
tracking the lane markings and road surfaces based on least-
squares template matching. However, most of the above road 
finders fail when they encounter the road intersections. 
Another road finder presented by Hu et al. (2007) can well 
extract the intersections besides the general roads, and it 
employed a spoke wheel operator to obtain the road footprints. 
Despite most of the above road finders perform well on some 
kinds of roads or intersections such as highways or rural roads 
where the road surfaces are relatively homogenous on VHR 
images, they often failed to extract the roads where the surfaces 
suffer from abrupt geometric deformation and radiometric 
changes caused by sharp turning, shadows of tall buildings, and 
appearance of vehicles etc. 
How to decrease the negative effects of various types of image 
noises is a key step to increase the robustness of a path finder. 
Actually, most of existing path finders, such as McKeown and 
Denlinger’s one (1988),  make use of least-squares template 
matching in searching an optimal road centreline point, but this 
type of method, using the squared sum of the grey value 
differences as a measure, is easily impacted by the image 
noises mentioned above. In this case, new features of roads 
should be selected and utilized. For example, Zhao et al. (2002) 
utilized the template matching on a classified image in a semi-
automatic road tracking system, and Lin et al. (2009) proposed 
a novel road signature measure called “parallelepiped angular 
texture signature” to semi-automatically track roads based on 
the unique characteristic of roads on a classified sub-windows. 
It is testified that the supervised classification can indeed 
provide a novel feature for road tracking. However, most of the 
existing conventional supervised classification analyses may 
depict multiple classes including buildings, water, trees etc. 
besides the roads and they assume implicitly that the set of 
training sample for each class is large enough (Foody et al., 
2006). However for road tracking application, our interest is 
only focused on just one specific class, road, and the training 
set size is not large enough in road mapping. Recently, 
statistical learning theory and one-class SVMs have been used 
in road extraction from VHR images, e.g., Zhou et al.’s method 
(2007) mentioned above. The support vector data description 
(SVDD) is a one-class classifier based on the principles of the 
SVM, and it provides a very simple to use supervised 
classification analysis that requires only the training data for 
the class of interest (Sanchez-Hernandez et al., 2007). 
Moreover, the accuracy of SVDD classification was 
considerably higher than that derived from a conventional 
multi-class parametric classification (e.g., Maximum 
Likelihood) and popular alternatives (e.g. feedforward neural 
networks) (Sanchez-Hernandez et al., 2007).  
In this paper, SVDD is employed to track road on VHR images 
for the first time. Particularly, once training samples are 
provided from the reference template derived from road 
initialization, SVDD is trained and used to identify road pixels 
in sub-windows generated in moving of reference template, and, 
subsequently region adjacency graphs (RAG) is employed to 
eliminated the image noises contained by road surfaces in the 
classified sub-windows, and template matching is utilized to 
determine the optimal road direction for road tracking.  
 
 

2. RELATED COMPUTER ALGORITHMS 

One-Class Classification by SVDD 
Road is the only specific class of interest in road mapping from 
VHR imagery, and a range of approaches exist to classify a 
specify class of interest, including reconstruction methods (e.g. 
Pizzi et al., 2001), density methods (e.g. Fumera et al., 2000), 
and boundary methods (e.g. Zhou et al., 2007). However, 
reconstruction methods and density methods require extensive 
knowledge and large amount of information about the data set 
of interest. Fortunately, boundary methods are more feasible in 
that they do not require the extensive knowledge of the data set, 
as they concentrate on the boundary that fits around the class of 
interest (Tax, 2001). This benefit makes the boundary methods 
very attractive to use in remote sensing applications (Sanchez-
Hernandez et al., 2007). Boundary methods are largely based 
the statistical learning method (Vapnik, 1995) and the 
principles of SVMs (Song and Civco, 2004), and the recently 
developed SVDD is comparable to SVMs. The basic idea of 
SVMs  binary classifier that seeks to fit an optimal separating 
hyperplane or decision boundary between the classes; however, 
the SVDD searches for a closed boundary around the training 
data, namely a hypersphere, instead of looking for a hyperplane 
(Tax and Duin, 2004). 

The hypersphere may be defined by 2),( RORF = , where 

O  is the centre  and R  is the radius. Therefore, the problem 
SVDD attempts to solve is to find the hypersphere with the 

constraints that all the training data ix  are within 2R . Figure 
1 shows the geometrical interpretation in a two dimensional 
case. The problem can be formulated as follows: 

Minimize )),(( 2RORF =  

subject to .,|||| 2
ii ROx ∀≤−           (1) 

In order to allow the possibility of outliers in the training set, 
the distance from ix  to the center O  should not be strictly 

smaller than 2R  but larger distance should be penalized. In 
this sense, slack variables 0≥iε must be introduced into the 
error function and, correspondingly, the above optimization 
problem changes into: 

Minimize )),,(( 2 ∑+=
i

iCRORF εε  

subject to iiii ROx ∀≥+≤− ,0,|||| 2 εε     (2) 

where C  is a known and given coefficient that makes a trade-
off between the volume of the description and the 
misclassification errors. 
Using the technique of Lagrange multipliers, this optimization 
problem can be formulated into the following quadratic 
programming problem: 

εγα ,,, OR
MinMax −+= ∑

i
iCRORL εεγα 2),,,,(  

)}||||2||(||{ 222 OOxxR iii
i

i +⋅−−+×∑ εα

i
i

iεγ∑−  
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 subject to 0≥iα , 0≥iγ , 1=∑ iα , O =∑
i

ii xα , C -

iα - iγ =0, i∀ .      (3) 

where iα , iγ  are Lagrange multipliers respectively, and 

εγα ,,, OR
MinMax  means ),,,,( εγαORL  should be minimized 

with respect to R , O , ε  and maximized with respect to 
α ,γ .  Substituting the last three constraints into the target 
function will give the following simplified formula: 

Maximize )()(
,

jij
ji

iii
i

i xxxxL ⋅−⋅= ∑∑ ααα  

subject to Ci ≤≤α0 , 1=∑ iα , i∀     (4) 

Note that the magnitude of the Lagrangian multiplier iα  
varies with the position of the case relative to the hpersphere. 
Figure 1 shows a case within the hypersphere where iα =0; a 

case on the hypersphere boundary where 0< iα < C ; and a 

case outside the hypersphere where iα = C . Moreover, only 

the samples with 0< iα < C  are the support vectors of the 
description (Sanchez-Hernandez et al., 2007), which are 
essential for the calculation of the optimal hypersphere with 
centre O  and radius R .  
The solution of SVDD is given by: 

O =∑
i

ii xα .       (5) 

While the decision function for the SVDD classification is 
given by: 

2||||)( Oxxf −= 2R≤      (6) 
For the non-linear case, as with SVMs, noticing the training 
data appeared in the optimization problem in the form of dot 
products, a mapping φ  of the data using the kernel functions 
(Commonly-used kernel functions refer to Song and Civco, 
2004) may be firstly denoted as: 

)()(),( jiji xxxxK φφ ⋅= .      (7) 

 

(a)         (b) 
Figure 1. Support vector data description. (a) Hypersphere con-

taining the target data. The shaded objects on the edge of the 
sphere are the support vectors. (b) Magnitude of the two La-
grange multipliers for cases inside, on the boundary, and out-

side the hypersphere. 
 
In this paper, a human operator will provide the training data 
for the SVDD classifier by a reference template, as being 
introduced in the next section, and the classification will be 
performed on a patch of the image. Moreover, in the SVDD 
classification, the polynomial-degree function kernel of free 

parameter value two and C = 0.01 was selected as done by 
(Sanchez-Hernandez et al., 2007).  
Noise Removal by RAG 
The above SVDD classification procedure produces a patch of 
binary image, which labels pixels belonging to road class as 1 
while the other non-road pixels as 0. Some parts of road 
surfaces may be misclassified into non-road class due to the 
various types of image noises such as occlusions of vehicles, 
shadows of trees and buildings, as shown in Figure 3. If we 
suppose that any image primitives, belonging to non-road class, 
contained in road class polygons are road class primitives, 
these primitives should be reclassified into road class. Herein, 
RAG, as shown in Figure 3, is employed to do the topological 
analysis and reclassify the noises on road surfaces into road 
class, which will significantly decrease the side-effects of the 
image noises. Figure 3 illustrates that the road surfaces are 
dilated and the noises are eroded after the RAG analysis, which 
decrease the negative effects of noises. 
 
 

3. SYSTEM FRAMEWORK 

In our semi-automatic system, a human operator is required in 
the road extraction process where computer algorithms are 
utilized to assist the operator performing measurement tasks. 
From the user’s point of view, the procedure is as follows: the 
operator first inputs three seed points that detect a short 
segment of a road which serves as initialization for computer 
algorithms, and then the proposed algorithms are launched and 
automatically track the road axis as long as possible. Whenever 
the internal evaluation of the algorithms indicates that the 
tracker might have lost the road centreline, the system needs 
intervention of the user. Then the operator has to confirm the 
path finder (tracker) or he/she must edit the extracted road and 
put the tracker back the road again. Concretely, the system is 
based on the following road model and the main procedures.  
Suppose a road model is represented as a queue of road 
centreline points that is denote as: 

),,{( 000 θyx , ),,( 111 θyx ,K , ),,( iii yx θ ,K , )},,( nnn yx θ  

where ),( ii yx  are the planar coordinates of the ith road 

centreline point while iθ is the corresponding direction of the 
above road point, and the relationship between the ith point and 
the (i-1)th point can be expressed as: 
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where Lstep is the suitable step size of the increment (i.e., the 
distance between two consecutive points on the road axis), and 
Lstep is set to road width in this paper. As a result, if 

),,( 000 θyx is known, then the automatic road tracking is 
equivalent to searching the optimal direction for each road 
point. Particularly, the semi-automatic tracking is divided into 
the following steps.  
 
Step 1: Initialization by three seed points 

Similar to Vosselman and Knecht’s method (1995), the 
initialization is also accomplished by manually selected seed 
points. However, we take another strategy in which a three 
consecutive mouse clicks strategy is adopted to obtain the 
starting point, direction, width of the road, and the step size as 
well. This three seeds method is feasible for most of the roads 
on VHR images, and it is accomplished as follows (see Figure 
2): the human operator enters a road segment with two 

OR
0=iα

Ci =α
 

Ci <<α0
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consecutive mouse clicks on A’ and B with the axis joining the 
points defining one road sideline A’B, which indicates road 
9direction arctangent(A’B), then the following third click on C, 
on the other roadside, defines the width w of the road. w  is 
equal to the distance between the point C and the line A’B. As 
a result, the above three points can also derive a rectangle 
A’B’B”A” with width w  and length l . Particularly, the 
direction of A’B’ is equal to arctangent(A’B) while C is 
located on the side B”A”, and l = 2* w . Then a start point A, 
denoted as ),( 00 yx , of the road is derived from the middle 
point of A’ A”. The above information forms the first road 
centreline point ),,( 000 θyx  in the road model mentioned above 
where 

0θ = arctangent(A’B), and obtain the next road 

centreline point ),,( 111 θyx by Equation 8 where 
1θ = 0θ , add 

the above two points into the road queue sequentially. 
Simultaneously, the pixels in the template A’B’B”A” also 
serves as training samples for the SVDD classifier, and then a 
predict model is derived by training the SVDD classifier. 
 

 
Figure 2. Road initialization by three seed points 

 
Step 2: Acquire the next road axis candidate point 

Take the two latest road centreline points out from the current 
road queue, denoted as ),,( 111 −−− iii yx θ  and ),,( iii yx θ , 

respectively. Revolve around the pixel p ),( ii yx , and form a 
square (S ),( TopLeftTopLeft yxp , ),( tBottomRightBottomRigh yxp ) , where 

),( TopLeftTopLeft yxp  and ,( tBottomRighxp  )tBottomRighy are the top 

left corner and bottom right corner of the square respectively. 
Concretely, the coordinates of two corners are calculated by 
the following formula: 

TopLeftx = ix + 2 * l *cos(
1−iθ - π

4
3 )      

TopLefty = iy + 2 * l *sin(
1−iθ - π

4
3 )      

tBottomRighx = ix + 2 * l *cos(
1−iθ + π

4
3 )     (9)                

tBottomRighy = iy + 2 * l *sin(
1−iθ + π

4
3 )     

where l  is the length of the reference rectangle introduced in 
the first step. 
As mentioned above, the reference A’B’B”A” derives a predict 
model for the SVDD classifier, and then perform SVDD 
classification on the above obtained squared subset image. 
Subsequently, set the pixels of road subclass as 1, meanwhile 
set the pixels of any other subclass as 0, and then perform the 
RAG analysis on the binary image to reclassify the image 
noises on the road surfaces into road class, which will decrease 
the negative effects of various types of noises.  

Following, at each road centreline point p ),( ii yx , a rectangular 

template with width w  and height l is revolved on the 
classified image, and ),,,( phwT α is defined as the mean for 
the rectangular set of pixels of around pixel p  whose principal 
axis lies at an angle of α from the road direction 1−iθ . This 

measure is computed for a set of angles nαα K,0  at 

pixel p ),( ii yx . Angles nαα K,0  are with same intervalδ . 
At the point p , the mean of the template at each rotating angle 
forms a set of values 

),,,,({ 0 phwT α ),,,,( 1 phwT α )},,,(, phwT nαK , named as 
classified angular texture signature (CATS). Figure 3(a) shows 
a CATS with δ =5°. The direction of the significant maximum 
which has a minimal inclination with road direction 1−iθ  is 
taken as the real direction of current road axis point, and 
replace 1−iθ  with the optimal value.  
Step 3: Validate the above optimal point 
Once the above obtained point is added into the road model, 
check whether any stopping criterion is fulfilled as follows:  

 the change of the directions of two adjacent road seg-

ments is larger than predefined threshold T ; 

 the minimal mean value of the optimal template surpass 

1T ; 

 compactness of CATS polygon is larger than 2T ;  

 approaching an extracted road or border of the image. 
To find the relationship between the shape of the CATS 
polygon and corresponding pixel types, we plot the CATS 
values around the pixel under consideration with corresponding 
direction and link the last point to the first point. The resulting 
polygon is called the CATS polygon, and Figure 3(e) shows 
the calculated CATS for pixel p  with the CATS polygons. If 
the road has a good contrast with its surrounding objects, the 
polygon usually looks like an ellipse or ∞ -shape, or a circle in 
other cases. The compactness of CATS can be defined as the 
compactness of the CATS polygon using Equation (10):  

2scompactnes
4CATS

P
A⋅

=
π        (10) 

where A and P are the area and perimeter of the CATS polygon, 
respectively. It is employed to check whether the shape of the 
CATS polygon looks like a circle. A circle-like CATS polygon 
usually indicates that the tracker is no longer fit for tracking the 
road ahead. Note that our program will calculate the 
compactness of CATS at regular intervals to verify whether the 
CATS is still suitable for tracing a road. 
If any of these conditions is encountered, exit the tracking 
procedure and go to Step 4). Otherwise, obtain the next road 
centreline point ),,( 111 −−− iii yx θ  by equation (8) and add this 
point into the road queue, and go to Step 2 again. 
Step 4: Stop the automatic following 

If no rule can be made to continue the tracking procedure, the 
system will stop tracking, report the reason, and offer an 
appropriate choice of user interaction. The user can then 
modify the traced path with the aid of common GIS-
functionalities, manually digitize complex roads, update the 
reference template (occurrence of change of the number of 
lanes, or significant change of spectral characteristics due to 
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different ages, construction materials, illumination angles, etc.), 
or restart the tracking process from the next specified location. 

(a) A rotating rectangular template and its resulted sub-
windows 

    
(b) Resulted sub-window    (c) Classified image by SVDD 
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(d) Image noises removal by RAG  (e) A CATS polygon 
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(f) Values of  the CATS in image (a) 

Figure 3. Road direction determination by SVDD and RAG 
 
 

4. EXPERIMENTS AND PERFORMANCE 
EVALUATION 

A prototype system, based on our proposed method and 
rectangular template matching (Kim et al. 2004) is developed 
in VC++6.0 IDE under Win-XP OS. Note that the 
implementation SVDD is based on Tax’s code in matlab 
environment (Tax, 2001) and the standard one-class SVM in 
LibSVM (Chang and Lin, 2001).  
Two airborne images in urban areas were tested to verify the 
capabilities of each road tracker. The roads on the above two 
images are disturbed by various types of image noises such as 
zebras, occlusions of vehicles, material change, and the 
extracted results are shown in Figure 4 and Figure 5, 
respectively. For the first image, the existing rectangular 
template matching method is feasible, but it failed at the sharp 
turning and the intersection, and it also failed to track the ring 
road around the stadium in the second image due to large 
change of radiometric characteristic of the road. Fortunately, 
the proposed method succeeds to extract the accurate 
centrelines of roads in the above two images. The above two 
tests suggest that our proposed method is more robust to 
various types of image noises such as sharp turnings, road 
intersections, zebras, vehicles and material change etc. 

 
(a) Result of rectangular template matching 

 
(b) Result of our method 

Figure 4. Extracted roads at an intersection 
 
 

5. CONCLUSIONS 

This paper presents a semi-automatic system for road tracking 
from VHR remotely sensed imagery. Once a human operator 
input three seed points that derive a reference template, the 
system adopts a new combination strategy to automatically 
track the road networks. Particularly, in the automatic tracking 
process, SVDD classifier is employed to produce a patch of 
classified binary image based on the reference template, RAG 
is utilized to erode the various types of image noises and 
enhance the road feature space on the binary image, and 
template matching using mean of the values of the pixels in a 
target template is used to search the optimal road direction and 
next road centreline point. The above procedure is repeated 
until a whole road is tracked. At the same time, a human 
operator is retained in the tracking process to supervise the 
extracted results, to response to the program’s prompts. 
Experiments are performed to extract roads from aerial/satellite 
imagery. The results show that our proposed road trackers can 
more robustly extract most of the main roads than other typical 
road trackers, which have significant practical applications. 
Future work will also include the optimization of the 
algorithms to speed up the calculations.  
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Figure 5. The extracted ring road of a stadium by our proposed 
method (Note that the rectangular template matching method 

failed on this image) 
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ABSTRACT:

Large-format photogrammetric digital airborne imaging sensors have been commercially available for several years. Their excellent
radiometric properties compared to film-based imaging have been reported in several studies. Despite these radiometric advantages,
up to now, airborne digital images have been exploited in a rather conventional manner in photogrammetric applications, even
though methodologies from quantitative remote sensing, e.g. radiometric image correction and classification, could be utilized to
raise the performance of photogrammetric applications to a new level. The recent state-of-the-art review revealed that the
fundamental problem in the quantitative utilization of image radiometry in photogrammetric applications is the radiometric
correction. Among digital photogrammetric large-format mapping sensors, the Airborne Digital Sensor (ADS) of Leica Geosystems
is the only commercially available system at the moment having an integrated, physically based, radiometric correction chain. The
processing does not require any in situ control information, as the radiometric corrections are based on a priori calibration
information and image data. To validate performance of the processing chain, a comprehensive flight campaign was carried out with
an ADS40 SH52 sensor in Finland in August 2008. We present the first results of the validation of the Leica ADS40 radiometric
processing chain. The results indicated great performance potential. With the challenging data set, the differences of ADS40 and
independent ground reference reflectance measurements were even less than 5% for uniform targets; atmospheric state, multispectral
channel and flying height were detected as the major factors influencing the accuracy. Leica Geosystem’s ADS40 can be considered
as an efficient and accurate, 3D, multi-angular, multispectral imaging radiometer, which opens new interesting prospects for 3D
remote sensing and characterization of the Earth surface. Results also indicated the importance of the test field validation process,
gave improvement ideas for the sensor post-processing software and provided information for the development of validation
methods.

* Corresponding author.

1. INTRODUCTION

Digital imaging is replacing film imaging in photogrammetric
data capture. In addition to the rigorous 3D-geometric
performance, digital photogrammetric sensors offer excellent
radiometric potential (Markelin et al., 2008).

A recent assessment of the state-of-the-art of radiometric
processing in photogrammetric production lines of several
European National Mapping Agencies showed that the
radiometry is not processed quantitatively in operational
processes (Honkavaara et al., 2009). Instead, radiometric
processing is a complicated and laborious task, and the results
are not typically satisfactory. The expected benefits of more
accurate radiometric processing are the more automatic image
processing, higher quality true-color and reflectance imagery,
and better automation level of applications. Expected
possibilities of the accurate, photogrammetric reflectance data
are, for instance, reliable production of vegetation indices,
utilization of spectral libraries, time series analyses, and
enhanced change detection. In Finland an important prospect is
the enhancement of the tree species classification, which is
currently the bottleneck in automation of forest interpretation.

The requirements of quantitative radiometry have been taken
into account in all aspects of the large-format photogrammetric
mapping sensor of the Leica Geosystems, the Airborne Digital
Sensor (ADS40, ADS80). The basis is an accurate, stable
sensor, which performs radiance measurements in the blue (B),
green (G), red (R) and near infrared (NIR) ranges of the

electromagnetic spectrum (Fricker, 2007). An important feature
is the accurate radiometric laboratory calibration which is
applied rigorously throughout the data processing (Beisl, 2006).
The radiometry chain is completed by physically based
radiometric correction methods, which are implemented in the
ADS post-processing software, the Leica XPro (Beisl et al.,
2008).

Leica Geosystems was the first photogrammetric sensor
manufacturer to integrate quantitative processing of radiometry
in the sensor post-processing line (Beisl, 2006; Beisl et al.,
2008). Recently, also Intergraph has started improving the
radiometric processing of the DMC (Ryan and Pagnutti, 2009).
The practical experiences of XPro have indicated great
improvements of processing efficiency, better radiometric
homogeneity of the output image mosaics and improved
performance e.g. in forestry applications (Beisl et al., 2008).
However, thus far there exists no independent, quantitative
assessment of the performance of the methodology.

The objective of this study was to validate the Leica
ADS40/XPro at-sensor radiance and atmospherically corrected
ground reflectance products. We also considered radiometric
validation aspects of airborne sensors. The study was performed
using ADS40 data from a comprehensive empirical flight
campaign carried out in Finland in August 2008. The image
data set is one of the image materials offered in the context of
the European Spatial Data Research (EuroSDR) research
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project “Radiometric aspects of digital photogrammetric
airborne images” (Honkavaara et al., 2009).

2. MATERIALS AND METHODS

2.1 The Leica ADS40 sensor and the XPro radiometric
processing chain

The ADS40 is a large-format photogrammetric sensor based on
the pushbroom principle. In this study the sensor head 52
(SH52) is used which has a total of 12 CCD-lines installed in
different positions on the focal plane to provide different along
track viewing angles: nadir panchromatic (PAN; 2˚), nadir R, G,
B and NIR (0˚), backward PAN (14˚), backward R, G, B and
NIR (16˚) and forward PAN (27˚) (Fricker, 2007).

The manufacturer performs comprehensive absolute radiometric
calibration for the ADS, including corrections for dark signal
non-uniformity (DSNU), photo response non-uniformity
(PRNU), absolute radiometric response, and spectral response
(Beisl, 2006). Since the sensor response w.r.t. incident radiance
data and integration time is linear, the radiometric model for
retrieving the at-sensor radiance from raw digital numbers (DN)
for a specific multispectral (MS) channel is given by:

ITcDNCDN 150 (1)

where CDN is calibrated DN (16 bit integer), DN is recorded
raw DN (16 bit integer), c1 is radiometric gain (camera and
channel specific), IT is integration time (s) and 50 is scale
factor.

CDN data are stored as epipolar rectified 16 bit integer images.
The band-averaged spectral radiance L [W/(m2 sr um)] of the
band is calculated by dividing the CDN with the scale factor 50.

Leica XPro is used for the entire post-processing workflow of
the ADS-imagery from data download to the generation of
stereo models and orthoimages. In radiometric terms, main
features are the options to produce radiometrically corrected
ground radiance and ground reflectance images. The default
product of XPro is calibrated DN (equation 1), which relates the
pixel data to at-sensor radiances. There are two options to
produce ground radiance data: the Dark Pixel Subtraction
(Chavez, 1975) and the Modified Chavez (Chavez, 1988)
methods. Ground radiances are still dependent on the
illumination level and vary from flight line to flight line. To
overcome this, there is an option for atmospheric correction and
reflectance calibration based on the radiative transfer equation
by Fraser et al. (1992) and a parameterization of the
atmospheric parameters based on the method of Song et al.
(2003). This atmospheric correction results in images where the
DNs are calibrated to ground reflectances. In ground
reflectances, the reflected radiance is divided by the incoming
solar irradiance which results in a surface property. All three
correction methods are based on an automatic dark object
method to tune the corrections to the actual atmospheric
conditions. Additionally, BRDF (Bidirectional reflectance
distribution function) correction based on a modified Walthall
model is implemented in XPro. The details of the correction
methods are in Beisl et al. (2008). All corrections rely entirely
on a priori calibration information and atmospheric information
derived from dark pixels in the image data.

2.2 Imagery

A flight campaign was carried out at the Hyytiälä forestry
research station in Finland (62°N, 24°E) on 23 August, 2008
using a Leica ADS40 SH52 digital photogrammetric camera to
validate the sensor performance and to evaluate data
performance in forestry applications. A total of 15 flight lines
were collected from four flying heights (1, 2, 3 and 4 km,
resulting ground sampling distances (GSDs) 10, 20, 30 and 40
cm, respectively) of which 4 were used here. The MS channels
(R, G, B, NIR, both nadir and backward directions) were
recorded in raw (uncompressed) mode. The weather conditions
were mostly clear, but some small clouds were over the area.
The detailed information of the images used and atmospheric
conditions are in Table 1.

Flying height 1km 2km 3km 4km
GSD [cm] 10 20 30 40

Flying direction 349° 349° 349° 169°
Integration time [ms] 1.94 2.77 4.16 5.54

Off-nadir viewing angle 15° 3.5° 3.2° 10.7°
Start time (UTC+3) 10:25 10:45 11:18 11:43
End time (UTC+3) 10:28 10:48 11:20 11:47

Sun elevation angle 30.0° 31.8° 34.5° 36.2°
Sun azimuth angle 126.6° 131.9° 141° 148.3°

Visibilty [km] 49.6 42.8 50.0 50.0
Temperature [°C] 14.6 14.9 15.0 15.5

AOT 500nm 0.16 0.15 0.17 0.16
CO2 [ppm] 373 372 374 372
O3 [g/cm2] 6.54E-04 6.54E-04 6.54E-04 6.54E-04

H20 [g/cm2] 1.41 1.40 1.45 1.39

Table 1. Information of image lines used and weather
conditions.

2.2.1 Image processing: The nadir-looking MS (R, G, B,
NIR) image lines were used, one from each flying height. Two
versions of each image were produced using XPro version 4.1:

 No corrections (ASR, at-sensor radiance data)
 Atmospheric (ATM, ground reflectance data)

The ASR-data enables the evaluations of vicarious calibration
and the ATM-data is, according to user experiences, the most
useful radiometrically corrected product. The BRDF-correction
was not tested in this study, because an improved method with
water masking will be implemented in the XPro version 4.2.

The images were processed into small patches that covered the
ground reference targets (section 2.3, Figure 3). For each target
and MS channel the average, minimum, maximum and standard
deviation of at-sensor radiances and ground reflectance were
calculated in image windows of ground size of 3 m x 3 m.

2.3 In situ measurements

The radiometric reflectance targets included four portable
reference reflectance targets (tarps) of the Finnish Geodetic
Institute (FGI) (Markelin et al., 2008) installed on the grass
football field and various natural and manmade covers (Figure
3, Table 2). During the campaign the nadir spectra of the
reference targets were measured using an ASD Field Spec Pro
FR spectroradiometer. 12–20 spectra were measured over each
target and then averaged to get the final spectra. Before and
after each target measurement a reference measurement was
made with a calibrated white reference standard (12" Spectralon
from Labsphere). The spectra were measured in absolute
radiance mode. Afterwards the radiances were scaled with the
white reference measurements to produce target reflectances.
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Finally, the target reflectances were weighted with the ADS40
channel spectral sensitivities to get the reflectances per MS
channel (Figure 4).

The average measurement accuracy of the reference was
estimated to be better than 6% for uniform targets and between
6–20% for other targets (Table 2). In the ADS40 data the cross-
track viewing angles of the reflectance targets were 315˚; the
viewing angle in along-track direction was close to zero. The
reflectance anisotropy of the reference tarps was analyzed in the
laboratory. Tarp P05 with the 10 cm data viewing angles had
the highest differences from the nadir reflectance; the difference
was 510% depending on the channel; differences were 05%
for other GSDs and targets. Therefore the tarp P05 was not used
in the context of the data with the 10 cm GSD.

The Hyytiälä forest research station is equipped with the state-
of-the-art SMEAR-II weather station (SMEAR, 2009), which is
also part of the NASA AERONET network (Holben et al.,
1998). The station provides continuously information about the
atmospheric conditions which can be used in radiative transfer
calculations.

SH Target Time Sun El. Sun Az. Refl. CV%
A asphalt 9:59 27.4 120.0 0.140 2.8
B grass1 10:08 28.4 122.2 0.078 4.9
C grass2 10:16 29.1 124.3 0.068 9.6
E sand 10:44 31.7 131.6 0.187 21.0
F gray gravel1 10:54 32.6 134.4 0.090 8.7
G gray gravel2 11:00 33.1 136.0 0.090 8.3
H weeds1 11:09 33.8 138.5 0.100 21.3
I weeds2 11:14 34.2 139.9 0.062 22.0

P05 tarpaulin 05 10:21 29.6 125.6 0.057 4.9
P20 tarpaulin 20 10:25 30.0 126.6 0.181 2.8
P30 tarpaulin 30 10:29 30.4 127.7 0.261 5.6
P50 tarpaulin 50 10:33 30.8 128.7 0.442 2.9

Table 2. Ground reference targets. SH = short name for target,
Time = measurement time (UTC+3), Sun El. = Sun elevation,
Sun Az. = Sun azimuth angle (0 = north), Refl. = average target
reflectance on green channel (550nm), CV% = ground
measurement Coefficient of Variation (100*stdev/mean) for
green channel.

Figure 3. Ground reference targets with identifiers in Table 2.

2.4 Validation

2.4.1 The accuracy assessment. The accuracy was assessed
by using the ASD reflectance measurements as the reference
(absolute accuracy) and by using the imagery with 10 cm GSD
as the reference (comparisons of different flying heights). The
reflectance differences were normalized with the reference
reflectance:

Difference = 100*(ATM_data–reference)/reference [%] (2)

This data was calculated for each target, flying height and MS
channel. The more detailed analysis was performed using the
accurate reference reflectance targets. The root-mean-squared
(RMS) values of the differences were calculated for each flying
height and channel.

n

Difference

RMS

n

i

 1

2

[%] (3)

where n is number of targets used in the evaluation. The number
of targets was four excluding the data with 10 cm GSD where
the P05 was not used due to anisotropy effects (Section 2.3)

2.4.2 Vicarious calibration. The vicarious calibration was
performed using simulated at-sensor radiances and ADS40 raw
DNs (equation 1) of the four reference reflectance tarps (three
tarps for 10 cm data). A linear regression was used to determine
the gain and offset parameters. Details of the method are
presented in Markelin et. al. (2008). The differences of the gain
parameters determined by the vicarious and the laboratory
calibration were then calculated. Furthermore, the differences
between the ADS40 and simulated at-sensor radiances were
calculated using equation (2).

The simulated at-sensor radiances were calculated by the
MODO software (ver. 3.0.9, based on a MODTRAN4 ver. 3.1
radiative transfer code) using the ground reflectance
measurements and the atmospheric measurements of the
SMEAR-II and AERONET stations. The parameters used in the
simulations were flying height, solar angles, and the following
atmospheric parameters from SMEAR-II: temperature, visibility
and CO2, and from AERONET: H2O and O3 (Table 1). A
"Midlatitude summer" atmospheric model was used in the
simulations. Also the aerosol optical thickness (AOT) at 500 nm
from AERONET was observed as an indicator of the general
conditions. The effects of aerosol measurement accuracies were
not considered in this study.

3. RESULTS AND DISCUSSION

3.1 Validation of XPro-reflectance products

The general view of the reflectance data is shown in Figure 4.
The reflectance of grass, asphalt and two reflectance targets
(P20 and P50) measured in field and by ADS40 are shown. All
measurements showed similar patterns but also differences
appeared.
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3.1.1 Absolute reflectance accuracy. The absolute accuracy
was assessed by calculating the differences between the ADS40
reflectance data and the ASD field measurements. Differences
(% of reflectance) of individual targets (10 cm and 40 cm data)
and RMS-values of differences on reference reflectance tarps
are shown in Figure 5a.

The differences on individual objects were in many cases
substantially large, varying between 070%. The largest
differences appeared on spatially non-uniform targets (grass,
weeds); for uniform targets (asphalt, sand, reflectance tarps) the
differences were less than 20%. Various channels provided
different results; the differences were typically the largest in the
B channel and the smallest in the R channel. The general
performance of the 20 cm and 30 cm GSDs was similar to the
10 cm and 40 cm GSDs. However, the differences appeared to
increase with increasing flying height. Furthermore, the
performance of data with 30 cm GSD was clearly the worst,
because there were some clouds close to the reflectance targets.
The above observations indicated that the larger the influences
of the atmosphere were, the poorer the absolute accuracy was.

Further analysis was performed using the reflectance tarps. The
R, G and NIR channels provided in most cases differences
lower than 10%, and in best cases differences lower than 5%
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Figure 4. Reflectance of grass and asphalt targets, and two
tarps (P20, P50) obtained from atmospherically corrected
images and by ASD field measurements (Ref).
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Figure 5 a) Absolute reflectance differences (%) for different objects: GSD 10 cm (left) and 40 cm (middle) and RMS of absolute
differences on tarps (right). b) Comparison of different flying heights: GSD 20 cm (left) and GSD 40 cm (middle) and RMS of

relative differences on three tarps (right). The image with 10 cm was used as a reference. c) Absolute at-sensor radiance differences
(%) for different objects: GSD 10 cm (left) and 40 cm (middle) and RMS of absolute differences on tarps (right).
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(Figure 5a). The RMS values of differences are given in Figure
5a (right). With 10 cm data the RMS values were less than 5%.
The RMS values of the R channel were 5% or lower on 10 cm
and 20 cm data. With 10, 20 and 40 cm data, in most cases, the
RMS values were lower than 10%. In the case of the B channel
the RMS values were up to 20%.

An unexpected phenomenon was that the differences
normalized by the reflectance were dependent on the magnitude
of the reflectance. Systematic features in Figure 5a indicated
this. As an example, the differences of most uniform objects
(tarps, asphalt, sand, gravel) are plotted as a function of the
reflectance (NIR-channel) in Figure 6. In this case the
systematic features were modeled with a linear regression; the
coefficients of determination (R2) rose up to 0.7. The systematic
trend was higher for the NIR and B channels than for the R and
G channels, and it increased with the flying height.

3.1.2 Comparisons between different flying heights. The
relative accuracy of 20 cm, 30 cm and 40 cm data was assessed
by using the 10 cm data as a reference; differences of individual
targets and RMS values of differences for the reflectance tarps
are given in Figure 5b.

The differences between the flying heights were lower than
absolute differences, but similar features appeared in both cases
(Section 3.1.1). The relative differences on various objects were
020%. The differences on reflectance tarps were mostly less
than 10% for images with 20 and 40 cm GSD (excluding B
channel) (Figure 5b). The RMS values of the NIR, R and G
channels were 510% for GSDs 20 cm and 40 cm; RMS values
of 30 cm data were 1018% (Figure 5b, right). The individual
channels provided different results. As with the absolute
differences, differences were the largest on the B channel.

Again, the differences appeared to be systematically dependent
on the magnitude of the reflectance. As in the case of absolute
differences, the systematics was the highest on B and NIR
channels and 30 cm and 40 cm data.

3.2 Evaluation of vicarious calibration

The differences of ADS40 and simulated at-sensor radiances are
shown in Figure 5c. The differences are systematically negative,
indicating that the simulation provided too high at-sensor
radiance values. The RMS values in Figure 5c (right) are higher
than the RMS values of the absolute reflectance differences of
XPro ATM-data (Figure 5a (right)), except for the NIR channel;
XPro provided thus better results in most cases. Similar,

radiance level dependent, systematic differences appeared on
the at-sensor radiances derived by MODTRAN4 and the
ADS40 as with the relative and absolute analysis of the
reflectance data.

The vicarious calibration was compared to the laboratory
calibration and differences of gain parameters were calculated.
As could be expected based on the systematic difference of the
ADS40 and simulated at-sensor radiance (Figure 5c), there was
a substantially large difference between the vicarious calibration
and laboratory calibration. The differences were the smallest in
the R and G channels; for the 10 cm GSD the difference was
10% and for 20 cm and 40 cm GSD the difference was 1015%.
The differences were larger on B and NIR channels and they
appeared to increase with the flying altitude. The above results
indicated that the simulated at-sensor radiances based on
MODTRAN4 radiative transfer code did not perfectly fit the
data. However, the weather conditions were not optimal for the
vicarious calibration.

3.3 Discussion

The preliminary results of the performance evaluation of the
ADS40/XPro at-sensor radiance and atmospherically corrected
reflectance products were given here.

The weather conditions were not perfect. The visibility was
good, but the clouds changed the diffuse illumination. The
conditions were typical of Finland, thus the results are
representative in Finland. We feel that it is important to
evaluate the performance also in suboptimal conditions.

The flying height influenced the accuracy. The difference
between the ADS40 reflectances and the reference
measurements increased for denser atmosphere, i.e. for higher
flying heights. The results showed differences of 5% or even
lower between the ADS40 and the field reference measurements
for the 1 km flying height and uniform reference targets. For the
4 km flying height, as low as 10% differences could be
obtained. Clouds caused further challenges for the radiometric
corrections. These issues could be considered in future
developments of the correction software.

Performance varied between the MS channels. The R channel
appeared to be the most accurate with 57% absolute RMS
values in up to 4 km flying height, and the performance of the G
channel was very similar. The accuracy of NIR channel was
lower than that of the R and G channels (712% absolute RMS
values) and the B channel was the poorest (up to 20% RMS
values). The results suggested a general undercorrection of the
atmospheric effects.

The differences between ADS40 and field reflectance
measurements were dependent on the target. The tarps, which
are spatially uniform targets with low anisotropy, provided
lower differences than the structural, natural objects. This can
be attributed to the fact that the 1 mrad instantaneous field of
view (IFOV) of the ADS40 pixel differs strongly from the 52
mrad IFOV of the ASD spectrometer. BRDF effects from
different FOV and different diffuse illumination will result in
different reflectances. Also natural vegetated surfaces (e.g. grass
and weeds) are difficult to use as reference targets because of
strong BRDF effects and changes of moisture during the day.
Spatially uniform and temporally stable targets are highly
recommended for calibration and validation purposes.

10 cm: y = -47.94x + 13.78
R² = 0.571

20 cm: y = -58.08x + 9.49
R² = 0.619

30 cm: y = -104.46x + 19.51
R² = 0.730

40 cm: y = -72.06x + 14.78
R² = 0.683
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channel as a function of the reflectance.
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An important observation was that the difference normalized by
the reflectance was dependent on the magnitude of the
reflectance; more uniform performance would have been
expected. This behavior appeared in comparisons of ADS40
and field reference measurements, comparisons between
different ADS40 GSDs, and comparisons of MODTRAN4 and
XPro derived at-sensor radiances. This result indicated that the
atmospheric modeling was not quite accurate in either case to fit
the actual atmospheric conditions.

The results from the quantitative performance evaluation of the
ADS40 image processing chain could be considered as very
good. The processing chain was also very efficient from the
operational point of view. The radiometric processing was
simple and automated; the user did not have to set any
parameters. The corrections were based solely on the image
data, thus the processing did not require any field reference
targets. For the cases where reflectance targets are available, a
recommended improvement for the software would be to enable
their use.

The results indicated the importance of the radiometric test field
validation. They showed quantitatively the high performance
potential of the ADS40 radiometric processing chain and also
identified improvement proposals. For the validation process it
appeared to be advantageous to apply four calibration targets,
distributed on reflectance range of 0.050.5.

In our future studies we will further evaluate the performance of
the BRDF correction of the XPro software and also evaluate the
spectro-directional performance of the system by analyzing the
off-nadir views. An important future objective will be to
evaluate the performance of the ADS40 imagery in the
classification of tree species in Finland.

4. CONCLUSIONS

This article provided preliminary results of the validation of the
ADS40 radiometric processing chain. The results indicated that
for the current algorithm and the evaluated challenging data set,
up to 5% reflectance accuracy could be obtained for uniform
targets. The accuracy was influenced by the flying height (1-4
km), channel (R, G, B, NIR), level of cloudiness and target
properties. Considering that this was the first, independent
quantitative assessment of the absolute accuracy of the
ADS40/XPro reflectance products, the results can be considered
as very promising. The study also pointed out improvement
proposals for the correction method and the validation process.

It can be expected that the future of radiometrically quantitative
photogrammetry is bright. On the way towards quantitative
radiometric processing chains, the radiometric validations are
crucial.
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ABSTRACT: 
 
A description of Real Properties is of interest in connection with Location-Based Services and urban resource management. The 
advent of Internet-maps and location aware Web-search inspires the development of such descriptions to be developed automatically 
and at very little incremental cost from aerial photography and its associated data products. Very important on each real property are 
its buildings. We describe how one can recognize and reconstruct buildings in 3 dimensions with the purpose of extracting the 
building size, its footprint, the number of floors, the roof shapes, the number of windows, the existence or absence of balconies. A 
key to success in this task is the availability of aerial photography at a greater overlap than has been customary in traditional 
photogrammetry, as well as a Ground Sampling Distance GSD exceeding the traditional values.  We use images at a pixel size of 10 
cm and with an overlap of 80% in the direction of flight and 60% across the flight direction. Such data support a robust 
determination of the number of floors and windows. Initial tests with data from the core of the City of Graz (Austria) produced an 
accuracy of 90% regarding the count of the number of floors and an accuracy of 87% regarding the detection of windows. 
 
 

1. INTRODUCTION 

Urban building models by computer vision have been a topic 
since the early 1990’s (Gruber, 1997). Since 2006, this has 
evolved into a massive and systematic effort to map buildings 
in 3D to support a certain location-awareness in Internet-
searches. While Google, Yahoo!, Ask and various regional 
search-providers all implemented 2D systems, Microsoft 
embarked on a 3D Internet mapping program (Leberl, 2007). 
The US website www.zillow.com built an application on top of 
Microsoft’s Internet mapping platform, then denoted as Virtual 
Earth, now Bing Maps, that attached a description and a value 
to each property in the USA.  Both the description and the value 
are being taken from public records for property taxes, as 
shown in Figure 1. Adding the street-side view, one can obtain 
a rather complete assessment of a property’s main 
characteristics, based on its 2D visualizations from the air and 
from the street level.  
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 1.  A property valuation website for North America is 
www.zillow.com. It associates public property tax records with 
a US$-value, built-out surface area and number of bathrooms to 
an orthophoto from the Microsoft Bing Maps website (top). The 

result is an easy access via a known address to the estimated 
value. In addition, presenting each property also on oblique 
Microsoft-images (below, left) and accessing the street-view 

data of Google (below, right) adds considerable visual 
information per property. However, the image information itself 
is not entering into the valuation nor description, and there is no 

searchable data being extracted from the images. 
 
At issue is the development of an ability to describe each 
property and each building automatically in the absence of 
detailed and publicly accessible property-tax records. Besides, 
even if such records exist, they typically will not contain certain 
details about a property’s buildings. Therefore, an ability to 
describe buildings may be of interest in a broad range of tasks, 
typically related to the offerings of location-based services. 
Basing such a description on Internet-public data with its ortho-
photos, but augmenting this with data products derived from 
aerial imagery, would appear to make this description largely a 
byproduct of aerial mapping, without added cost. Regarding the 
buildings of a property, major descriptive elements concern its 
number of floors, roof shape, number of windows, existence of 
a garage, of a basement or attic, of skylights and chimneys. 
These elements can be determined automatically, as we will 
demonstrate in this paper. However, a strictly 2-dimensional 
data set would be insufficient for the task. We do need 3D data 
since we approach the building as a 3D structure.  
Our approach is based on data that have been created for 
regular mapping purposes, and we treat such data as input. 
Using these, we are building specific applications to extract 
building information. Using a demonstration data set from Graz 
(Austria) with 216 buildings on 321 parcels, we show that the 
detection of floors and windows from aerial photography is 
feasible at a detection rate regarding building floors of 90% and 
windows of 87%.  
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2. AERIAL PHOTOGRAPHY AND COMPUTED DATA 
PRODUCTS 

Figure 2 is an orthophoto of a segment of the City of Graz and 
covering 400 m x 400 m. Such orthophotos are today being 
created from digital aerial photography using pixel sizes of 
perhaps 10 cm and image overlaps in the range of 80% forward 
and 60% sideward (Scholz and Gruber, 2009). A point on the 
ground will thus be imaged 10 times and the orthophoto will not 
have to have any occluded regions. Both a traditional 
orthophoto with relief displacements of vertical objects such as 
buildings and trees is a common product, and increasingly the 
true orthophoto is as well since the ability to avoid occlusions is 
essential in this case, and the novel high overlaps ensure that 
such occlusions get eliminated. However, in order to produce a 
true orthophoto at a good quality, one needs a Digital Surface 
Model DSM with well-defined building roof lines to avoid 
“ragged” building edges. A high-quality DSM requires a 3D 
capability at an accuracy level that is not needed for traditional 
orthophotos.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. A 400 m x 400 m segment of an orthophoto of the 
urban core of the city of Graz (Austria). The pixel size is at 10 
cm. The orthophoto is of the type “true”; therefore the facades 

are not visible. 
 

Associated data are computed from the aerial images. They 
consist firstly of the results of the aerial triangulation with their 
pose information per image. Given the high overlaps among 
images and the digital format, the accuracies of the pose and 
attitude are higher than those of the traditional two image stereo 
image blocks on film. The demonstration data set in Graz is 
produced at an accuracy of 10cm on the ground. 
Secondly, we have available the DSM plus its filtered Bald 
Earth DTM (regular rasters). It may be remarkable that the 
DSM is computed at an interval of the elevation postings at 
only 2 pixels. Traditional photogrammetry had postulated a 
distance between elevation postings as a multiple of the height 
accuracy. That horizontal spacing was recommended to be in 
the range of perhaps 20 times the elevation error. If one were to 
assume an elevation error of ± 1 pixel, then the postings were to 
be spaced 20 pixels apart. However, these recommendations 
were based on 2-image stereo. This is now changing to a 10-
image multi-view geometry (Hartley, Zisserman, 2000), and 
thus to a concept of “super-resolution”, as if the pixel sizes 
were in effect much smaller than they actually are. The result is 
a much denser DSM than was ever computed previously 
(Klaus, 2007). This leads to well-defined horizontal edge 
information such as building roof lines.  This approach also is 

very competitive with the direct elevation measurements from 
aerial laser scanners (see Figure 3). 
 
 
 
 
 

Figure 3. Comparing a building outline obtained from high-
overlap digital aerial photography (right) using 8 cm pixels, 

with the result from an aerial LIDAR measurement (left) using 
40 cm postings. This result has been obtained from the 
Vaihingen test near Stuttgart under supervision by the 

University of Stuttgart (Cramer and Haala, 2009). This example 
had been developed in a separate project (Leberl et al, in print). 
 
The third type of derived information is the image classification 
into roofs, grassy areas, vegetation, water bodies and circulation 
spaces such as roads, parking spaces, driveways and other 
impervious surfaces. 
 
 

3. IDENTIFYING BUILDINGS WITHIN INDIVIDUAL 
REAL PROPERTIES 

3.1 What is a “Building”? 

A central task exists to identify “buildings”. The definition of a 
“building” is less obvious than it may initially seem. The 
imagery needs to be related to parcel maps in the form of 
cadastral records.  Figure 4 presents a cadastral map segment 
and superimposes it over the orthophoto. The first observation 
concerns the geometric relationship: the visual data from the 
imagery are not in complete agreement with the cadastral 
parcels and a geometric change is needed to achieve a optimum 
match. The second observation concerns the fact that buildings 
as seen in aerial imagery cut across property boundaries 
because they may be attached to one another in dense urban 
situations.  

 
 

Figure 4. A cadastral vector data set is superimposed onto the 
true orthophoto for a segment of the Graz demo site. Note the 
small discrepancies between the data along property boundary 
lines manifesting themselves as visual feature in the imagery. 

 
What then is a “building”? In our context, this is a structure of 
sufficient size within a parcel. Therefore what may be 
experienced as a single building in aerial photography will be 
represented by a collection of buildings, each defined by its 
own parcel. The inverse may also exist, where multiple 
buildings are defined on a single parcel. This fact leads to a 
third issue, namely a need to separate smaller structures such as 
garages or sheds from a building properly.  
A fourth topic addresses complex building shapes with many 
facades. For analysis purposes it would be desirable to have 

In: Wagner, W., Székely, B. (eds.): ISPRS TC VII Symposium – 100 Years ISPRS, Vienna, Austria, July 5–7, 2010, IAPRS, Vol. XXXVIII, Part 7A
Contents Author Index Keyword Index

152



 

buildings with only 4 facades. An approach to cope with the 
complex building shapes may consist of separating an 
individual building into its parts so that fairly basic building 
shapes are then be achieved, in analogy to separating the 
concatenated buildings of urban landscapes along parcel 
boundaries. In the demo area of Figure 2 we count 216 
buildings. Of these, 139 are with a simple rectangular footprint, 
and at least 2 viewable facades. We find that occlusions form 
vegetation prevent one often from actually being able to have 
multiple facades per building available for redundant analyses. 
To deal with the second through the fourth issues, we first need 
to identify the data per parcel.  
 
3.2 Matching Cadastral Parcels with the Orthophoto 

In a separate paper we have presented a solution to the problem 
of mismatches between cadastral and image data (Meixner & 
Leberl, 2010). Such mismatches can be the result of the 
different histories of the cadastral data and their focus on 2D 
local information. We do not allow for a local deformation of 
the cadastral data. Instead, the cadastral maps are treated as 
rigid 2D entities where changes are only permitted in rotation 
and scale. We apply the widely available method of chamfer 
matching to conflate the vector-type parcel data with the raster-
type Orthophoto. Details about the chamfer-matching, the 
handling of roof overhangs and mismatches between the 
cadastre and the DSM are illustrated in Meixner and Leberl 
(2010). This is applicable if sufficient image information is 
available to define the parcel boundaries by natural features. 
Major parcel-vector matches with imagery are along street 
outlines and where fences exist. In our demonstration data set in 
Graz, we have shown that the initial mismatches in the range of 
±7 pixels could be reduced to ±3 pixels. 
 
3.3 Data per Property 

Once the orthophoto and cadastral parcel match, one can 
proceed to cut all data sets along parcel boundaries. Figure 5 
illustrates the result for a single property with its DSM, its 
image classification and its multiple individual overlapping 
image segments. This example represents a case with no special 
complexity since there is a single simple building shape with 
four facades.  One complexity is caused by occlusions due to 
vegetation. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 5. A sample parcel with its data from 10 overlapping 

aerial photographs, consisting (a) of a True Orthophoto (b) the 
DSM, (c) the classification layers and (d) a selection of some 

individual aerial image segments. Also shown is (e) a 
perspective view of the DSM and the aerial imagery. 

4. BUILDING FOOTPRINTS 

4.1 Computing Footprints 

We have two information sources for building footprints. One is 
from the image classification of roofs. The other is from the 
vertical elements of the DSM. The classification typically is 
based on color and texture, not however, on the 3D information 
of the DSM. Therefore the two information sources are 
independent.  
 
(a) Using the Classification Layer “Roofs” 
Figure 6 illustrates the classification layer “roof” for a building 
and its contour in the form of contour pixels. The selection of 
contour pixels in the binary building layer is trivial. The 
conversion of the raster- into a vector-format follows a standard 
procedure according to Douglas D. and Peucker T. (1973). The 
result consists of straight line segments. Knowledge that this is 
a building footprint will enter at this point by replacing the line 
segments by a rectangular shape from a library of such shapes. 
The match between the line segments and the geometric figure 
is achieved via a best fit between the geometric shape and the 
line segments. The measure of fit consists of 4 lines. 
 
 
 
 
 
 

 
Figure 6. The classification layer “building” is based on color 
and texture. (a) shows the binary layer, (b) its contour in raster 

and finally in (c) the geometric figure of the footprint. 
 
(b) Using the Vertical Elements of the DSM 
A computational pass through the difference between DSM and 
DTM of a parcel will result in height -postings representing 
vertical objects.  

• Loading the height-postings Hij of the parcel for all 
rows i and columns j; 

• Calculation of the first and second derivative Hij’ and 
Hij’’ of the height data Hij in each line and column; 

• Locating the maximum 1st and 2nd derivatives 
Hmax’ and Hmax’’ in each line and column, 
delivering candidate footprint postings; 

• For a neighborhood around each candidate footprint 
location, determine the associated height H of a 
structure;  

• Decide on valid footprint positions from the 
verticality of the DSM expressed by the values of H’, 
the curvature expressed by H” and building object 
expressed by the height H.  

 
The positions of candidate footprint pixels are now in the raster 
format. We again convert this to line segments as in alternative 
(a) above. The information now can be fed into the computation 
of a geometric figure of the building footprint as previously 
described. This geometric figure is the resulting “building 
mask”. Other vertical objects may be trees and those also will 
produce candidate footprint pixels. However, there will not 
exist straight line segments to replace those pixels and therefore 
these footprint pixels will get deleted.  
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4.2 Attaching Heights to the Footprints 

The use of the DTM in defining footprints produces, as a by-
product, an estimate of an elevation value for each candidate 
footprint. While this has been computed for candidate positions 
where a footprint location is possible, this now needs to be 
converted to a set of elevation values along the path of the 
footprint.  For this purpose the geometric figure of the footprint 
is placed into the DSM and the elevation profiles get 
interpolated along the straight lines of the footprint: 
 
For each straight line of the footprint repeat the following 
process: 

• Define positions i,j along the straight footprint line at 
equal intervals; 

• Determine the XY-pixel –locations perpendicular to 
the line at positions i,j; 

• From the short elevation profiles along the pixel 
locations XY, determine the base height and the top 
height associated with that footprint element, and thus 
the elevation difference. 

 
The result of this procedure is a set of elevation profiles along 
the footprints. 
 
4.3 Buildings Cutting Across Parcel Boundaries 

With the elevation values along the footprints, we have the 3D 
outlines of the buildings. At issue is the situation along a parcel 
boundary where there may be a valid building footprint, or the 
building is attached to a structure on the adjacent parcel and the 
footprint is merely virtual.  
To determine whether the footprint is virtual or real, we revisit 
the elevation data. Along a footprint at the edge of a parcel, one 
defines a small mask of perhaps 20*20 pixels. If one is dealing 
with a real footprint, then half of the elevation values should be 
zero. If the footprint is virtual, then a majority of the elevation 
values will be large. We select a threshold of 2/3 of all values to 
be large to determine that the footprint is virtual.  
 
4.4 Small Structures versus Buildings 

With elevation profiles along the footprints, we also have the 
means to separate actual residential housing from detached 
garages. The latter will have a small surface area of 50 m2 or 
less and not exceed a height value of 2.5 m.  
 
4.5 Complex Buildings 

The split of a complex building into simpler building elements 
has been discussed by Zebedin et al. (2008) and implemented in 
a workflow to replace a dense point cloud by simple building 
geometries.  
There exist three measures of complexity for a building. One is 
the geometric figure of the building’s footprint. One may 
restrict the complexity to be for 4 façades only. The second is 
the elevation profile along the footprint. One may determine a 
measure of the building symmetry for the elevations along the 
footprint: if facades get associated with different building 
heights, one may have reason to break the building into its 
parts. The third is the number of local maxima in the elevations 
of the roof: the roof shape is defined by the elevation values 
inside the footprint figure. By computing local maxima for 
those elevations, one will have the means to determine a 
separation of the building into building elements, each with a 
separate roof. Zebedin et al. (2008) evaluates the height 

differences between manual and automatic reconstruction of a 
building for a test data set of Manhattan (1973 buildings). It 
shows that 67.51% of the pixels have a height difference 
smaller than 0.5m, 72.85% differ by less than 1m and 86.91% 
are within 2m. Details on this method are described in Zebedin 
et al. (2008). 
 
 

5. FACADES 

The interest is in describing floors and windows, and for this 
purpose one needs to identify the façades.  These are available 
along the building mask’s straight segments, and the elevation 
profile  associated with that line segment. Independent of the 
actual shape of the façade and where it touches the roof, and 
how the ground slopes, one can for simplicity define a 
quadrilateral in 3D space by computing a façade height from 
the DSM profile. The footprint will define one edge of the 
quadrilateral in 3D by computing a slope from the DSM values. 
The end points of the straight line segment define the two 
opposing vertical edges of the quadrilateral. The DSM-values 
along the roof line will be replaced by the 4th segment.  
Figure 7 illustrates the façade quadrilaterals for the simple 
building, together with the image texture of one of the aerial 
photographs covering those facades. 
 
 
 
 
 
 

Figure 7. Façades of one building, with the computed 
quadrilateral for each of the facades. Note that the replacement 

of the elevation profiles along the building footprints by a 
straight line serve to obtain a simple façade figure in 3D. 

 
 

6. FLOORS AND WINDOWS 

6.1 Image Texture per Façade 

The definition of the façade quadrilaterals produces 4 façade 
corner points in 3D object coordinates. These must be projected 
into each of the aerial images to associate image content to each 
façade.  Typically, many aerial images will show the texture of 
each façade. Figure 8 is an example for one of the separate 
facades of the building in Figure 7. The projection is based on 
the pose values of each image from the aerial triangulation. 
 
 
 
 
 
 
 
 
 
 

Figure 8. Of one single façade of the building in Figure 7 one 
will obtain multiple aerial image segments. These have been 

rectified into a façade coordinate system. From an aerial image 
block showing for each object point typically 10 images, not all 
will contain useful data for a specific vertical façade. Selected 

here are the 4 best, where “best” is defined as the largest area of 
a façade quadrilateral in the projection into an image. 
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6.2 Floors 

From the building’s appearance, floors get defined by windows. 
In turn, windows form a defining structure in describing a 
façade’s detail. A procedure for finding a floor count has been 
developed using the following steps. 
 
For each façade i of a building j, repeat: 
     Import all n image segments showing this façade i. 

• For each image segment repeat: 
• Transform the  segment into the façade coordinate 

system. 
• Apply a contrast enhancement. 
• Apply the Prewitt edge detection horizontally. 
• Apply the Prewitt edge detection vertically. 
• Convert the maximum horizontal and vertical edge 

values into a binary format. 
• Create for each image row, and image column, a 

summation of all pixel values, resulting in a vertical 
and horizontal edge profile. 

• From the summation, remove outliers, normalize the 
values and remove low values as “noise”. 

• Determine the number of maxima of the sums of 
vertical gradients and use this as the number of floors. 

• Perform a verification by eliminating floors that do 
not have the proper vertical spacing (minimum 
distance between floors); and removal values from 
along the edges of the image texture inside the façade 
quadrilateral. 

 
This approach will result in data as illustrated in Figure 9.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9. Binary Prewitt edges in (a) are vertical, in (b) 
horizontal. The sums of edge values are shown in (c) as a count 

of the number of floors. 
 
A floor count can be applied to each of a set of overlapping 
façade images. If there were a discrepancy in the result, some 
logic would have to get applied to resolve the ambiguity. 
 
6.3 Windows 

Window detection has been of some interest in recent years. 
Algorithms like “boosting” have been applied by Nguyen et al. 
(2007) to detect cars and windows in aerial images. Cech and 
Sara (2007) have developed a window detection based on a 
library of window shapes. Lee and Nevatia (2004) have based 
their approach on edge images. These approaches have been 
subjected to only limited experimental analysis, but are 
generally reported to find windows in a rather robust manner.  

Given our floor counts, we are reusing the intermediate Prewitt 
edges to also find the windows.  An approach that simply 
“intersects” the locations along the pixel rows and columns with 
the maximum edge sums will work if all windows are regularly 
arranged. While this is often the case, it is not always true. 
Therefore Lee and Nevatia (2004) have proposed a variation of 
the approach.  
To refine the locations of the windows a one dimensional 
search for the four sides of a window is performed. For every 
line of a window hypothesized lines are generated by moving 
the lines to its perpendicular direction. The refined positions of 
the windows are determined where the hypothesized line has 
the best score for the window boundary. For a more detailed 
description of the used algorithm read Lee and Nevatia (2004).   
The big advantage of this method is that one can also use 
images with lower resolution, and that not only rectangular 
windows but almost all window designs can be automatically 
detected rather quickly without training the program in 
advance.  
The window count is applicable in each image segment of a 
given façade, separately. Or one might want to merge the edge 
data sets and apply a single window detection to the sum of all 
edges. Initial tests have shown that the window count is a rather 
robust method that delivers no discrepancies between the 
separate images of one façade in the examples chosen thus far.  
A comparison of the various different methods for window 
detection should be performed and will be the subject of 
ongoing work. 
 
6.4 Multiple Facades per Building 

The redundancy not only applies to the image coverage per 
façade from the high overlaps of aerial photography. We also 
find that we have multiple measures for the number of floors 
from multiple facades. These must be consistent with one 
another. It is possible that a building has different floor counts 
on a sloping terrain. Since the “bald Earth” as well as the slope 
of a building footprint are known, they must enter into the floor 
count.  
Figure 7 presented facades of one building. Figure 10 illustrates 
the floor counts and detected windows in each façade of that 
one building. As one can easily determine, the automated floor 
count and the count of the windows is consistent with a visual 
inspection.  

 
 
 
 
 
 
 
 
 

 
Figure 10. Four facades of one building from Fig. 7 lead to 

independent floor counts and window counts. It hss to be noted 
that the floor counts and the number of windows coincide with 

the visual inspection. 
 
We have extended this exercise to a selection of 150 properties 
in the Graz demo data set. In those properties we have 
identified 102 buildings with a total of 225 facades. The total 
number of floors was 387, the number of all windows was 
2646.  Running the approach through this data set results in the 
following: 
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Success rate of Building detection: 100%, all 102 building were 
found. 
 
Success rate of Floor detection: 90% of the 387 floor were 
correctly counted. 
 
Success rate of Window detection:  87.1% of the 2646 windows 
were correctly counted.  
 
 

7. CONCULSION: TOWARDS AN EXTENSIVE 
PROPERTY DESCRIPTION 

The search for a description of individual buildings per property 
is but an element in a larger effort.  The development of as 
detailed a description of real properties will have the buildings 
as the most important element, but other features of a property 
are also in need of a description. One will want to consider the 
land, the vegetation, the impervious surfaces, even the 
interaction between properties casting shadows or affecting 
privacy. And one will also be interested in the traffic, distances 
to businesses or public transportation etc. A full system for 
property descriptions will involve business addresses, traffic 
information, street network information, as well as sun angles. 
 
In the current contribution we have focused on basic 
descriptions of buildings. This involves the definition of a 
building on a property, even if two buildings are connected 
along a property line. It deals with complex buildings having 
many facades and a complex roof-scape. From the outside, thus 
from aerial imagery, one can count the floors and windows, and 
identify the window areas on a façade for further analysis.   At 
this stage of research we are beginning with the experimental 
evaluation of the various approaches. We will have to cope with 
occlusions from vegetation, with ambiguities regarding garages 
and sheds, the difficulties arising from an inability of matching 
parcel maps with aerial imagery, and with ambiguities from 
basement and attic windows. 
 
Initial results are encouraging. Using 150 properties with 102 
buildings having 387 facades and 2646 windows, 90% of all 
floors and 87.1% of all windows were found automatically. The 
result addresses, however, a specific situation in a mature core 
area of Graz (Austria). Reasons for misclassifications regarding 
floors and windows result from inaccuracies of the DTM, 
occlusions from vegetation and other buildings, partial shadows 
on the facades, very complex facades and steep camera angles. 
All these reasons for misclassifications have to be analyzed 
very carefully. Fore that the building interpretation has to be 
repeated by increasing the sample data in one city, and then by 
looking at vastly different environments such as a coastal resort 
environments, historical small towns, alpine terrains and 
industrial zones.  
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ABSTRACT:

Airborne laser scanning (ALS) has become a widely used method for data acquisition in various fields of engineering over the past
few years. The latest generation of commercially available ALS systems,the so-called full-waveform ALS systems, are capable of
detecting the whole backscattered waveform, which needs to be analysedin post-processing in order to detect the individual echoes.
During this signal processing step additional observables, such as the amplitude and the width of the backscattered echo, are derived.
The hereby produced 3D point cloud holds additional information aboutthe radiometric and geometric characteristics of the objects
within the footprint area of the laser beam. In this paper point cloud samples of different ground cover are examined regarding their
distribution of amplitude and echo width. Subsequently, a method for employing these observables for the assignment of probabilities,
whether an echo is more likely to stem from terrain or not, is presented. These probabilities can also be interpreted as individual weights
that are assigned to the single points and can be used in subsequent digitalterrain modelling (DTM) algorithms for a derivation of more
accurate DTMs.

1 INTRODUCTION

The sampling of the earth’s surface with laser technology for ob-
taining information about its geometric structure has become an
efficient and wide-spread method for data acquisition over the
past few years. 3D point clouds from airborne laser scanning
(ALS), which is also referred to as airborne LiDAR (light de-
tection and ranging), provide a data basis for various applica-
tions and have been used in different fields of engineering, such
as forestry (Hyypp̈a et al., 2008; Naesset, 2007), urban monitor-
ing (Dorninger and Pfeifer, 2008; Ḧofle et al., 2009), hydrology
(Mandlburger et al., 2009; Briese et al., 2009; Höfle et al., 2009)
or archaeology (Doneus et al., 2008).

Most of the above mentioned applications have in common that
they rely on an accurate digital terrain model (DTM), derived
on the basis of the point cloud. The quality of the DTM itself
is, among other influencing factors (Kraus et al., 2004), depen-
dent on the reliability to eliminate off-terrain echoes (Kraus et al.,
2004; Karel et al., 2006). Conventional methods for classifying
the point cloud into terrain and off-terrain echoes, a process also
called filtering, employ various geometric criteria. This might be
the distance to prior computed surfaces (Axelsson, 2000; Kraus
and Pfeifer, 1998; Pfeifer et al., 2001), relations of planimetric
distance and height difference (Vosselman, 2000) or normal vec-
tors as a homogeneity criteria in a segmentation based approach
(Tóvari and Pfeifer, 2005). However, reflections from near ter-
rain objects, e.g. lower under storey, cannot be distinguished by
geometric criteria alone. Especially near ground vegetation poses
two problems. The first problem concerns the range resolution. If
the vegetation is very low, the range difference between two con-
secutive targets may become too short for the detector to separate
them. Consequently, only one target is identified, which features
a measured distance that results from an overlap of the two ac-
tual reflections. The resulting point is then located somewhere in
between them (Kraus, 2007). Secondly, areas with dense vegeta-
tion feature only little to no penetration at all. This is crucial if
the trend of the surface changes significantly below the impene-

trable vegetation and no echoes from the terrain are detected. In
both cases, echoes tend to be wrongly classified as ground points.
Consequently, a DTM surface computed on the basis of a point
cloud including such off-terrain echoes, might run through the
lowest vegetation levels and therefore above the actual terrain.
As these errors can be in the range of several decimetres, they
are critical for DTM based application where high accuracy is
required (Doneus et al., 2008).

Currently, two different types of ALS sensors, which can be dis-
tinguished by their method of echo detection, are commercially
available. The so-called discrete recording systems are able to
record the range and amplitude of one or more consecutive dis-
crete echoes. In contrast, the so-called full-waveform (FWF) dig-
itizers, are capable of detecting and storing the whole emitted
and backscattered signal. To then obtain the individual echoes,
the recorded waveform has to be reconstructed in post-processing
and a decomposition algorithm, which can be individually adapted,
has to be applied. Recent papers describe different methods for
ALS waveform analysis and echo detection (Wagner et al., 2006;
Roncat et al., 2008; Mallet et al., 2009). During the process,
the echoes are detected and the range of the scanner to the tar-
get, as well as additional variables are derived. In addition to the
amplitude, the width of the backscattered signal, also commonly
known as the echo width, is determinable.

The usage of these additional observables opens up new prospects
for DTM generation from ALS data, although very rarely used so
far. Wagner et al. (2008) stated that the width of the backscattered
echo is dependent on the vertical distribution of small surface el-
ements within the footprint area of the laser beam. The canopy,
under storey or near ground vegetation are assumed to have larger
variations in vertical directions and consequently larger echo
widths than the terrain. Based on this fact, Doneus et al. (2008)
used an empirically derived echo width threshold, pre-classifying
presumable off-terrain echoes in the input point cloud for the hi-
erarchic robust filtering (Pfeifer et al., 2001). In Lin and Mills
(2009), a point labelling process, determining terrain points us-
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ing a threshold for the echo width is applied to complement the
individual 3D points. This additional surface information is in-
tegrated in a DTM generation approach employing Axelsson’s
progressive densification method (Axelsson, 2000).

However, applying hard thresholds on datasets poses several dif-
ficulties. On the one hand, the derived thresholds are always sen-
sor specific and do not necessarily apply for others. On the other
hand, the above mentioned strategies tend to eliminate a certain
number of points based on a-priori determined thresholds. This
implies the possibility of creating false negatives, meaning ex-
cluding reflections that might very well stem from terrain. These
echoes are permanently lost for subsequent filtering steps.

The method described in this paper considers these limitations
and disadvantages of pre-classifying echoes based on a fixed echo
width threshold. Rather than using thresholds on either one of
the FWF-observables (amplitude and echo width), it focuses on
the modelling of the distribution of the echo widths dependent
on amplitude values. As for the derivation of a DTM only the
last echoes are relevant, probabilities indicating whether they are
more likely to be a terrain echo or not are assigned to the echoes.
These probabilities can be interpreted as individual weights and
can be used as a-priori weights in existing filtering algorithms.
Hence, the whole point cloud is preserved and augmented with
additional information, which can subsequently be used for a
more accurate derivation of DTMs.

In the following section 2 the study area is described. Section
3 deals with the theoretical background of the proposed method
(see section 3.1), a description of the point cloud analysis (see
section 3.2) and the probability assignment (see section 3.3). Fi-
nally, the results are summarized and discussed in section 4 and
a conclusion is given in section 5.

2 STUDY AREA AND DATA

An ALS data set collected over the city of Eisenstadt, capitol of
county Burgenland, Austria, was used in this paper. As study area
a small sample within the Schlosspark Eisenstadt was created.
The ALS data were acquired under leaf-off conditions in March
2007. A RIEGL LMS-Q560 laser scanner, which is equipped
with a full-waveform recorder, was employed. The main techni-
cal specifications can be found on the distributors website (Riegl,
2009a). The scanner was carried by a fixed-wing aircraft as well
as a helicopter alternatively, which operated at an average flying
altitude of 600 m, the scan angle was set to±22.5◦ and the aver-
age distance of the single trajectories was 90 m. This resulted in
a large overlap of the ALS strips and, consequently, rather high
point density of 18 echoes per m2 for the whole data set. Using
Gaussian decomposition, as described in Wagner et al. (2006),
the single echoes were extracted from the raw waveform data and
a 3D point cloud was obtained. For adequate geo-referencing
the method proposed by Kager (2004) was applied. This process
allows to reduce discrepancies between overlapping ALS strips.
The produced high quality 3D point cloud was then used to de-
rive a digital surface model (DSM) utilizing moving planes in-
terpolation. Furthermore, a DTM using hierarchic robust inter-
polation (Pfeifer et al., 2001) was generated. Both methods are
implemented and documented in the software package SCOP++
(SCOP++, 2008). The DTM was used to compute the normalized
heights of the single echoes for point selection and later verifica-
tion purposes. A hill-shading of the study area can be seen in
figure 1a. The obtained point cloud consisted of 57.3% single
echoes (only one reflection in the shot), 27.8% shots with two,
11.8% with three 2.7% with four and 0.4% with more than four
consecutive target reflections.

Figure 1: ALS study area in Schlosspark Eisenstadt (120 x 170
m). (a) DSM (grid size 0.25 x 0.25 m) created of all echoes;
(b) height-coded point cloud showing all echoes (Z), white bars
indicate location of profile; (c) profile; (d)amplitudes (P) of the
last echoes; (e) echo widths (EW) of the last echoes.

3 METHOD

3.1 Theoretical Background

As written in section 1 and based on Wagner et al. (2008), the
echo width provides information about the height distribution
of small scatterers within the footprint area of the laser beam.
A planar area, perpendicular to the laser beam direction, fea-
tures no height variation at all. It is therefore assumed that a
laser beam impinging approximately rectangular on such terrain
should cause a backscattered signal with an echo width equal or
similar to the width of the emitted pulse (Wagner et al., 2004).
According to its specifications, the RIEGL LMS-Q560 laser scan-
ner emits pulses with a duration of 4 ns, describing the full width
of the pulse at its half maximum (FWHM). It has to be stated that
due to the utilized software for echo extraction, the derived echo
widths do not represent the FWHM, as it is common practice in
signal processing and commercial software (e.g. Riegl (2009b)),
but the standard deviation of the fit Gaussian curve. The width of
the emitted pulse has to be divided by a constant factor of

2 ∗
√
2 ∗ ln2 = 2.3548 (1)

in order to correspond to the echo widths derived by the applied
echo extraction method, which results in a value of 1.6986 ns
(Mücke, 2008).
Examination of the echo width image in figure 1e supports this
theory. In the north-western corner a football court is located,
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which is a flat non-tilted plane featuring also the lowest echo
widths of about 1.75 ns in the sample area. The pathway through
the forest (centre of the image), which is not overgrown by trees,
also shows reflections of comparable widths. The largest echo
widths in the area stem from vegetation echoes, characterized by
values well above 2 ns and up to 5 ns. Also the lower amplitude
values can be found in the vegetated area (see figure 1d). This
is probably the result of a potentially higher number of consec-
utive echoes in the penetrable canopy and multi-layered vegeta-
tion below. The more reflections per shot, the less energy can be
scattered back by the individual targets and consequently the last
echoes feature the lower amplitude values (Wagner et al., 2008).

3.2 Point cloud analysis

To confirm our assumption, single echoes from open terrain ar-
eas were selected and scatter plots showing their amplitudes and
respective echo widths were produced (see figure 2). Compared
to the width of the emitted pulse (dotted blue line in figure 2), the
four samples, taken from reflections over gravel (1452 points),
sand (1059 points), asphalt (1427 points) and grassland (4628
points), seem to correspond quite well. Except for a minimal
positive shift with respect to the width of the emitted pulse and
increased scattering of the echo widths with decreasing ampli-
tude values. This scattering was also observed by Wagner et al.
(2006), explained as a characteristic of FWF decomposition us-
ing a Gaussian model. They stated that the method is robust for
strong echoes and becomes less reliable for weak ones. Subse-
quently, we examined if the amplitudes and widths of single and
last echoes from forest terrain behave similar as the ones from
open terrain. Figure 3 shows a scatter plot produced from reflec-
tions of an overgrown area. They were selected using the pre-
viously calculated normalized heights (dZ) with respect to the
DTM and a dZ<= 0.2 m threshold (see section 2), so they ap-
proximate the terrain as good as possible. We found that the 0.2 m
threshold was adequate given the definition uncertainty of a for-
est terrain covered by fallen leafs, tree roots and creepers of any
kind. Further reducing the threshold did not significantly mini-
mize the resulting terrain point cloud, whereas an increase to 0.5
m had the opposite effect. By visual comparison we examined
that lots of points representing relevant near terrain vegetation
were included.
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Figure 2: Scatter plot of selected single echoes from open terrain
(grass, gravel, sand, asphalt); width of the emitted pulse is shown
by dotted blue line.

3.3 Probability Assignment

We expect the scatter plot in figure 3 to depict the distribution for
amplitudes and echo widths of terrain echoes in vegetated areas
and base the probability assignment on this assumption. First, a
distribution function dependent on the amplitudes and respective
echo widths is created. It is fit to the distribution on the left side
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Figure 3: Last echoes from forest terrain selected by height
thresholding (dZ<= 0.2 m); width of the emitted pulse is shown
by the dotted blue line.

of the median of the echo widths, because there the detection
accuracy we can expect from the applied Gaussian decomposition
is demonstrated. We then flip the function vertically along the
median (see figure 4), so the two functions combined now outline
the range of amplitude and echo width values for reflections that
stem from terrain with a high probability. 3D points within this
area are given the highest weights, which is defined as 95% (green
zone in figure 4). As we do not expect a shortening of the echo
widths due to vegetation but rather the opposite, every echo left of
the area outlined by the distribution function (green zone) is given
the lowest weight of 5%. In order to avoid hard thresholds in the
transition from high to low weight, we defined a buffer zone along
the flipped curve. Inside of it a linear function is used for applying
the individual weights, ranging from 95% to 5%. Every point
outside the transition zone is considered not to represent terrain
and is therefore given the lowest weight (5%). This method tends
to give the highest weights to points belonging to terrain with a
high probability, points assumed to be off-terrain echoes gain the
lowest weights.
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Figure 4: Last echoes from forest terrain; fit distribution function
(red lines); highest weights w = 95% (green), transition zone 95%
< w < 5% (orange), lowest weights w = 5% are assigned outside
the green and orange zones.

4 RESULTS AND DISCUSSION

The distribution of the forest terrain echoes (figure 3) shows sim-
ilar characteristics as the one from the open terrain echoes (figure
2). The scattering of the echo widths also increases with decreas-
ing amplitudes. However, it features echoes with very low am-
plitudes, which are not present in the single echoes from open
terrain and can be explained by the persistent loss of energy due
to the detection of consecutive targets in the vegetated area. Also
the echo widths cover a wider range up to 3 ns, indicating that
some of the selected terrain points represent rough surfaces, e.g.
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points on tree roots or stems. Apart from that a slight shift com-
pared to the emitted pulse is recognizable in all of the produced
point cloud samples. At this time the cause of this shift is un-
certain. Probably the incidence angle of the laser shot might in-
fluence the echo width, causing it to become wider with small
(acute) angles. Essentially, this corresponds to a widening of the
reflected signal caused by height variation. However, the exam-
ined echoes stemming from open areas represent near horizontal
terrain (e.g. left part of profile in 1c representing the football
court) and are located in the middle of the strip, roughly below
the trajectory of the flight. So the angle of deflection is small
and consequently the incidence angles are rather obtuse, a change
of the echo widths caused by this is therefore unlikely. Another
reason could be that the width of the emitted pulse is not con-
stantly 4 ns, but sometimes wider, subsequently causing bigger
echo widths in the backscattered signals. But to our knowledge
this has not been explored so far.
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Figure 5: Off-terrain echoes from a forested area selected by
height thresholding (last echoes dZ> 0.2 m); width of the emit-
ted pulse is shown by dotted blue line.

Further, the distribution function derived in section 3 (figure 4)
was compared to the scatter plot of the selected off-terrain last
echoes in the forested area (see figure 5), which were generated
by height thresholding (dZ> 0.2 m) as well. Although there is
a large overlap, the distribution is very asymmetric and shifted
towards higher echo widths, featuring a significant amount of
echoes we can expect to be given the lowest weight.

Consequently, the distribution function was used to assign weights
to the single and last echoes within the study area, because these
are usually the lowest points and therefore considered to represent
terrain. For a validation of the results the afore calculated normal-
ized heights were employed. Initially we selected terrain points
in the forested area by applying a threshold of 0.2 m (dZ<= 0.2
m) (see section 3.2) on the normalized heights of the single and
last echoes. We repeated that for our study area (see figure 1),
producing a terrain point cloud that consisted of 184868 points,
starting from a total of 226767 points. Comparing this number to
the number of points that were assigned weights of w = 95%, we
found that 92% of the terrain echoes selected by height threshold-
ing were given the maximum weight (w= 95%). Additionally,
we extracted the echoes that gained the maximum weight and
those that gained less (w< 95%) and produced a histogram of
the normalized heights (see figure 6). It clearly reveals that more
than 80% of the echoes with maximum weight are located below
0.5 m. Apart from that, 7.1% of the points with weights of less
than 95% (points that are unlikely to stem from terrain) are also in
that height range. More detailed investigations and visual exami-
nations have shown that these echoes stem from lower vegetation
or tree stems, therefore also being correctly weighted. This expla-
nation is supported by figure 7b, where the low weighted echoes

(w < 95%) color-coded by their respective normalized height dZ
are shown. The points are within the dark green area feature nor-
malized heights of 0.5 m and below.

The remaining part of the single and last echoes, featuring high
as well as low weights, are spread over the entire range of nor-
malized heights occurring in our study area. This points out a
limitation of the probability assignment, which is partly rooted in
the applied echo detection method. The lower the amplitude, the
higher the tolerance for points gaining maximum weight. Strong
first echoes in the canopy might have large echo widths and be
therefore correctly weighted. However, for consecutive echoes
less energy is left (Wagner et al., 2008), and thus, as we have
already pointed out in section 1, the echo width estimation be-
comes less trustworthy. This probably results in reflections from
branches and stems high above the terrain having smaller echo
widths, although they represent rather rough surfaces. For this
reason they are wrongly given high weights. Figure 7a shows

Figure 6: Histogram of single and last echoes from sample area.
Points that were weighted with 95% (blue) and less than 95%
(red).

the points with a weight of w = 95%. The white square out-
lines echoes in the canopy (dZ> 20 m). The apparent explana-
tion for these points being given the maximum weight is that the
dense canopy acts as a single scatterer, featuring too little height
variation within the footprint of the laserscanner to be detected.
Consequently, they have similar characteristics as terrain echoes.
The same applies for thick branches of trees or stems with large
diameters, which can also be seen as extended targets (Jelalian,
1992), meaning they are bigger than the footprint size. However,

Figure 7: (a) DSM overlain with single and last echoes featuring
maximum weights w = 95% (b) DSM overlayed with single and
last echoes featuring weights w< 95%. The white square shows
the area with dense canopy.

these points do not pose a problem for conventional filtering algo-
rithms, as they are well elevated and can be reliably detected and
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eliminated by the geometric analysis of the local neighbourhood.
As pointed out in section 1, it is rather the near ground vegetation
that causes troubles in DTM generation and the proposed clas-
sification method has proven to be valuable in the detection of
reflections from such objects.

5 CONCLUSIONS AND FUTURE WORK

Our investigations have demonstrated that the full-waveform ob-
servables amplitude and echo width have potential for the assign-
ment of probabilities whether an ALS point represents terrain or
not. The suggested method managed to label 92% of the ter-
rain echoes correctly (see section 4) and additionally correctly
detected reflections from near ground vegetation. However, we
found that the approach can not produce exclusive terrain point
clouds, given the fact that amplitude and echo width are metrics
that do not discriminate sufficiently to do so. A reliable deter-
mination of off-terrain points without the utilization of geometric
criteria seems rather difficult. But as presented in other papers
(Briese et al., 2007; Lin and Mills, 2009), conventional filtering
methods profit from a-priori seperated vegetation echoes which
could be found with the help of full-waveform observables. The
approach proposed in this paper produces a point cloud enriched
by individual weights for each point, which can now be used in
subsequent filtering steps. In our further work we will concen-
trate on the integration of the individual weights into the hierar-
chic robust interpolation. Apart from that we plan on acquiring a
proper reference dataset with terrestrial laser scanning which we
will use for the derivation of a very detailed and highly accurate
DTM to compare it to the ALS DTM and adequatetly validate the
employed filtering method.
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ABSTRACT:

A method for measuring the water surface backscattering signature using the airborne Doppler navigation system in addition to its
standard navigational application is discussed. A case of an airplane circle flight measurement of the azimuth normalized radar cross
section curve of the water surface is considered. This is done in the range of middle incidence angles by the Doppler navigation
system. The system operates in the scatterometer mode and uses a fore-beam directed to the right side at a typical mounting angle in
the vertical plane that is not so far from nadir at a straight flight. An algorithm for measuring the water surface backscattering
signature is proposed.

1. INTRODUCTION

Many researchers have been investigating the microwave
backscattering signatures of the sea and ocean surfaces
(Carswell et al, 1994; Chelton and McCabe, 1985; Feindt et al,
1986; Hildebrand, 1994; Masuko et al, 1986; Melnik, 1980;
Moore and Fung, 1979; Wismann, 1989). However, the
mechanics of interactions between water surfaces and
microwaves have not been well studied in detail.

The typical method for describing sea clutter is in the form of
the normalized radar cross section (NRCS), the statistical
distribution of the NRCS, the amplitude correlation and the
spectral shape of the Doppler returns.

To describe the radar backscatter from the water surfaces, three
major scattering models are used: the Kirchhoff or Physical
Optics model, the composite-surface or two-scale model, and
the Bragg model. The Kirchhoff model assumes a perfectly
conducting surface (unless it is modified to include the Fresnel
reflection coefficient) and applies from small to intermediate
incidence angles without shadowing effects. Apart from the
implicit dependence on the Fresnel coefficient, there is no
polarization dependence. The two-scale model assumes that the
radar backscatter arises from a large number of slightly rough
ripples, distributed over the long ocean waves. It has
polarization dependence. These two models are generally used
to interpret the data acquired by the synthetic aperture radar and
real aperture radar of a variety of sea/oceanic features, including
swell waves and internal waves. The Bragg model applies only
to the slightly rough surfaces under low wind conditions (it is
often used to describe the scattering from ripples in the two-
scale model). The Bragg model has been used to interpret the
ocean currents by high-frequency Doppler radar measurements
at large incidence angles (Ouchi, 2000).

To explain adequately the microwave scattering signature of the
water surface and to apply its features to remote sensing, a set of
experiments, namely, experimental verification of the combined
frequency, azimuth and incidence angles, and wind speed
variations of the NRCS are required (Masuko et al, 1986). For

that study, a scatterometer, radar designed for measuring the
surface scatter characteristics, is used.

Research on microwave backscatter by the water surface has
shown that the use of a scatterometer also allows an estimation
of near-surface wind speed and direction because the NRCS of
the water surface depends on the wind speeds and directions.
Based on experimental data and scattering theory, a significant
number of empirical and theoretical backscatter models and
algorithms for estimation of a near-surface wind vector from
satellite and airplane has been developed (Long et al, 1996). It
is also very important for safe landing of amphibian aircrafts on
the water surface.

To study a microwave backscattering signature of the water
surface from airplane, an airborne scatterometer is used. The
measurements are typically performed at either a circle track
flight using fixed fan-beam antenna or a rectilinear track flight
using rotating antenna (Carswell et al, 1994; Masuko et al,
1986; Wismann, 1989). Unfortunately, a microwave narrow-
beam antenna has considerable size at Ku-, X- and C-bands that
makes its placing on a flying apparatus difficult. Therefore, a
better way needs to be found.

At least two ways can be proposed. The first way is to apply the
airborne scatterometers with wide-beam antennas as it can lead
to the reduction in the antenna size. The second way is to use
the modified conventional navigation instruments of a flying
apparatus in a scatterometer mode that seems more preferable.

From that point of view, a promising navigation instrument is
the Doppler navigation system (DNS). Previous research of the
DNS has shown that it allows measurement of the wind vector
over the water surface when it operates as a multi-beam
scatterometer under the horizontal rectilinear flight of a flying
apparatus (Nekrasov, 2005a; Nekrasov, 2005b). Now, a method
to measure the water surface backscattering signature by the
airborne DNS operating in the scatterometer mode at aircraft
circle flight in addition to its standard navigation application is
discussed in this paper.
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2. DOPPLER NAVIGATION SYSTEM

DNS is the self-contained radar system that utilizes the Doppler
effect (Doppler radar) for measuring the ground speed and drift
angle of flying apparatus and accomplishes its dead-reckoning
navigation (Sosnovskiy and Khaymovich, 1987).

The internationally authorized frequency band of 13.25 to
13.4 GHz has been allocated for airborne Doppler navigation
radar. A center frequency of 13.325 GHz of the band
corresponds to a wave length of 2.25 cm. This frequency
represents a good compromise between too low a frequency,
resulting in low-velocity sensitivity and large aircraft antenna
size and beam widths, and too high a frequency, resulting in
excessive absorption and backscattering effects of the
atmosphere and precipitation. (Earlier Doppler radars operated
in two somewhat lower frequency bands, i.e., centered at 8.8
and 9.8 GHz, respectively, but now these bands are no longer
used for stand-alone Doppler radars.) (Kayton and Fried, 1997).

Measurement of the wind vector and drift angle of flying
apparatus is based on change of a Doppler frequency of the
signal reflected from the underlying surface, depending on a
spatial position of an antenna beam. Usually, an antenna of the
DNS has three beams (λ-configuration; beams 1, 2, and 3) or
four beams (x-configuration; beams 1, 2, 3, and 4) located in
space as represented in Figure 1. An effective antenna
beamwidth is of 3° to 10° (Kolchinskiy et al, 1975). Power
reasons (DNS should operates over water as well as over land)
and sensitivity of the DNS to velocity influence a choice of a
mounting angle of a beam axis in the vertical plane θ0.
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Figure 1. Typical spatial location of the DNS beams:
λ-configuration (beams 1, 2, and 3) and x-configuration (beams

1, 2, 3, and 4)

Figure 2 shows curves of the NRCS of underlying surface
versus incidence angle for radar system operating in the
frequency band (Ke-band) currently assigned to Doppler
navigation radar (Kayton and Fried, 1997). It is seen from the
curves that for most types of terrain the NRCS decreases slowly
with increase of the beam incidence angle. However, for water
surfaces, the NRCS falls radically as the incidence angle
increases and assumes different values for different conditions
of sea state or water roughness. For the typical Doppler-radar
incidence angles of 15° to 30° (Kolchinskiy et al, 1975), the

NRCS is considerably smaller for most sea states than for land
and decreases markedly for the smoother sea state. Therefore, a
conservative Doppler-radar design is based on an NRCS for the
smoothest sea state over which the aircraft is expected to
navigate. (Very smooth sea states are relatively rare).
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(Kayton and Fried, 1997)

There are two basic antenna system concepts used for drift
angle measurement. These are the fixed-antenna system, which
is used in most modern systems, and the track-stabilized (roll-
and-pitch-stabilized) antenna system. For physically roll-and-
pitch-stabilized antenna systems, the value of an incidence
angle remains essentially constant and equal to the chosen
design value. For fixed-antenna system, a conservative design
is based on the NRCS and range for the largest incidence angle
that would be expected for the largest combination of pitch and
roll angles of the aircraft (Kayton and Fried, 1997).

The choice of a mounting angle of a beam axis in the inclined
plane η0 (nominal angle between antenna longitudinal axis and
central beam direction) represents a compromise between high
sensitivity to velocity and over-water accuracy, which increases
with smaller mounting angles of a beam axis in the inclined
plane, and high signal return over water, which increases for
larger mounting angles of a beam axis in the inclined plane.
Most equipments use a mounting angle of a beam axis in the
inclined plane of somewhere between 65° and 80° (Kayton and
Fried, 1997). The choice of a mounting angle of a beam axis in
the horizontal plane Γ0 depends on the desired sensitivity to
drift, which tends to increase with increasing that mounting
angle. For the typical Doppler-radar, mounting angles of a
beam axis in the horizontal plane are of 15° to 45° (Kolchinskiy
et al, 1975).

The relationship among those mounting angles is (Kayton and
Fried, 1997)
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000 coscoscos   (1)

The mounting angle of a beam axis in the horizontal plane
should satisfy the following condition max.0 dr , where

max.dr is the maximum possible drift angle (Sosnovskiy and
Khaymovich, 1987). The mounting angle of a beam axis in the
inclined plane is defined by requirements to the width of a
Doppler spectrum of the reflected signal ΔfD, which depends on
the effective antenna beamwidth in the inclined plane θa.incl;

5. incla for DNS. The relative width of a Doppler spectrum

DD Ff / is given by (Davydov et al, 1977)
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To perform high accuracy measurements with the DNS, the
following condition should be provided (Davydov et al, 1977)
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Thus, from (2) and (3), the mounting angle of a beam axis in the
inclined plane should satisfy the following condition
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From (4), assuming that the effective antenna beamwidth in the
inclined plane is typical and equal to 5°, the condition of choice
the mounting angle of a beam axis in the inclined plane is

 2.723.580  (5)

Then, using (1), the areas of admissible mounting angles of
beam axes could be obtained. Lower limits corresponding to
the maximum admissible mounting angles of beam axis in the
inclined plane and area of typical mounting angles of beam axes
in the vertical and horizontal planes are represented in Figure 3.
Trace 1 and trace 2 are the lower limits corresponding to the
maximum admissible mounting angles of beam axis in the
inclined plane of 58.3° (lower limit of high accuracy of
measurement at 1.0/  DD Ff ) and 72.9° (lower limit of
sufficient high accuracy of measurement at 2.0/  DD Ff ),
respectively. A dash line displays the area of typical mounting
angles of beam axes in the vertical and horizontal planes.
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Figure 3. Lower limits corresponding to the maximum
admissible mounting angles of beam axis in the inclined plane

and area of typical mounting angles of beam axes in the vertical
and horizontal planes: trace 1 is the lower limit corresponding

to the maximum admissible mounting angle of beam axis in the
inclined plane of 58.3° (lower limit of high accuracy of

measurement at 1.0/  DD Ff ); trace 2 is the lower limit,
which corresponds to the maximum admissible mounting angle

of beam axis in the inclined plane of 72.9° (lower limit of
sufficient high accuracy of measurement at 2.0/  DD Ff );

dash line is the contour of the area of typical mounting angles of
beam axes in the vertical and horizontal planes

Figure 3 demonstrates that for typical mounting angles of beam
axes, sufficient high accuracy of measurement by the DNS is
provided for the most part of the area of typical mounting
angles in the vertical and horizontal planes. The measurement
accuracy rises with increase of the beam incidence angle in the
vertical plane.

The DNS multi-beam antenna allows selecting a power
backscattered by the underlying surface from different
directions, namely from directions corresponding to the
appropriate beam relative to the aircraft course ψ, e.g. ψ0.a.1,
ψ0.a.2, ψ0.a.3, and ψ0.a.4 in Figure 1. Each beam provides angular
resolutions in the azimuthal and vertical planes, Δα and Δθ
respectively.

3. WATER SURFACE BACKSCATTERING
SIGNATURE MEASUREMENT

As the azimuth NRCS curve can be obtained using the circle
track flight for a scatterometer with an inclined one-beam fixed-
position antenna (Masuko et al, 1986), one beam of the DNS
operating in the scatterometer mode can be used.

Let the flying apparatus make a horizontal rectilinear flight with
the speed V at some altitude H above the mean sea surface, and
the DNS has a roll-and-pitch-stabilized antenna system. Then,
the NRCS values obtained with beams 1, 2, 3, 4 would be

),( 1..00 a  , ),( 2..00 a  , ),( 3..00 a  , and

),( 4..00 a  respectively.
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Let the beam 1 be used to measure the water surface
backscattering signature because both λ- and x-configured DNS
have it. As a beam 1 axis is directed to the right side and its
mounting angle in the vertical plane is not so far from nadir (at
a straight flight), the circle flight with the left roll should be
completed (Figure 4).

H

V
Beam 1
footprint

Airplane
circle
track

Beam 1
footprint

circle track

c.tR

fa.tR
gR

 s

s

s

1.a.

1.a.

Figure 4. Circle flight geometry for measurement of the water
surface backscattering signature

The DNS uses a fixed-antenna system (physically non-stabilized
to the local horizontal), the flying apparatus makes the circle
flight, and so the values of the incidence angle of the beam and
the beam location in azimuthal plane are not equal to the chosen
design values. An actual incidence angle of the beam 1 θθγ.a.1
and its actual azimuth direction ψθγ.a.1 relative to the aircraft
current course (aircraft ground track) are as following
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where ψ0.a.1 = azimuthal mounting angle of the beam 1 axis
relative to the aircraft course ψ, 01..0 a

γfa = roll angle of flying apparatus (right roll is
positive)
θfa = pitch angle of flying apparatus (pull-up is
positive)

Then, the current NRCS value obtained with the beam 1 is
),( 1..1.. aa    . The radius of the flying apparatus turn

Rt.fa, the ground range Rg, and the radius of turn of the selected
cell middle point Rt.c are described by the following expressions
obtained using the geometry of Figure 4

fa
fat

g

V
R

tan

2

.  (8)

1..tan a
g

H
R


 (9)

1...
22

.. sin2 agfatgfatct RRRRR  (10)

where g = acceleration of gravity, 81.9g m/s2

The time of the airplane turn for 360° (360-degree turn) 360
T

is given by (Mamayev et al, 2002)

fag

V
T





tan
2

360  (11)

Usually, the 360-degree azimuth space is divided into 72 or 36
sectors under the circle NRCS measurement. The azimuth size
of a sector observed is 5° or 10°, respectively. A middle
azimuth of the sector is the azimuth of the sector observed. The
azimuth size of a sector relative to the center point of circle of
the airplane track is s, and the middle azimuth of a sector
is s. The NRCS samples obtained from the sector and
averaged over all measurement values in that sector give the
NRCS value ),( 1.. sa  

 corresponding to the real

observation azimuth angle of the sector s that is

3601..  as s   (12)

where
s = flying apparatus course corresponding to the

real observation azimuth angle of the sector

Real observation azimuth angles of the sector beginning s.b

and of the sector ending s.e are

3602/.  ssbs  (13)
3602/.  sses  (14)

The time of a sector view Ts and the number of samples Ns that
can be obtained from the sector are represented by the following
expressions


360360

s
s TT


 (15)
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a

VT
N s

s 5.0
 (16)

where a = antenna length in the direction of flight.

Thus, to obtain an azimuth NRCS curve of the water surface at
middle incidence angles under flying apparatus circle flight by
the DNS operating in the scatterometer mode and using a fore-
beam directed to the right side at a typical mounting angle in the
vertical plane that is not so far from nadir at a straight flight, the
measurement should be perform in accordance with a scheme of
Figure 5.

Point of the
Beginning and
End of a Circle
Measurement

fa.tR

Figure 5. Scheme of a circle flight for measurement of the
water surface backscattering signature

Measurement is started when a stable flight at the given altitude,
speed of flight, roll and pitch has been established.
Measurement is finished when the azimuth of the measurement
beginning is reached. To obtain a greater number of NRCS
samples for each sector observed several consecutive full circle
turns for 360° may be done.

4. CONCLUSIONS

The study has shown that the airborne DNS operating in the
scatterometer mode can be used for measuring the water surface
backscattering signature in addition to its typical navigation
application.

As the azimuth NRCS curve for a scatterometer with an inclined
one-beam fixed-position antenna can be obtained using the
circle track flight, one beam of the DNS can be used.

Since the mounting angle of the beam axis in the vertical plane
is located not so far from nadir (at a straight flight), the circle
flight with a small roll should be carried out to provide the
azimuth NRCS curve measurement in the range of middle
incidence angles.

The algorithm and method proposed in the paper can be used
for the DNS enhancement, for designing an airborne radar
system for operational measurement of the sea roughness
characteristics. They are particularly important for ensuring safe
landing of amphibian aircraft on the water surface, for example
under search and rescue missions or fire fighting in the coastal
areas and fire risk regions.
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ABSTRACT:

Remote Sensing is trending towards the use of greater detail of its source data, advancing from ever better resolving satellite imagery via
decimeter-type aerial photography towards centimeter-level street-side data. It also is taking advantage of an increase in methodological
sophistication, greatly supported by rapid progress of the available computing environment. The location awareness of the Internet
furthermore demonstrates that large area remote sensing strives for a model of human scale detail. This paper addresses the task of
mapping entire urban areas, where objects to be mapped are naturally three dimensional. Specifically we are introducing a novel
approach for the segmentation and classification of buildings from aerial images at the level of pixels. Buildings are complex 3D
objects which are usually represented by features of different modalities, i.e. visual information and 3D height data. The idea is to treat
them in separated processes for learning and then integrate them into a unified model. This aims to exploit the discriminative power
of each feature modality and to leverage the performance by fusing the classification potentials at a higher level of the trained model.
First, representative features of visual information and height field data are extracted for training discriminative classifiers. We exploit
powerful covariance descriptors due to the low-dimensional region representation and the capability to integrate vector-valued cues such
as color or texture. Then, a stacked graphical model is constructed for each feature type based on the feature attributes and classifier’s
outputs. This allows to learn inter-dependencies of modalities and to integrate spatial knowledge efficiently. Finally, the classification
confidences from the models are fused together to infer the object class. The proposed system provides a simple, yet efficient way to
incorporate visual information and 3D data in a unified model to learn a complex object class. Learning and inference are effective
and general that can be applied for many learning tasks and input sources. Experiments have been conducted extensively on real aerial
images. Moreover, due to our general formulation the proposed approach also works with satellite images or aligned LIDAR data. An
experimental evaluation shows an improvement of our proposed model over several traditional state-of-the-art approaches.

1. INTRODUCTION

Remote sensing is rapidly moving towards half-meter satellite
imagery, decimeter aerial imagery and centimeter-type street-side
photography, and all of these in a multi-spectral mode. Simul-
taneously, large areas of the World are now being mapped at
human-scale detail to support the Internet’s recent appetite for
location awareness. This is resulting in a new domain of large-
area urban mapping, however to result not in photo-textured point
clouds, but in interpreted objects from which one can build a
model of the urban World. A central task is the segmentation
and classification of images of buildings. This needs to be fully
automated to be at sufficiently low cost so that large area map-
ping is feasible.
A large urban area may encompass 150 to 500 square-kilometers.
Large scale aerial imagery may be at a pixel size of 10 cm. Such
large urban area may be covered by 10,000 large-format aerial
photographs at high overlaps. We are thus addressing a challeng-
ing task of scene interpretation and understanding. It is essential
for many location-based applications, such as detailed image de-
scription (Meixner and Leberl, 2010), realistic 3D building mod-
eling (Zebedin et al., 2008) or virtual city construction (Leberl et
al., 2009). Over the years, the automated building extraction has
been an active research topic. Considering a large scale process-
ing, the problem of building classification becomes very difficult
for many reasons. Buildings are complex objects with many ar-
chitectural details and shape variations. Buildings are located in
urban scenes that contain various objects from man-made to natu-
ral ones. Many of those are in close proximity or disturbing, such
as parking lots, vehicle, street lamps, trees, etc. Some objects are
covered with shadows or cluttered. These difficulties make the
problem of a general building detection challenging. Figure 1 de-
∗ Corresponding author.

Figure 1: Typical color images of complex urban scenes taken
from the dataset Graz, Dallas and San Francisco.

picts typical urban scenes taken from three challenging datasets
Graz, Dallas and San Francisco showing some of these difficul-
ties. We therefore propose an approach which combines several
feature cues such as color, texture and 3D information in order to
obtain a reliable building extraction from aerial images.

With the success of the aerial imaging technology, high resolu-
tion images can be obtained cost-effectively. Multiple sources
of data become available, i.e. color, infrared and panchromatic
images (Zebedin et al., 2006). Furthermore, since the aerial im-
ages are taken with a high overlap from different camera view-
points, a dense match approach (Klaus et al., 2006) can be ap-
plied to obtain range images, representing digital surface models
(DSM), from neighboring images. Taking into account the DSM,
3D height information describing the real elevation of each pixel
from ground can be computed. The obtained 3D information in
combination with visual cues can be exploited efficiently for tasks
like accurate building extraction. Figure 2 shows two classifica-
tion results obtained for a scene of Graz by separately incorporat-
ing color and 3D information. It is obvious, that a combination of
both cues will provide an improved classification results. More-
over, aerial images contain a huge amount of data, which requires
efficient methods for processing. This work presents a general
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(a) (b) (c)

Figure 2: A classification result obtained by using only color (b)
or 3D height information (c). In this work we apply a stacked
graphical model in order to combine the strength and advantages
of both pipelines.

yet efficient approach that integrates the power of discriminative
feature cues.

Automatic building classification and extraction has been a very
active research topic in photogrammetry and computer vision for
years. The proposed approaches heavily differ in the use of data
sources, extracted feature types, the applied models or the evalu-
ation methods (Jaynes et al., 2003, Matei et al., 2008, Lafarge et
al., 2008, Mueller and Zaum, 2005, Persson et al., 2005, Xie et
al., 2006, Sirmacek and Unsalan, 2008).
Traditional approaches for general image classification problems
are mainly based on locally extracted features and a learned clas-
sifier that discriminate the object from background. Visual infor-
mation describing the appearance, such as color and texture are
mixed together in a single feature vector to represent the object
instance. A concatenating of multiple feature types into a single
vector may cause an encountered affect, i.e. one feature type may
inhibit the performance of another; besides, it may also cause the
problem of over-fitting due to redundancy and correlation in the
input data (Duda et al., 2001). Moreover, standard learning algo-
rithms, such as Naive Bayes, logistic regression, support vector
machines (SVM) assume that the training data is independent and
identically distributed. This is inappropriate in many cases, as im-
age pixels possess dependencies, e.g. if a pixel is labeled as build-
ing, it is likely that a neighboring pixel is also labeled as building;
non-building pixels tend to be next to other non-building pixels.
The spatial dependencies should be exploited properly to improve
the classification performance rather than classifying each of the
image sites independently.
There have been wide research interests in random field mod-
els, i.e. Markov random field (MRF), conditional random field
(CRF) (Lafferty et al., 2001, Li, 2001), and their variants in the
computer vision community. These models aim to incorporate
contextual information to the decision of the object class for im-
proving the performance of the classifiers. In (Korc and Foer-
stner, 2008), the authors employed MRFs and showed that pa-
rameter learning methods can be improved and that using the ap-
proach to interpret terrestrial images of urban scenes is feasible.
In the vision community, modern approaches exploit graphical
models for integrating additional information about the content
of a whole scene (Shotton et al., 2006, Larlus and Jurie, 2008,
Verbeek and Triggs, 2007).
Recently, Ma and Grimson (Ma and Grimson, 2008) proposed a
coupled CRF model for decomposing the feature space in order
to learn the object classes. Besides, there have been attempts to
model contextual interactions by employing related predictions
in a stacked graphical model (SGM) learning framework (Kou
and Cohen, 2007). This model enables efficient learning and in-
ference. Moreover, the concept of a relational template can be
flexibly exploited to incorporate multi-modal interactions. Our
work can be considered as an extension of both, the coupled CRF

model (Ma and Grimson, 2008) and the SGM learning (Kou and
Cohen, 2007). In this work we propose a novel approach based on
an ensemble of SGM in order to integrate different data sources
for building classification at the pixel level.
In contrast to the work of Matikainen et al. (Matikainen et al.,
2007), where they proposed to use a DSM segmentation and a
classification pipeline discriminating buildings from trees, we fo-
cus on a more direct and general approach. Our model is com-
prised of multiple classifiers that are learned over stages and then
fused together. Each classifier is responsible for a certain fea-
ture modality and modeled as a SGM for the learning procedure.
For each SGM, we propose to use a relational template which
takes into account the predictions not only of related instances of
a certain feature type, but also predictions from other types. This
enables to learn not only spatial knowledge of object class, but
also the inter-modality dependencies. The proposed system pro-
vides a simple yet efficient framework to model a complex object
class such as buildings and exploit the potentials from different
aspects of the object properties. Learning and inference are ef-
fective, general and straightforward, that can be easily applied
for many other learning tasks.

Our paper is organized as follows: In Section 2. we introduce
our novel framework. Section 3. describes the aerial imagery and
the involved feature cues. Section 4. highlights the experimental
evaluation. Finally, Section 5. concludes the work and discusses
open issues for future work.

2. OUR FRAMEWORK

Let the observed data from an input image be X = {xi, 0 <
i < |X|}, where xi is the data from a site i. The problem is to
find the most likely configuration of the labels Y = {yi}, where
yi ∈ {c1 . . . ck}. For an image labeling, a site is a pixel loca-
tion, and a class may be a car, a building, etc. For the task of the
building segmentation each pixel in the aerial image, represented
by a feature vector xi, is mapped to a bit yi ∈ {−1,+1}, cor-
responding to either building or non-building. A traditional CRF
with local potentials and pairwise (spatial) dependencies can be
written as

P (Y |X) =
1

Z(X)

∏

i∈S
A(yi, X)

∏

i,j∈Ni

B(yi, yj , X), (1)

where A(yi, X) corresponds to the local potential of xi given a
class label yi; B(yi, yj , X) is the interaction potential function
which encodes the dependencies between data X, labels at i and
its neighbor j, based on the set of pixels in a neighbor Ni of xi.
Z(X) is a partition function and S defines a set all available im-
age sites. Note that in the formal CRF formulations, potentials
depend on the whole image X , not only on the local site xi. A
SGM can be seen as a simplified form of the CRF, given in Equa-
tion 1, which allows a flexible structure for the interactions and
provides efficient learning and inference. The general stacked
model is formulated as a combination of T multiple components
of conditional distribution that capture contextual information

P (Y |X) =
1

Z(X)

T∏

t=1

pt(yi|X). (2)

The number of components T depends on the model built for a
particular application. The flexibility of a CRF formulation al-
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lows to incorporate multiple aspects of data from the image, such
as: local statistic of an image site, neighboring labels, or poten-
tials from higher levels of contexts. This property will be em-
ployed in our framework, where we propose to use a two-staged
approach.

2.1 The Ensemble Model - Stage 1

We decompose the input feature space into different feature cues,
which represent multiple modalities of the input data. These
types of features may be representative for color, texture and 3D
information. Assuming that T feature types are extracted from
an input image X , X = {Xt}, t ∈ T , then the CRF of the first
stage can be modeled as combination of multiple sources

P(1)(Y |X) =
1

Z(X)

T∏

t=1

pt(1)(Y |Xt), (3)

where each pt(1)(y|x) is a SGM. The main reasons of decompos-
ing the input data and using an ensemble model are: First, as it
has been investigated, object properties such as color, shape, tex-
ture, 3D data, etc. play different roles in distinguishing object
classes (Kluckner et al., 2009, Ma and Grimson, 2008). There-
fore, we treat them separately in different classification processes
and combine them at later stages to infer the object classes (Nils-
back and Caputo, 2004). At the first stage, we employ multiple
strong classifiers learned from different feature modalities. The
classifiers provide a probabilistic class assignment in terms of
a likelihood. In this work, we use efficient randomized forests
(RF) (Breiman, 2001) as base classifiers to generate initial yet
accurate confidence maps (Kluckner et al., 2009, Shotton et al.,
2008). However, any other types of classifiers, that results a class
probability, e.g. boosting, SVM, etc., can be applied to our frame-
work. In order to train the the classifiers of the ensemble, we
use fast covariance matrix descriptors as feature representation as
proposed by (Kluckner et al., 2009). The details for the feature
representation and the base classifier are described in Section 2.3
and Section 2.4.

Since random field modeling approaches exploit contextual infor-
mation to improve the detection rate of standard classifiers, it is
intuitively sensible that different object’s property have their own
context where it is more likely to appear. This is especially true in
our application, where multiple sources of aerial image data are
employed, i.e. color image and height data: it may be claimed
that pixels with similar color could have similar labels; however,
this is not true for height data: pixels with the same height val-
ues may belong to buildings or trees. So, the ensemble model
comprised of multiple SGMs, where each responses to a certain
feature type, is useful to exploit potential of each feature type and
its own context.

2.2 The Ensemble of a SGM - Stage 2

We are interested in a model that captures the dependencies among
different kinds of feature modalities and spatial knowledge as
contexts. Therefore, the second stage of the model is based on the
features and the outputs of classifiers from the first stage. Again,
we treat each type of features separately. At this stage, we model
the dependencies between the feature types and the spatial con-
text. This enables to handle inter-features dependencies and to
learn the interactions at a higher level:

P(2)(Y |X) =
1

Z(X)

T∏

t=1

pt(2)(Y |Xt, p(1)). (4)

We propose a new relational template for the SGM, in which each
feature vector of a certain type is expanded with predictions from
its related instances. In particular, each original feature vector
of a certain feature type is augmented (stacked) with the predic-
tion confidences from its neighboring sites and confidences from
other feature types, which forms a new training set. This allows to
learn the spatial dependencies as well as the inter-modality rela-
tionships. We use an aggregate function to build the new training
dataset: For each feature type t ∈ T , each instance xt

i is ex-
panded with the prediction confidences from its neighbor Nj and
from other feature types ptNj

and pT\tj , respectively:

xt
i,new = (xt

i, p
t
Nj
, p

T\t
Nj

, 0 < j < 8). (5)

Multiple discriminative probabilistic classifiers are now learned
on these new training sets. At this stage, we use a linear SVM
due to efficiency and its discriminative power. Finally, the clas-
sification confidences of the classifiers are fused together for the
inference of the object classes.

2.3 Feature Representation

In the vision community, covariance matrix based descriptors are
widely used for detection and classification tasks (Tuzel et al.,
2006) due to providing a compact and low-dimensional feature
representation. A set of independent feature vectors fi ∈ F ,
where F is an image structure that includes the feature attributes
for e.g. color, height, etc. and i defines an image site, can be rep-
resented by a sample mean µi and a covariance matrix Σi defin-
ing the first and second order statistics. Importantly, extended
integral images (Tuzel et al., 2006) provide an efficient compu-
tation of covariance matrices within rectangular image regions.
Since the space of covariance matrices is non-Euclidean, these
descriptors can not be directly used as a feature representation
for learning RFs or SVMs. Here, we exploit a derived represen-
tation based on Sigma Points (Kluckner et al., 2009) to obtain a
valid feature space, that can be trained with our machine learn-
ing techniques. Please note, due to our general model, any other
feature representation or classification procedure can be applied.

2.4 Randomized Forests as Base Classifier

An RF classifier (Breiman, 2001) consists of a collection ofK de-
cision trees. The nodes of each tree include fast binary decisions
that give the direction of splitting left and right down the tree un-
til a leaf node is reached. Each leaf node l ∈ L contains a learned
class distribution P (c|L). By propagating single class distribu-
tions bottom-up to the root node for all K trees in a forest the
resulting accumulated probabilities yields an accurate class distri-
bution P (c|L) = 1

K

∑K

i=1
P (c|li). As demonstrated in (Shot-

ton et al., 2008, Kluckner et al., 2009), RF classifiers give robust
and accurate results in challenging image classification tasks. To
grow each tree of the forest, node tests are learned by using only a
small chosen subset of the training dataXt (Shotton et al., 2008).
The learning proceeds from the root node top-down by splitting
the subset at each node into tiled left and right subsets. The de-
cisions in the nodes minimize the sample weighted information
gain ratio (Shotton et al., 2008) of the class distribution in cur-
rently available subsets of the training data. Proposed decisions
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in (Shotton et al., 2008) arise by reason of comparing two ran-
domly chosen elements of a given feature vector. At evaluation
time, the class distribution for each pixel is determined by parsing
down the extracted feature representation in the forest. RFs pro-
vide robust probabilistic outputs and are extremely fast to train
and test.

2.5 Learning and Inference

In this work, the RF classifiers provide the local class potentials
for each individual feature type. After obtaining initial classi-
fication confidences at the first stage, the new training sets are
constructed using Equation 5. At the second stage, linear SVMs
are employed to train these new expanded datasets. We keep the
same parameters for individual classifiers at each stage. Thus,
there is no need for a parameter tuning in a high-dimensional
space. After learning, the classifiers are applied to various test
images. However, due to spectral differences in color and spec-
ified height conditions, we have to train individual models for
each dataset of Graz, Dallas and San Francisco. We then com-
bine the confidence maps (rather than hard output of classifiers)
to infer the final object class. Our ensemble model enables to
classify buildings from aerial images and to segment building’s
regions at the pixel level. This involves inferring a true label
for each pixel, which is done by computing the most likelihood
y∗ = argmaxyP (Y |X), given the features X and the classifi-
cation function. The overall procedure for learning and inference
of the model is summarized in Algorithm 1.

Algorithm 1 Learning and Inference
1: Learning algorithm:
2: Given a training set (Xt, Y ), for each feature types t ∈ T .
3: For each feature type t ∈ T
4: - Stage 1: Learn the local model using an RF with (Xt, Y )
5: - Compute a probabilistic class assignment pt(1)
6: - Expand the dataset by stacking (Eq. 5): xti,new = (xt

i, p(1))
7: - Stage 2: Learn the SGM using SVM with (Xt

new, Y )
8: Inference:
9: Given a test image X , for each feature type t ∈ T

10: Compute P t
(1)(Y |X) and P t

(2)(Y |X)

11: Infer final class labels: y∗ = argmaxy
∏

t
P t
(2)(Y |X)

3. AERIAL IMAGERY

We perform experiments on high resolution aerial images ex-
tracted from three datasets (Graz, San Francisco and Dallas) show-
ing different characteristics. The dataset Graz shows a colorful
appearance with challenging buildings, the images of San Fran-
cisco have suburban occurrence in a hilly terrain and Dallas in-
cludes large building structures and is mainly dominated by gray
valued areas. The aerial images are taken with the Microsoft Ul-
traCam in highly overlapping strips, where each image has a res-
olution of 11500× 7500 pixels with a ground sampling distance
of approximately 10 cm. We use two types of image information,
which are: the RGB color image and the 3D height data produced
by using the DSM (Klaus et al., 2006) and a subsequently com-
puted digital terrain model (DTM) (Champion and Boldo, 2006).
By combining the DTM and DSM, we obtain an absolute eleva-
tion per pixel from ground, which is used as the 3D height infor-
mation. Additionally, we exploit texture information, provided
by processing the color images with first-order derivative filters.
Figure 3 shows a typical scene taken from Graz, including the
color image, the hand-labeled ground truth mask and the corre-
sponding normalized 3D information. In our approach we exploit
such ground truth map with two classes to train our classifiers in
a supervised manner.

Figure 3: A scene taken from the Graz dataset: the color im-
age, the hand-labeled ground truth map and the corresponding
normalized 3D height information (from left to right).

Graz Classification Accuracy (%)
Model types Overall Building Non-Build.

SVM 88.15 91.47 85.77
RF 85.42 76.95 91.46

Stacked RF model 88.39 91.45 88.39
Our SGM model 91.65 93.38 91.09

Dallas Classification Accuracy (%)
Model types Overall Building Non-Build.

SVM 93.11 90.40 94.41
RF 91.76 75.86 99.39

Stacked RF model 93.31 90.94 94.63
Our SGM model 93.76 90.81 95.12

San Francisco Classification Accuracy (%)
Model types Overall Building Non-Build.

SVM 87.97 81.31 96.79
RF 91.17 89.33 93.62

Stacked RF model 92.12 88.34 94.32
Our SGM model 93.98 94.40 93.42

Table 4: Performance evaluation of different models in terms of
correctly classified pixels obtained for the datasets Graz, Dallas
and San Francisco. We compute a global rate and the accuracy
individually for each of the classes building and non-building
by considering a hand-labeled ground truth map. The accuracy
measurements for the building and non-building class are also re-
ferred to as completeness and correctness, respectively. The rates
are given for the models integrating the visual feature cues and
the 3D height information.

4. EXPERIMENTS

In this section we evaluate our proposed framework on a large
amount of real world data. We compare the performance of our
model to several traditional state-of-the-art approaches. The com-
parisons include the performances of a traditional RF and SVM
classifiers, both integrating appearance and 3D height, a SGM
with RFs as base classifier (in the following we call it a stacked
RF), and our ensemble model also including the second stage of
our approach. Each of the base RF classifiers consists of K =
8 trees with a maximum depth of 14. For the stacked models
(including the stacked RF and our ensemble model), the cross-
validation parameter is set to 4 and the relational template takes
into account 8 direct neighboring pixel sites. We use a linear
SVM for learning the stacked RF and our ensemble model at the
second stage. The feature instances are collected on a regular im-
age grid incorporating a small spatial neighborhood of 11 pixels
in order to include important context information. The covariance
feature representation based on Sigma Points comprises a com-
pact statistical description of an image region with a dimension
of d′ = d(2d + 1), where d denotes the number of considered
feature modalities. Note, we consider each color channel of an
RGB image as a single modality.
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(a) (b) (c)

Figure 5: The corresponding classification results for the images
presented in Figure 2 by integrating appearance and height infor-
mation: (a) the ground truth image, (b) the results obtained by our
SGM and (c) a traditional RF based classification. Compared to
Figure 2, our SGM obtains sharp delineated building boundaries
and false positive classified regions are consistently eliminated.

For training and testing the model, six representative triplets ex-
tracted from the large images are used. Each of these sub-images
has a size of 4000×3200 pixels. The images cover large dense ur-
ban areas, which contain various complex objects, such as build-
ings of variant sizes and complex architectures, road net, parking
lots, trees, shadow, water surface, etc. For the quantitative com-
parison we evaluate each labeled pixel with respect to the avail-
able ground truth data.

Considering Figure 2, it is obvious that a classifier, only trained
on 3D features, fails in river regions, where the dense matching
process provides regions with many undefined heights. In addi-
tion, tree areas are classified as buildings due to similar building
height. By using only the 3D height data an RF classifier obtains
a detection rate of 78.57% on this scene extracted from Graz.
Exploiting only the visual feature modality, the raw RF classi-
fier correctly assigns the pixels at a rate of 79.20%. However,
there are significant missed detections in regions on the ground,
that have similar appearance as buildings. A combination of the
height and the visual features within an RF classification process
significantly improves the final labeling at the pixel level to an
accuracy of 85.42%. By integrating the height field data with
the visual information within our proposed SGM framework, we
obtain an overall pixel classification rate of more than 90% on
all three datasets. The detection rates in terms of accuracy at the
pixel level of different models are summarized in Table 4. The
supervised segmentation of building regions obtained by a tra-
ditional RF classifier is shown in Figure 5(c), while the perfor-
mance of our SGM is depicted in Figure 5(b).

The classification is given as raw outputs of each model with-
out applying a post-processing step. However, this could be done
to remove small noisy areas on the ground. Besides, our SGM
obtains sharp delineated building boundaries and false positive
classified regions are consistently eliminated. The improvement
is obvious and results from the feature decomposition and inte-
gration at higher level with spatial context. Moreover, we ob-
tain a very fast learning and inference thanks to the intrinsic sim-
ple model structure and the efficient relational template for the
stacked graphical learning. A classification of an image with a
dimension of 4000×3200 pixels can be obtained within few min-
utes using an unoptimized implementation. Figure 6 shows an
improved performance of our approach compared to traditional
state-of-the-art methods such as RF classifiers on larger scenes
taken from Dallas and San Francisco, respectively.

5. CONCLUSION

We have proposed an efficient approach for learning multiple fea-
ture modalities, i.e. visual features and 3D height data. Our
method decomposes an input feature space into different feature
modalities in order to train individual probabilistic classifiers. In
this work we used randomized forests as base classifiers, trained
with various feature types, at the first stage of a stacked graphical
model. Then, an ensemble of stacked models with a novel rela-
tional template has been employed for learning the dependency of
different modalities. We successfully applied the proposed model
to the challenging problem of the building classification task in
high resolution aerial images, taken from three different datasets.
Experiments have shown an improvement of our approach over
several traditional state-of-the-art methods. The model is suit-
able for learning 3D objects like buildings from aerial imagery,
but can be applied for other object classes. Due to efficiency, the
proposed framework provides a promising application for large-
scale computation in aerial imagery. For future work there should
be more study on modeling context information for each feature
type, which represent different aspects of data. Multiple kernels
would be helpful in weighting the contribution of each source of
information. In addition, we plan to apply our framework to var-
ious detection tasks in standard evaluation image collections.
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ABSTRACT:

The objective of this research is to evaluate multi-temporal RADARSAT-2 polarimetric SAR data for urban land-cover classification
using a novel classification scheme. Six-date RADARSAT-2 Polarimetric SAR data in both ascending and descending orbits were
acquired during June to September 2008 in the rural-urban fringe of the Greater Toronto Area. The major land-cover types are built-
up areas, roads, golf courses, forest, water and several types of agricultural crops. In this research, the different urban land-cover
types and their corresponding polarimetric behaviors were studied. The polarimetric signatures of the various urban land-cover types
were extracted from the RADARSAT-2 SAR images and analyzed using a new hierarchical multitemporal classification method. The
results showed that the new classification method yielded high classification accuracy, with overall accuracy of 82.1% and Kappa
coefficient 0.80 for the major 11 land-cover classes. The classification scheme can effectively extract the urban structures by
mapping urban related classes such as streets and major roads with the higher user’s accuracy, which is difficult to achieve using a
single-date data.

1. INTRODUCTION

In 2008, the world crossed an invisible but momentous
milestone: the point at which more than half the people on the
planet living in cities (The World Watch Institute, 2007).
Urbanization and the impact of human settlements are two of
the main causes of global environmental degradation. Therefore,
mapping and monitoring urban landuse/land-cover and their
changes in a timely and accurate manner is of critical
importance for sustainable urban planning and environment
protection (Ban et al., 2010). With the launch of advanced
remote sensors in recent years such as RADARSAT-2 SAR and
TerraSAR-X, multi-temporal, high-resolution, polarimetric
SAR data are becoming routinely available for surveying fast
expanding urban areas.

Comparing with the single-polarization SAR data, Polarimetric
SAR data provide the description of the land features from the
observations of various polarizations. Thus, more information
can be explored for classification. In the literature, the studies of
the polarimetric SAR data focus on the generation of the
efficient descriptors from the scattering coefficients and
introducing those descriptors to the conventional classification
methods. The Cloude/Pottier decomposition (Cloude and
Pottier, 1997) and freeman decomposition (Cloude and Pottier,
1996) are well-known examples.

To improve the classification accuracy, multitemporal data have
been used whenever the data are available (e.g., Ban & Howarth,
1999; Goodenough & Chen, 2005; Waske et al., 2006). The
advantages of the multitemporal classification could be given in
the following aspects. (1) The rarely changed parts in different
dates will confirm each other to increase the credibility. (2) The
temporal attributes could be exploited for certain classes such as

crops. (3) Data from different orbit, for example ascending and
descending, will provide complement views of the observed
scenes. Various studies have been conducted using multi-
temporal and/or polarimetric SAR data. For examples, Galli et
al. (2007) investigated a joint segmentation technique on a
sequence of multi-temporal single-channel SAR images to
improve the classification. Tan et al. (2007) assessed SVM
classifier for classification of crops using multi-temporal
Polarimetric SAR data. Park and Chi (2006) investigated a
fuzzy logic fusion of multi-temporal multi-polarization SAR
data for landcover classification. Shimabukuro et al. (2007) led
a case study on the mapping of the deforested area using multi
date JERS-1 SAR data with HH polarization. Goodenough &
Chen (2005) fused the Polarimetric SAR data sets from winter
and summer to map the different forest types. Waske et al.
(2006) used the decision tree to map urban and rural using the
multi-date data. Chen et al. (2007) explored the feasibility of
residential and rural area classification using multi-temporal
SAR images using knowledge-based approach.

Few studies, however, used high-resolution polarimetric SAR
data for urban analysis due to data availability. And to the best
of our knowledge, there is no research on the classification of
the high-resolution RADARSAT-2 polarimetric SAR data in
urban areas.

Furthermore, using the high-resolution SAR data also poses
new challenges on urban land-cover classification due to the
complexity of the urban environment. Thereby, it is necessary to
exploit the contextual and spatial information as well as
knowledge-based approach to improve classification reuslts
(Ban and Hu, 2007; Ban et al, 2010).

Thus, in this paper, we propose a new rule-based hierarchical
classification method, using multitemporal Polarimetric SAR
data to map urban land-cover and extract the fine urban
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structures. The specific objectives are: 1. to evaluate the
capacity of the RADARSAT-2 fine-beam polarimetric SAR for
the urban mapping; and 2. to investigate the effectiveness of the
proposed multitemporal classification schemes.

2. STUDY AREA AND DATA DESCRIPTION

The study area is located in the north and northwest of the
Greater Toronto Area (GTA), Ontario, Canada, where rapid
urban expansion is underway. The major land use/land-cover
classes in the rural-urban fringe area are high-density area, low-
density area, wide roads and airports, path, parks, golf courses,
forests, water and several types of crops. Those classes were
chosen to characterize the complex area.

The data used for this research consist of six-date RADARSAT-
2 fine-beam polarimetric SAR (PolSAR) data, which contain
the HH, HV, VH and VV polarizations. The centre frequency at
this beam mode is 5.4GHz, i.e., C-band and the spatial
resolution is 8 meters. The detailed descriptions of these images
are given in Table 1.

Data Orbit Incident angle range
(degree)

Jun. 11 2008 Ascending 40.179~ 41.594
Jun. 19 2008 Descending 40.215~ 41.619
Jul. 05 2008 Ascending 40.182~ 41.597
Aug. 06 2008 Descending 40.197~ 41.612
Aug. 22 2008 Ascending 40.174~ 41.590
Sep. 15 2008 Ascending 40.173~ 41.588

Table 1. RADARSAT-2 Fine-Beam SAR Imagery

The six-date SAR data are acquired during June to September in
2008, when most of the crops experienced the seasons from
flourish to harvest. In contrast, the urban area kept stable in
such a short term. Two data groups are naturally formed
according to their orbit mode. Thus, the June 11, July 05,
August 22, September 15 images make up the ascending group
while the June 19, August 06 comprise the descending group.

The different orbit modes introduce different views of the
observed objects, which can be used to complement each other.
However the angles also pose a challenge to image registration
due to the different radar look directions.

In spite of that, all the data are collected in the similar incident
angles. Hence the multi temporal data within each group could
match each other well, which will benefit the multitemporal
classification.

3. METHOD

The proposed hierarchical object-based rule-based classification
is illustrated in Figure 2. First, the whole scene was segmented
at multi scales using the Pauli parameters derived from the
filtered raw Polarimetric SAR data. Secondly, land-cover/land
use classes were extracted into different feature layers. Finally
we combine those layers in hierarchy according to their

credibility levels. The multitemporal feature extraction schemes
lies in two aspects: 1.The layer of urban and rural is the
classification result on the stacked multi-date data. 2. Any other
layer is the fusion result of that specific class from multiple
single-date classifications.

Figure 2. Multitemporal classification scheme

3.1 Orthorectification and Registration

All the six-date RADARSAT-2 fine-beam polarimetric SAR
data are orthorectified by the DEM with resolution of 30m.
Then all the data are registered to the National Topographic
Database (NTDB) vector data. The images could overlay each
other well that all the streets are perfectly matched, especially
for data in the same orbit mode, i.e., ascending or descending.
That excellent overlapping is the base for our multitemporal
classification scheme.

3.2 Preprocessing and Pauli decomposition

First, we extract the hermitian coherency matrix <T> for all the
raw polarimetric SAR data. The coherency matrix was then
filtered by Lee refined filter (Lee, 1981). The number of looks
and the window size are set as 2 and 7 respectively. The Pauli
parameters are directly obtained as the diagonal elements of the
coherency matrix <T>.

The Pauli parameters (Cloude and Pottier, 1996): |HH+VV|,
|HH-VV|, |HV| are the measurements of the relative powers of
the three physical models: odd-bounce, dihedral oriented at 0
degrees and volume scattering. The real examples for the above
models are rough surface, urban building and vegetation
respectively. Since the total power of the targets is equal to that
of the backscattering matrix. It is often used for illustration.

Although we do not use all the other elements in the coherency
matrix <T>, i.e., the real and image parts of (HH+VV)(HH-
VV)*, (HH+VV)HV* and (HH-VV)HV* which together
represent all the polarization information, the Pauli parameters
could present the most contrast between the land-cover/land use
classes. In this experiment, the logarithm (base 10) of the Pauli
parameters is used as the spectral channels for classification.

3.3 Multi-Scale Segmentation with eCognition

In the experiments, the multiresolution segmentation algorithm
in eCogniation is selected as the segmentation method. This
segmentation technique aims to locally maximize the
homogeneity within the objects. This process, which starts from
the pixel level, iteratively aggregates the neighboring candidate
segments until they reach the given scale. The homogeneity
criterion makes a trade-off between the spectral and spatial
domain. In spectral domain, the homogeneity is decided by the
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standard deviation, while in the shape domain, there is a
balance between the compactness and smoothness. (Baatz et al.,
2004).

In this research, multi-scale segmentation hierarchy is
constructed for each single date data. This hierarchy has three
segmentation levels whose scales are 50, 100 and 200. The
higher level is the merge result of the lower level. The shape
and compact parameters for segmentation are set as 0.4 and 0.5
for the scale 50, 0.5 and 0.5 for the scale 100 and 200. Those
empirical segmentation parameters for all the date data are
selected by trials and comparisons.

The reasons for using the hierarchical multi-scale segmentation
layers are: 1. The land-cover/land use type needs appropriate
shape size to be represented. For instance, the water pond, golf
course area are directly extracted from the smaller scale/higher
level layer, while the streets are from the larger scale/lower level
layer. 2. The relationship between the super or sub
segmentation layers offers spatial information of the object’s
surroundings. For example, the mapping of the park benefits
from the information from the classification of higher level/
smaller scale segmentation layer.

3.4 Rule-based Class Layer Extraction and Multitemporal
Fusion

As mentioned, the class layer of water, street, wide road, golf or
park is the fusion of that specific class from multiple single-date
classification results. However, the urban and rural areas are
classified on the stacked multi-date data. The golf course class
is extracted from the segmentation level with scale of 200 and
wide road and water from the level of scale 100 while the rest
are from the level of scale 50.

The advantages of the hierarchical layers extraction could be in
two folds: 1.We can focus on some specific land-cover classes
to specifically improve their classification accuracy. 2. Different
layer fusion schemes can be employed for different purposes
(e.g., to achieve high user’s accuracy or producer’s accuracy).

The rules involved in the classification consist of criterions
considering the objects’ data value and shape. On one hand, for
the classes such as water, forest, crops and urban which are
distinguished by the data value, the standard nearest neighbor
classifier is applied to obtain the initial classification results
based on the samples. Since the segmentation results are various
for different date data, the samples are not exactly the same for
all the date data, but they all collected from the same area. On
the other hand, the road and street are extracted by the shape
characters and the relationships with the neighboring classes.
Following are the descriptions of such rules and fusion schemes
for each class.

3.4.1 Water: The water class is extracted by standard nearest
neighbor classifier with the mean values and the standard
deviation on scale 100. On this level, most of the ponds are
segmented as an entire part. Thus, the other small low scattering
objects like the shadow will be excluded from this level and not
mistaken as water.

The water area extracted from the single date has higher
accuracy. However, some turbid ponds has the scattered values
behaved differently in one looking direction and another. For
instance, in figure 3, the pond from June 11 (ascending) has
higher scattered values while in June 19 (descending) it has

normally low values. Therefore, first we make the intersection
of the water layers within each ascending or descending group.
Then, the two group intersection layers are combined as the
final water layer.

Figure 3. Comparison of the Pauli image of the water pond .
From left to right are ponds from June 19 (descending) and June

11(ascending)

3.4.2 Golf Course: The golf course is a complex area
consists of grass, pond, bare field and some houses. However, at
the higher segmentation scale, those adjacent ingredients can
form a distinct part from the surrounding. It can be found from
figure 4 that at scale 200, the golf area is well segmented and
distinct from the other part. Thus the golf is extracted by
standard nearest neighbor classifier with the mean values and
the standard deviation on scale 200.

Figure 4. Comparison of segmentation results of different scale
size of the golf area. From top left to bottom right are the golf
Pauli image from June 19 and its segmentation result of scale

50,100 and 200.

Since the segmentation result is not always perfectly matched
the golf area, thus the fusion layers formed by stacking the golf
class from all the dates. If in some area the overlap time exceeds
certain threshold, this area will be labeled as golf course.

3.4.3 Street: The streets are distinguished on scale 50 by its
shape characters and the relationship with the urban area. The
street segment should be the narrow winding object which has
the higher roundness (defined by the difference of the radius of
the smallest enclosing ellipse and the largest enclosed ellipse)
and lower rectangular fit (defined as the fitness to the rectangle
which has the same area). The width of the skeleton of the street
should be smaller. And it should border on more urban objects.

The fusion scheme of the street layer is similar to the golf layer.
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3.4.4 Wide road: Similar to the street, the wide road is
mainly extracted by the shape characters. Comparing with the
street, the wide road has wider width, and less curves. Thus, the
longer wider segment will be marked as wide road. Thereby, the
rules would consider the ratio of the length to the width, the
width range. Furthermore, the flat road usually has lower
scattering. Since the wide roads often run through the urban
area, it has higher contrast to the brighter neighbor objects.

Those criterions are combined to map the wide road of each
single date on the segmentation level of scale 100. Then the
results from multi date fuse like the process of the street layer.

3.4.5 Park: The park is defined as the vegetation or bare
field embedded in the urban area. Thus the initial classified
crops enclosed by the urban patch will be marked as park.
However, the scattered odd man made structures in the rural
will lead the mistakes by labeling the adjacent crops as park.
Thus, we first map those areas with scattered houses embraced
by crops as rural on the higher segmentation level of scale 100
to avoid such error. Then the park will be marked at the lower
level of scale 50 based on the relationship both to the super and
neighboring objects. The multi date result fusion is the same to
road.

3.4.6 Rural and urban: The rural and urban area (including
the forest) is simply segmented and mapped on the stacked
ascending data group, using the standard nearest neighbor
classification with the mean value and standard deviation of the
data. We do not choose the descending group to distinguish the
urban and rural because of its poor performance to discriminate
the low density area from the forest. Since the ascending group
has four date data from different seasons, the multi-temporal
character of crops can be explored to improve the classification
accuracy. Figure 5 gives the illustration of 2 kinds of crops in
the time sequence of ascending group.

3.5 Hierarchical Fusion Scheme and Post-processing

All the class layers are one by one input as the thematic maps
given the rural and urban layer as the base layer to be fused on.
While one class layer are being fused, on the base layer, the
objects which were covered by the class feature beyond certain
portion will be labeled as that class. It is to avoid the scraps as if
we directly superimpose the class layers on the base layer, since
our class layers are the fusion from different segmentation
results. The labeling process is in the order of layer of park,
wide road, street, golf and water. The higher the hierarchical
layers, the more accurate they are, and less confused with the
others. The credibility of the class layers depends on the class’
character and the extracting schemes. For example, the park is
often confused with street, wide road, thus, it will be mapped
below those two layers. The golf course often contains ponds,
thus the water layer is on it.

Post-processing consists of two approaches: 1. On the fused
map, we strict certain criterions to mark the potential objects for
specific classes as we get the fused map with higher accurate
context information than the single date data. For example,
some potential streets in the fused map may be found and
connected. 2. The map is filtered to remove the tiny isolated
objects within another class. For example, the shadows or the
trunks in the forest area could be removed.

3.6 Accuracy Assessment

For the accuracy test, the Quick-bird images, NTDB vectors and
maps are referred. Test areas which contain more than 2000
pixels for each class are randomly selected. The quality of the
classification results is assessed by various parameters such as
overall accuracy and Kappa coefficient of agreement (or Kappa).
They were analyzed to compare classification results with the
reference data in confusion matrices.

Figure 5. The temporal character of crop 2 (top 4 Pauli images)
and crop 3 (bottom 4 Pauli images), from left to right are from

June 19, July 05, August 22 and September 15. All from
ascending groups.

4. RESULT AND DISCUSSION

For 11 urban land-cover classes, the overall classification
accuracy of 82.1% and Kappa coefficient 0.80 are achieved
using our method. The confusion matrix (Table 6) shows that
HD, LD, Forest, Water and Agriculture are classified very well.
Water (96.66%) and low density area (88.42%) achieve very
good accuracies. Park (72.08%) and golf course (75.4%) have
relatively lower accuracies as they are difficult to be
discriminated from crops or water ponds due to the similar
backscattering, As a result of our strict fusion rules, however,
they could achieve higher user accuracies. The wide roads
(80.76%) and streets (80.63%) are well classified to illustrate
the urban structures. Figure 7 shows the example of the wide
road and street layers.

The character of our multitemporal classification scheme can be
seen from the table that the classes of man-made categories have
higher user accuracies. Because rules for those class layers are
carefully defined in our fusion schemes, like park and golf.
Although the wide road has relatively lower user’s accuracy
(79.54%), it is caused by the vague definition between street
and itself. That is why wide road had a large omission error to
street. But if we uniformly treat those two classes as road, the
accuracy will definitely become much higher.

The park class has the most complicated situation. Not all the
vegetation within the enclosed in the urban area are parks, and
there are some parks on the fringe of the urban as well. That
makes the rules for identifying parks difficult. The crops are
mainly confused among themselves and with the park class.
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Reference data (Percent)

Class Water HD LD Crop1 Crop2 Crop3 Road Street Golf Forest Park User’s Accuracy

Water 96.66 0.00 0.00 0.00 0.00 0.00 0.00 1.56 2.12 0.00 0.00 93.11
HD 0.00 82.44 4.79 0.00 0.00 0.00 0.00 1.17 0.00 4.73 0.00 84.76
LD 0.00 14.42 88.42 0.00 0.00 0.00 1.57 9.24 0.00 0.00 0.00 74.97
Crop1 0.00 0.00 0.00 81.27 10.68 20.92 3.97 0.53 15.12 6.35 20.48 31.14
Crop2 0.00 0.00 0.00 8.94 87.48 0.00 0.00 0.00 0.00 0.00 0.00 95.07
Crop3 2.41 0.00 0.00 0.00 1.84 79.08 2.66 0.57 1.74 1.62 0.00 88.62
Road 0.92 1.64 0.00 0.00 0.00 0.00 80.76 0.76 2.57 0.52 5.16 79.54
Street 0.00 0.13 0.00 0.00 0.00 0.00 10.95 80.63 0.00 0.00 2.28 91.81
Golf 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 75.04 0.00 0.00 100.00
Forest 0.00 0.00 0.58 0.00 0.00 0.00 0.00 0.00 2.10 86.78 0.00 97.33
Park 0.00 1.37 6.21 9.79 0.00 0.00 0.00 0.09 5.53 1.31 72.08 80.33
Producer’s
Accuracy

96.66 82.44 88.42 81.27 87.48 79.08 80.76 80.63 75.04 86.78 72.08

Table 6. Confusion Matrix.

Figure 7. The wide road structure (left) and part of the street
layer (right)

Figure 8 illustrates four examples from our classification result
compared with the Quickbird images. It is observed that the
classification of built-up areas, wide road, street networks, golf
course, and agricultural fields match the features in the
Quickbird images very well.

Comparing with the previous multitemporal classification
methods such as Chen et al. (2007) and Park and Chi (2006),
the novelty of our method could be summarized in the
following way: 1.Our method combines the hierarchical fusion
schemes with the multitemporal conception thus could offer
robust and high accuracy for specific classes, while the previous
method could only treat all the classes with the same criterions.
2. Comparing the other urban studies such as Waske et al.
(2006), we could offer more classes to reflect the finer urban
structures, while most of the previous studies only focus on
mapping the whole urban area. And even there are
considerations of the structure mapping, their methods are
mostly directed for the wide, major roads extraction, while our
scheme propose a efficient way enable to explore the finer
structures like streets and parks.

5. CONCLUSIONS

RADARSAT-2 fine-beam polarimetric SAR data were
evaluated for land-cover mapping in the rural-urban fringe of
the Greater Toronto Area. The multi-temporal hierarchical
fusion method applied on the six-date data generates higher
classification result, with overall accuracy of 82.1% and Kappa
coefficient 0.80 for the major 11 land-cover classes including
high-density built-up areas, low-density built-up areas, wide

roads, street, forests, parks, golf courses, water and several
types of agricultural lands. The results indicated that the fusion
scheme can effectively extract the urban structure by mapping
urban related classes such as streets and major roads with the
higher user’s accuracy, which is difficult to achieve using a
single-date data.
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Figure 8. Land-cover classification: selected examples, each
comparison consists pair of classification result and the Quick-

bird reference map.
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ABSTRACT: 
 
Fusion of optical and radar remote sensing data is becoming an actual topic recently in various application areas though 
the results are not always satisfactory. In this paper we analyze some disturbing aspects of fusing orthoimages from 
sensors having different acquisition geometries. These aspects are errors in DEM used for image orthorectification and 
existence of 3D objects in the scene. We analyze how these effects influence a ground displacement in orthoimages 
produced from optical and radar data. Further, we propose a sensor formation with acquisition geometry parameters 
which allows to minimize or compensate for ground displacements in different orthoimages due the above mentioned 
effects and to produce good prerequisites for the following fusion for specific application areas e.g. matching, filling 
data gaps, classification etc. To demonstrate the potential of the proposed approach two pairs of optical-radar data were 
acquired over the urban area – Munich city, Germany. The first collection of WorldView-1 and TerraSAR-X data 
followed the proposed recommendations for acquisition geometry parameters, whereas the second collection of 
IKONOS and TerraSAR-X data was acquired with accidental parameters. The experiment fully confirmed our ideas. 
Moreover, it opens new possibilities for optical and radar image fusion. 
 
 

                                                                 
*  Corresponding author. 

1. INTRODUCTION 

Data fusion is an extremely emerging topic in various 
application areas during the last decades. Image fusion in 
remote sensing is one of them. However fusion of different 
sensor data such as optical and radar imagery is still a 
challenge. In this paper the term ‘radar’ is equivalent to 
Synthetic Aperture Radar (SAR). Though the data fusion is well 
spread over different communities there are quite few attempts 
of its definition. The first one is the so called JDL information 
fusion definition (U.S., 1991) popular in military community. 
This definition is based on the functional model including 
processing levels and full control on sensors thus making it 
difficult to transfer to other communities. Another data fusion 
definition more suitable for a broader community is introduced 
in (Pohl, 1998) mainly emphasizing (and thus simultaneously 
limiting to) methods, tools and algorithms used. A more general 
definition is proposed in (Wald, 1999; Data Fusion Server) as a 
formal framework in which are expressed the means and tools 
for the alliance of data originating from different sources. 
According this definition an alignment of information 
originating from different sources now becomes a part of the 
fusion process itself.  
There exist numerous remote sensing applications e.g. image 
matching and co-registration (Suri, 2008), pan sharpening 
(Klonus, 2008), orthoimage generation, digital elevation model 
(DEM) generation, filling data gaps, object detection, 
recognition (Soergel, 2008), reconstruction (Wegner, 2009) and 
classification (Palubinskas, 2008), change detection, etc which 
are already profiting or can profit significantly from a data 
fusion. 
For the fusion of data from sensors exhibiting different 
acquisition geometries such as optical and radar missions it is 
important to understand their influence on a fusion process and 

to optimize it if necessary. Of course having not a full control 
on sensors as in a military community it is not so easy but is 
still possible to influence some acquisition parameters. In this 
paper we analyze the effect of ground displacements in 
orthoimages of optical and radar sensors due to the height error 
in the DEM used during orthorectification process and 3D 
objects characteristics (height) for various data acquisition 
parameters such as sensor look angle (elevation) and look 
direction, satellite flight direction and sun illumination 
direction. 
The paper is organized in the following way. First, the 
methodology used for the proposed approach is presented in 
detail. Then, data used in experiments are described, followed 
by the presentation of experimental results, conclusion, 
acknowledgments and finally references. 
 
 

2. METHOD 

In this section we analyze two effects: height error in DEM 
used during orthorectification process and 3D object height and 
their influence on ground displacements in orthoimages from 
optical and radar sensors. The study results in a proposal of 
several data acquisition parameters: sensor look angle 
(elevation) and look direction, satellite flight direction and sun 
illumination direction leading to an optimal sensor formation 
for the following optical and radar data fusion. 
 
2.1 Effect of DEM height 

Ground displacement Δx due the height error Δh in the DEM 
for an optical and a radar sensor orthoimage is shown in Figure 
1.  
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Figure 1. Ground displacement Δx due the height error Δh 
(positive and negative) in a flat DEM for an optical and radar 
sensor orthoimage. Look directions: pink line for an optical 

sensor, blue line – radar sensor. The green horizontal line stands 
for a true DEM, whereas the red line stands for an error in the 

DEM (same for both sensors). Similarly, the green circle stands 
for a true ground position of a 2D point, whereas the red circle 
– a displaced position. Thin black lines perpendicular to blue 
line show approximately the radar wave propagation. Flight 

track is into plane. 
 
Ground displacements are equal to 
 
                                optopt hx θtan⋅Δ=Δ                              (1) 

 
for optical sensors and 
 

                                  
rad

rad
hx
θtan
Δ

=Δ                                  (2) 

 
for radar sensors. We have to note, that ground displacements 
are towards the sensor for the optical case and opposite for the 
radar case (sign of displacement is ignored in formulae). For 
details on radar geometry see e.g. (Oliver, 1998). 
 
2.2 Effect of 3D object height 

Ground displacement Δx for a 3D object of Δh height for an 
optical and a radar sensor orthoimage is shown in Figure 2. 
 
Formulae for ground displacements are the same as in the 
previous sub-section: for optical case equation (1) and radar 
case - (2). The only difference is a displacement direction: it is 
away from sensor for the optical case and opposite for the radar 
case. 
 

 
 

Figure 2. Ground displacement Δx for a 3D object of Δh height 
for an optical and radar sensor orthoimage. Look directions: 

pink line for optical sensor, blue line – radar sensor. The green 
horizontal line stands for a flat DEM, which doesn’t include 

height information of objects. The green circle stands for a true 
ground position of a 3D point, whereas the red circle – a 

displaced position. Thin black line perpendicular to blue line 
shows approximately the radar wave propagation. Flight track is 

into plane. 
 
2.3 Equality of displacements 

We have seen in the previous sub-sections that sizes of ground 
displacement are different (different formulae) for optical and 
radar sensors and, moreover, displacement directions are 
opposite for different sensors. The size equality of ground 
displacements 
 
                                          radopt xx Δ=Δ                               (3) 

 
is fulfilled for the following sensor look (elevation) angles 
 
                                        °=+ 90radopt θθ                            (4) 

 
We have to note, that smaller ground displacements are 
obtained in case of 
 
                                            radopt θθ <                                  (5) 

 
In order to compensate opposite displacement directions for 
different sensors the look directions of different sensors should 
be opposite. Under the conditions of (4) or (5) structures in 
optical and radar images appear almost in the same positions 
thus leading to an easier interpretation and further processing of 
joint data. 
 

θ 

Δh 

Δxopt 

Optical/Radar Sensor 

Δxrad 

θ 

Δh 

Δxrad 

Optical/Radar Sensor 

Δxopt 
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2.4 Optimal sensor constellation 

In this sub-section we propose an optimal optical and radar 
sensor formation for an image acquisition compensating/ 
minimizing ground displacement effects of different sensors 
(see Figures 3, 4). A sum of look angles should give 
approximately 90° (Figure 3). 
 

θrad 

Radar sensor Optical sensor

θopt

θopt+θsar=90° 

Earth surface  
Figure 3. Proposed optical and radar sensor formation is 

illustrated. A sum of look angles should give 90°.  
 
Flight directions should be as parallel as possible and 
perpendicular to look directions which are opposite for different 
sensors (Figure 4). Same flight directions are not required in 
general e.g. airborne case. A sun illumination direction is from 
an optical sensor to the target on the Earth in order to see a side 
of a 3D object which is in shadow in radar image and thus 
enable full reconstruction of a 3D object. This sensor 
configuration allows a recovery of 3D object shadows during 
further data fusion, except a case when the Sun illumination 
direction is the same as for SAR look direction. Displayed left 
looking radar and right looking optical sensor formation can be 
preferable due to the Sun illumination direction which is from 
an optical sensor to the target on the Earth in order to see that 
side of a 3D object which is in shadow in the radar image and 
thus enable full reconstruction of a 3D object. Of course, the 
second sensor formation with a right looking radar and left 
looking optical sensor can be useful for data fusion too. 
Our approach could be applied in both airborne and space 
remote sensing. As an example we consider the latter one.  
Currently, most space optical remote sensing satellites are 
acquiring data in descending mode, so a radar satellite should 
also acquire in a descending orbit. Thus both satellites would 
fly in the same direction (quasi-parallel orbits). The 
requirement of opposite look angles and a special sun 
illumination direction result in a left looking radar sensor and a 
right looking optical sensor what is achievable with current 
radar missions though not in a nominal mode (left looking 
radar). Additionally, larger look angle of SAR sensor than look 
angle of optical sensor allows minimizing the sizes of ground 
displacements. 
 
 

3. DATA 

The German Aerospace Center DLR and DigitalGlobe have 
been engaged in a modest R&D project to investigate 
complementary uses of Optical and Radar data. Coordinated 
collections of high resolution TerraSAR-X (TS-X) and 
WorldView-1 (WV-1) data during July-August 2009 have been 
acquired. For this experiment one scene of WorldView-1 over 
Munich city, Germany has been acquired. For more detail on 

TS-X see (Eineder, 2005). Other scenes of the same urban area 
of TerraSAR-X and IKONOS have been ordered from existing 
archives. 
 

Radar sensor 
Flight direction 

Optical sensor
Flight direction 
 

Radar sensor 
Flight direction 
Radar sensor 
Flight direction 

Look direction 

Sun 

Earth 

N 

S 

 
Figure 4. Proposed optical and radar sensor formation is 
illustrated. Flight directions should be parallel, in same 
direction and perpendicular to look directions which are 

opposite for different sensors (right drawing). Sun illumination 
direction is from an optical sensor to the target on the Earth. 

 
 

4. EXPERIMENTS 

Two experiments, one with a proposed sensor formation and 
one with an accidental sensor formation were performed to 
show the potential of our approach. The optical image has been 
corrected for absolute position by ground control, which 
yielded a global shift value of approximately 10 m in x-
direction for the WV-1 data and 6 m in x-direction and 2 m in 
y-direction for the IKONOS data in comparison to image 
rectification without ground control. TS-X data Enhanced 
Ellipsoid Corrected (EEC) product can be used without ground 
control, since absolute positioning Root Mean Square Error 
(RMSE) for the Spotlight mode is in the order of 1 m 
(Bresnahan, 2009). 
 
4.1 Proposed sensor formation 

Scene parameters for the proposed sensor formation experiment 
are presented in Table 5. 
 

Sensor
Parameter 

TS-X WV-1 

Image data 7-Jun-2008  18-Aug-2009  
Image time (UTC) 05:17:48 10:50:42 
Mode Spotlight HS PAN 
Look angle 49.45° Right 38.3° Left 
Polarization VV - 
Product EEC L2A 
Resolution gr x az (m) 1.0 x 1.14 0.89 x 0.65 
 
Table 5. Scene parameters of the first experiment over Munich 

city 
 

Part of Munich city acquired by WV-1 (upper image) and TS-X 
(lower image) using the proposed satellite formation is shown 
in Figure 7. Yellow grid lines are for better orientation between 
the two images. Ground objects like streets and plazas as well 
as structures e.g. buildings and trees can be easily detected in 
both images and are found at the same geometrical position in 
both images. Only the feet of the buildings, which are 
differently projected in the radar image due to foreshortening 
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are found at different positions. The roofs and tree crowns are 
well in place and can be overlayed correctly for any further 
processing. Groups consisting of 2, 5 and 6 buildings are 
highlighted in blue color in both images to show a good 
correspondence. 
 
4.2 Accidental sensor formation 

Scene parameters for the accidental sensor formation 
experiment are presented in Table 6. 
 

Sensor 
Parameter 

TS-X IKONOS 

Image data 25-Feb-2008  15-Jul-2005  
Image time (UTC) 16:51:15 10:28:06 
Mode Spotlight HS PAN 
Look angle 22.75° Right 5.0° Right 
Polarization VV - 
Product EEC Orthoimage 
Resolution gr x az (m) 1.6 x 1.3 0.8 x 0.8 
 

Table 6. Scene parameters of the second experiment over the 
city of Munich 

 
Again, part of Munich city acquired by IKONOS (upper image) 
and TS-X (lower image) using the accidental satellite formation 
is shown in Figure 8. Yellow grid lines are for better orientation 
between two images. For this case it is quite difficult to find 
corresponding structures in the two images. Only ground 
objects like streets can be found at similar places but buildings 
are represented in very different geometry and can be hardly 
allocated to each other. Also from a radiometric point of view 
the differences are higher than in Figure 7 probably due to 
different shadow properties. The same groups consisting of 2, 5 
and 6 buildings as in sub-section 4.1 are highlighted in blue 
color in both images again. In this case it is quite difficult to 
identify the same number of buildings in both images. 
 
 

5. CONCLUSIONS 

In this paper we address a problem of fusion of optical and 
radar remote sensing imagery. Alignment of information 
coming from different sources is an important prerequisite for 
the following fusion in various applications. Especially for a 
rapid fusion of optical and radar data a specific imaging is of 
advantage. We propose an optical and radar sensor formation 
which accounts for different acquisition geometries and 
minimizes displacements for ground and 3D-objects in 
orthoimages of optical and radar sensors. The preferred sensor 
formation is a perpendicular viewing from the two sensor 
systems due to the complimentary nature of their viewing 
geometries. For this case the image geometries are nearly 
independent to errors in the underlying DEM and especially to 
buildings or other 3D objects, not represented in the DEM. A 
fast and consistent overlay of the two data sets for on ground 
and other surfaces is reached. As an example two pairs of high 
resolution optical (WorldView-1 and IKONOS) and radar 
(TerraSAR-X) images have been acquired over the urban area - 
Munich city in Germany – for different sensor formations. 
Results show a great potential of the proposed approach for 
further applications of data fusion with optical and radar 
instrumentation since the geometric positions of the objects can 
be observed at the same absolute position. 
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Figure 7. Part of Munich city acquired by VW-1 (upper image) and TS-X (lower image) using the proposed satellite formation. 
Yellow grid lines are for better orientation between two images. Red arrows show flight (az) and look (rg) directions. 
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Figure 8. Part of Munich city acquired by IKONOS (upper image) and TS-X (lower image) using the accidental satellite formation. 
Yellow grid lines are for better orientation between two images. Red arrows show flight (az) and look (rg) directions. 
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ABSTRACT:

Tidal wetlands including intertidal flats are highly productive and have dynamic and diverse ecosystems. Despite the importance of
the tidal flats and associated coastal habitats, theses areas are at risk due to high development pressure, such as reclamation and
marine pollution. Because of their poor accessibility, remote sensing techniques are the most effective tool for tidal flat observation.
Particularly, microwave remote sensing using synthetic aperture radar (SAR) system has great potential for quantitative monitoring
and mapping of coastal wetlands. This study aims to review and develop effective methods of extracting geophysical information of
tidal wetlands. Fully polarimetric forward/inverse scattering models have been developed for quantitative estimation of geophysical
parameters. This study aims to review and develop effective methods of extracting geophysical information of intertidal mudflats
including surface geometric characteristics, such as the roughness of the scattering surface, from polarimetric SAR data. In addition,
an extension of previous study to fully polarimetric space-borne SAR data sets is presented in this paper.

* Corresponding author.

1. INTRODUCTION

Coastal wetlands including tidal flats are the zone of interaction
between marine and terrestrial environments. They have
dynamic and diverse ecosystems and provide highly productive
fishery areas. Despite the importance of the tidal flats and
associated coastal habitats, these areas are at risk due to high
development pressure, such as reclamation and marine pollution.
In addition, coastal wetlands are highly vulnerable to climate
changes. Because of their poor accessibility both from sea and
land, monitoring and mapping of tidal flat environments from in
situ measurements in field are very difficult.
Remote sensing can provide large spatial coverage and non-
intrusive measurement over the Earth’s surface. Previous
studies have focused on the use of optical sensors for remote
sensing of tidal flats. Because of the repetitive tidal event and
dynamic sedimentary process, however, integrated observation
of tidal flats from multi-sourced data sets is essential for
mapping and monitoring tidal flats.
Microwave remote sensing using synthetic aperture radar (SAR)
system can be a complementary tool for tidal flat observation
especially due to their high spatial resolution and all-weather
imaging capability. Recently several studies have reported on
investigation of tidal flats using single polarization SAR data
[Van der Wal et al., 2005], multi-frequency approach [Gade et
al., 2008], and dual or full-polarimetric approach [Park et al.,
2009].
This study aims to review and develop effective methods of
extracting geophysical information of intertidal mudflats
including surface geometric characteristics, such as the
roughness of the scattering surface, from polarimetric SAR data.
Roughness of the surface sediments in intertidal flats represents

both biogenic and physical depositional characteristics of
sediments [Reineck and Singh, 1980]. In addition, it can also be
used for describing the land-use characteristics in intertidal flats
such as fishery activities. In Section II, previous researches on
remote sensing of tidal wetlands are reviewed, and the inversion
algorithms of surface roughness parameters are presented in
Section III. Experimental results on the roughness estimation of
intertidal flats are discussed in Section IV. Finally, summary
and concluding remarks are presented in Section V.

2. REVIEW OF REMOTE SENSING OF TIDAL FLAT

2.1 Tidal flat monitoring from optical sensors

Remote sensing using optical sensors (e.g., Landsat TM) have
been applied for mapping of surface sediment distributions of
tidal flats [Yates et al., 1993; Rainey et al., 2000, Ryu et al.,
2004]. The distribution of sediments of a given particle size is
of great interest in the field of morpho-dynamics and
sedimentary process of coastal environments.
Yates et al. (1993) tested several classification algorithms to
distinguish between muddy and sandy flats using Landsat TM
data. In their study, muddy and sandy flats are determined
based on the sediment ‘critical’ grain size of 0.063 mm. Results
indicated that all the classification methods showed a better
performance for muddy flats than for sandy flats.
Ryu et al. (2004) claimed to use critical grain size of 0.25 mm
for practical classification of fine and coarse sediments. In
addition, they investigated the effect of water contents and
topography which affect optical reflectance values on the
classification of surface sediment distribution. Particularly,
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water content which can be remained on the intertidal flat
surface for considerable times after exposure, significantly
affect the spectral response of the sediment.
The classification performance can be improved by applying
coarse critical grain size. Nonetheless classification of the
intertidal surface sediments can still be considered to be in an
experimental stage because of poor knowledge on coupled
effect of the topography and the water content as well as the
grain size of the sediments on the optical reflectance of
intertidal sediments.

2.2 Tidal flat monitoring from microwave sensors

Improving temporal resolution is an essential issue of remote
sensing of coastal environments due to the dynamic changes in
morphological and sedimentary processes of tidal wetlands.
Unlike optical and infrared imaging sensors SAR is an active
microwave imaging system for studying Earth’s environment
with a high spatial resolution. Unlike optical and infrared
imaging sensors which rely on reflected or radiated solar energy,
imaging radars are more flexible and robust in their tidal flat
observation capabilities because they are independent of
sunlight and weather conditions.
Theoretical relationships between backscatter coefficients and
surface geophysical parameters have been well developed over
several decades. In general, radar signals backscattered from
bare soil surface can be expressed by the dielectric properties of
material and statistical roughness characteristics of scattering
surfaces. In case of the tidal flat application, however, one can
assume that surface sediments are fully saturated by sea water
particularly in mud flats which dominates the tidal flats around
Korean peninsular. Consequently, the effect of dielectric
constants on backscattered signals can be neglected in the
specific case of the intertidal mudflats [Van der Wal et al.,
2005; Gade et al., 2008; Park et al., 2009]. Several studies have
been proposed the inversion algorithm of remained unknown
geophysical parameters, such as the rms height, s, and
correlation length, l, of surface sediments, from radar
measurements.
In Van der Wal et al (2005), the rms height of surface sediment
was obtained by an empirical regression approach based on the
C-band, VV-polarized backscattering coefficient of ERS SAR
data. Due to its simplicity, it can be applied to the common
SAR systems which operate in single-frequency and single-
polarization. However, practical use of this approach for
parameter retrieval needs time-consuming calibration work on
empirical relationships for various radar configurations and
surface conditions.
On the other hand, Gade et al. (2008) proposed another
roughness retrieval algorithm based on multi-frequency SAR
data. The rms height and the correlation length were obtained
from VV-polarized backscattering coefficients of X-, C-, and L-
band SAR data. In this case, the retrieval algorithm is based on
the theoretical scattering model, such as Integral Equation
Method (IEM) [Fung, 1992]. Since the IEM model has a
broader range of validity than classical scattering models, e.g.,
Kirchhoff approach and the small perturbation method, it can be
used for roughness retrieval of diverse surface sediments.
However, it has an inherent limitation in operational use of
space-borne SAR data to monitor tidal flats, because of a high
temporal variety of tidal flat environment and a rare availability
of multi-frequency SAR data acquired simultaneously.
Recently, Park et al. (2009) proposed an alternative roughness
retrieval algorithm based on fully polarimetric SAR data. This
roughness inversion technique has been validated using L-band
NASA/JPL AIRSAR data sets. Roughness parameters estimated

from SAR data are in reasonably good agreements with those
from in-situ measurements. This study aims to present an
extension of previous study to polarimetric space-borne SAR data.

3. SAR POLARIMETRY OF TIDAL FLAT

3.1 Polarimetric SAR remote sensing

The microwave transmitted by a radar system is characterized
by its frequency and its polarization state. Conventional SAR
systems operate with a single fixed polarization antenna for
both transmission and reception of microwave frequency signals
as shown in Table 1. Today, there is a rapidly increasing interest
in the application of radar polarimetry for Earth observation due
to increasing availability of polarimetric space-borne radar
sensors, such as ALOS-PALSAR, RADARSAT-2, and Terra-
SAR-X and follow-up satellite sensor systems.
The backscattered wave by the target is described in either the
incident components iE


or by the scattered components sE


,

which are related by the complex 22 scattering matrix [S] of
the target, defined according to
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where k is wave number, r is the distance between the target
and the receiving antenna. The element )exp( pqpqpq jSS  is
dependent on the characteristic of the target and on the direction
of incident and scattered fields.
There is an advantage in many applications to expressing target
scattering properties in terms of a complex feature vectors,
comprising three elements in the monostatic backscatter case.
The lexicographic feature vectors in linear and circular basis

Lk


and
RLk


, and Pauli feature vector
Pk


are defined as:
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. (2)

One of the most important properties of radar polarimetry is the
fact that once a target response is acquired in a polarization
basis, the response in any basis can be obtained from a simple
transformation without any additional measurements. All of
theses target feature vectors are related with each others by

Satellite, Instrument Frequency Polarization
ERS-1, SAR (1991-2000)
JERS-1, SAR (1992-1998)

ERS-2, SAR (1995~)
RADARSAT-1 (1995~)

C-band
L-band
C-band
C-band

VV
HH
VV
HH

ENVISAT, ASAR (2002~) C-band Twin
ALOS, PALSAR (2006~) L-band Quad
RADARSAT-2 (2007~) C-band Quad

TerraSAR-X (2007~) X-band Dual
COSMO-SkyMed (2007~) X-band Dual

RISAT (2009) C-band Quad
HJ-1-C (2010) S-band Quad

SAOCOM (2010) L-band Quad
Sentinel-1 (2011) C-band Dual

Table 1. Current and future space-borne SAR systems
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unitary transformation matrices [Boerner et al., 1998].
Consequently, the amount of information about a given scatterer
can be increased, allowing a better characterization of scattering
properties. An advantage of the Pauli basis equation (2) is that
[S] is projected on to orthogonal basis matrices that represent
simple scattering mechanisms. The first component VVHH SS 
dominates in single-bounce surface scatter, while the second
component VVHH SS  dominates in double-bounce scatter. The
cross-pol element HVS will be strong for backscatter from
depolarizing media.

3.2 Roughness retrieval from polarimetric SAR

Since effect of dielectric constant on radar measurements can be
neglected in tidal flats, the set of roughness parameters {s, l}
can be can be obtained simultaneously from two independent
polarization measurements. In particular, increased measurement
sensitivity to surface roughness has been reported by using the
circular-polarization coherence RRLL defined as:

 *** |||| LLLLRRRRLLRRRRLL SSSSSS (3)

Consequently, the pair of || RRLL and the co-pol response of
the coherency matrix 2|| VVHH SS  showed better performance
in the roughness parameter retrieval than conventional co-and
cross-polarized backscattered coefficients. Therefore, roughness
parameters of the target surface can be estimated by the
minimization procedure:
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The extended-Bragg model [Schuler et al., 2002; Hajnsek et al.,
2003] has been used for the scattering model F in (4). This
roughness inversion technique has been validated using L-band
NASA/JPL AIRSAR data sets as shown in Figure 2. Roughness
parameters relative to wavelength, ks and kl, derived from SAR
data are in reasonably good agreements with those from in-situ

Figure 2. Radar derived (a) rms height and (b) correlation
length [Park et al., 2009].

Figure 3. Suncheon Bay study area.

measurements. More details on the performance analysis of
roughness retrieval algorithm can be found in [Park et al., 2009].
In case of space-borne SAR remote sensing, however, the
surface of tidal flat sediment is generally very smooth in L-band
frequency resulting in low backscattering signal relatively close
to the radar noise floor. Therefore, higher frequencies, such as
C- and X-band SAR data could be more appropriate to
recognize fine details than L-band.

4. ESTIMATION OF SURFACE ROUGHNESS
PARAMETERS

The south and west coastal zones of Korean peninsula are well
known for their large tidal ranges and vast expanses of intertidal
flats. Suncheon Bay study area in the southern coast of the
Korean peninsular is one of the highly productive fishery region
and provides habitat of various fish and shellfishes as well as
migration birds. Recently, Suncheon Bay tidal wetland was
registered as a RAMSAR Site for international convention of
wetlands conservation.
Figure 3 shows available polarimetric SAR data sets over
Suncheon Bay study site. The fully polarimetric NASA/JPL
AIRSAR data were acquired at L-band during PACRIM-Ⅱ
Korea campaign on September 30th, 2000. In addition, two sets
of RADARSAT-2 fully polarimetric data were obtained over the
Suncheon Bay study area. The first data set was acquired on
November 4, 2008 at fine beam mode (FQ14) of descending
orbit. The radar incidence angles vary between 33.5° and 35.1°.
The second one was acquired on December 14, 2008. In this
case, the image was obtained in ascending orbit at FQ6 beam
mode in which the radar incidence angles span 24.5° to 26.4°.
The first data (FQ14) was acquired at an ebbing tide with the
tidal elevation of 105 m, while the second one was acquired on
the beginning of the flowing tide with the tidal elevation of 110
m. Figure 4 shows AIRSAR and RADARSAT-2 images for the
specific test site near the mouth of the river flows into the Bay.
New artificial structures can be identified in the western part of
the tidal flats. Compared with AIRSAR, C-band RADARSAT-2
backscattering coefficients show higher sensitivity to vegetation
and sediment structures in tidal flats.
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Figure 5 shows the results of roughness parameter retrievals
from polarimetric descriptors RRLL and 2

VVHH SS  . Pixels
correspond to the land and the ocean were excluded from the
inversion process. The rms height derived from NASA/JPL AIR
SAR data acquired on September 30, 2000 is shown in Figure
5(a). It can infer the performance of the roughness retrieval
from RADARSAT-2 data despite of eight years difference
between AIRSAR and RADARSAT-2. The rms heights derived
from C-band RADARSAT-2 data show good agreements with
those from AIRSAR data. Consequently, the fully polarimetric
approaches which have been validated originally on the basis of
L-band air-borne SAR data are also applicable to the C-band
space-borne RADARSAT-2 data for roughness parameter
retrievals of surface sediments in tidal flats.

5. CONCLUSION

Despite of different incidence angles and looking directions of
FQ14 beam mode in ascending orbit and FQ6 mode in
descending orbit, roughness parameters derived from two

RADARSAT-2 data are very similar to each other. Therefore,
one can reduce the time gap between each observation through
a combined use of different beam modes and orbits of
RADARSAT-2. However, there are some areas show changes in
rms heights during two acquisitions particularly in mudflat near
waterline and tidal channel. They reflect the difference of tidal
heights, biological activities, and texture, salinity, and moisture
contents of surface sediments. Relating radar derived roughness
parameters to fundamental environmental processes in tidal flats
will be further investigated through time series of polarimetric
SAR data sets and detailed in-site measurements.
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ABSTRACT:

The formation of the current Rhine-Meuse delta mainly took place during the last 12 000 years. Consecutive avulsions, i.e. sudden
changes in the course of river channels, resulted in a complicated pattern of sandy channel deposits, surrounded by peatand clay.
Knowledge of this pattern is not only interesting from a geohistorical viewpoint, but is also essential when planning and maintaining
constructions like roads and dikes. Traditionally, channel deposits are traced using labor intensive soil drilling. Channel deposits are
however also recognizable in the polder landscape by small local elevation changes due to differential compaction. Thepurpose of this
research is to automatically map channel deposits based on astructural analysis of high resolution laser altimetry data. After removing
infrastructural elements from the laser data, local feature vectors are built, consisting of the attributes slope, curvature and relative
elevation. Using a maximum likelihood classifier, 75 million gridded laser points are divided into two classes: buried channel deposits
and other. Results are validated against two data sets, an existing paleographic map and a set of shallow drilling measurements.
Validation shows that our method of channel deposit detection is hampered by signal distortion due to human intervention in the
traditional polder landscape. Still it is shown that relative young deposits (4 620 to 1 700 years Before Present) can be extracted from
the laser altimetry data.

1. INTRODUCTION

During the Holocene (approximately 12 000 years - present),
much of the western and central part of the Netherlands was ag-
grading, as active river systems (Rhine and Meuse) transported
sediments from the hinterland to the coastline. In combination
with sea level rise this resulted in a Holocene sediment sequence
of up to 20 meter thickness. As river channels consist predomi-
nantly of sand while the adjacent floodplains were dominatedby
clay deposition and peat formation, a strong grain-size partition-
ing occurred. Furthermore, frequent shifts in channel location
due to avulsions, resulted in a complex subsurface of clay/peat
dominated floodplain deposits laterally and vertically alternating
with sand-rich channel areas, (Allen, 1965).

Currently, buried channel deposits are recognizable in theland-
scape, basically due to a process called topographic inversion.
This occurs when floodplain deposits on the sides of the buried
channels compact at a higher rate than the channel sand itself.
At the surface this results in an area with a higher elevationat
the locations of buried channel deposits. Note that the sandre-
maining from an abandoned channel may not start directly at the
surface: channels abandoned relatively long ago may meanwhile
have been deeply covered by floodplain deposits. The maximum
height differences between the buried channels and the surround-
ings are in the order of a meter for relative large and young chan-
nel deposits. To some extent it holds that the thinner and older,
that is, deeper the channel deposits, the smaller also the height
difference.

Knowledge of the location of these channel deposits is essen-
tial when planning and maintaining large construction works as
motorways and dikes, (Munstermann et al., 2008). Abrupt and
unidentified changes in the subsurface may lead to unexpected

∗ Corresponding author.

differences in compaction, which may lead again to damaged or
uneven road surfaces or even to failing dikes.

Traditionally, mapping of the shallow subsurface of the Rhine-
Meuse delta is based on soil drillings. A large effort has been
made by Dutch Utrecht University: Based on more than 25 years
of field research using over 200 000 manual boreholes a paleo-
geographic map is composed, (Berendsen and Stouthamer, 2001),
see also Fig. 1, right. As the drillings require a large amount of
manual labor in the field, not the whole Rhine-Meuse delta has
been covered in the same amount of detail. Also necessarily some
interpretation and interpolation steps were involved in composing
the map, which may have introduced local anomalies.

LIDAR data is being used more and more to reveal and highlight
morphological and archaeological structures that are hardly vis-
ible. In archaeology, LIDAR data has revealed burial mounts,
(Kakiuchi and Chikatsu, 2008), Celtic field systems, (Kooistra
and Maas, 2008, Humme et al., 2006), and other earthwork fea-
tures, (M. Doneus and Jammer, 2008). Spatial scales characteris-
tic for a certain landscape type, like small scale roughness, could
be identified by a spectral analysis of airborne laser scanning data,
(Perron et al., 2008). Previous studies, (Berendsen and Volleberg,
2007, Munstermann et al., 2008), showed that also buried chan-
nel deposits can be visualized using airborne laser data from the
AHN (Actueel Hoogtebestand Nederland) archive.

In this research it is considered if it is possible to systematically
map channel deposits from second generation, high resolution
AHN-2 data. In 2012 for every 50 cm grid point in The Nether-
lands a height value will be available with a precision of about 5
cm, (AHN, 2000). As a test area the so-called Alblasserwaardis
used, a polder of 350 km2, directly east of Rotterdam. The lo-
cation of this polder is indicated in the inset in Fig. 5. For this
polder, a test data set has been kindly made available by provider
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Figure 1: Alblasserwaard.Left: Laser altimetry data.Right: Paleogeographic map

Fugro Aerial Mapping B.V. and owner Waterboard Rivierenland,
consisting of about 1.2 billion gridded points, see Fig. 1, left.

From this data set points representing hard infrastructureare re-
moved in a filter procedure incorporating the Dutch topographic
base map GBKN. Remaining points are classified according to
four structural attributes into two classes, channel deposit and non
channel deposit. In Section 2. this data filtering and classification
procedure is discussed. Results are validated in Section 3.against
the digital paleogeographic map and against an interpretation of
drillings from the Dutch geological database DINOLoket.

2. LIDAR DATA FILTERING AND CLASSIFICATION

In this section methodology is described aiming at the classifi-
cation of airborne laser altimetry points into two classes,buried
channel and non-buried channel deposits. A main challenge in
this research is the huge amount of input points. As the inputdata
strongly influences the methodology, these are described first.
Then it is described how laser points representing hard infras-
tructure are removed before describing the actual classification
method.

2.1 Data description

For this research FLI-MAP400 VS laser altimetry data is used,
measured by Fugro Aerial Mapping BV for the Waterboard Riv-
ierenland. An overview of the entire data set is shown in Fig.1,
left. The data was acquired during three days in August 2007,
with a minimum point density of 8 points per m2. The absolute
accuracy of a single point is reported to be 3 cm. From this raw
data, Fugro derived a Digital Surface Model (DSM) by removing
non-terrain points. The DSM points were consecutively resam-
pled to a 0.5m grid using inverse squared distance weightingand
organized in tiles of 1.25× 1 km. In total the Alblasserwaard
data set was divided into 273 of such tiles To decrease compu-
tational efforts, the .5m grid was further downsampled to a 2m
grid. As a result, the input data set for this research consists of
roughly 75 million points.

2.2 Removing non-field objects

In the gridded FLI-MAP data still objects like roads, trenches,
buildings and water surfaces are present. If unaddressed these
objects complicate the detection of buried channel deposits. The
laser data is filtered in two steps with the purpose of only keeping
data representing fields. In the first step, non-field objectsare re-
moved using a mask constructed from GBKN data, in the second
step remaining unwanted objects are removed, based on a local
variability analysis.

GBKN mask. The ‘Grootschalige Basiskaart van Nederland‘
(GBKN) is the Large Scale Standard Map of The Netherlands and
is the most detailed and accurate digital topographical database
available in the Netherlands, (GBKN, 2009). It is scale-free,
but is comparable to paper maps with a scale between 1:100 and
1:5,000. The precision of a point in comparison to another point
in the surrounding is better than 28 cm in suburban areas and
better than 56 cm in rural areas. The GBKN has a spaghetti-
structure: it only contains classified nodes and edges, for in-
stance road sides, water edges and building contours. Therefore
the GBKN map of the Alblasserwaard has to be converted to an
area map, consisting of classified segments, see Fig. 2, leftand
middle. This area map will then be applied as a mask to remove
those laser points that are in a polygonal segment from an un-
wanted class, like ‘road‘.

To create segments, the GBKN lines have to be automatically
connected and converted into classified segments. However,there
are errors in the database: lines sometimes do not connect exactly
or lines intersect without a node. Such situations have to beiden-
tified and adapted. Lines in the GBKN that do not exactly connect
are attached to the nearest line or node within a certain distance
threshold in a snapping procedure. Here a threshold of 10 cm
is used. Self intersections without nodes are removed by adding
nodes to the intersection points. Around the resulting areamask,
an additional buffer of 3m is added to further limit the influence
of unwanted objects: for example, ground close to a road is of-
ten disturbed, and cannot be considered as representative for the
situation in a field.

Despite this filtering method, unwanted features still remain in
the LIDAR data, see Fig. 2, right, like small trenches and other
objects not (yet) registered in the GBKN database. To further
decrease the influence of unwanted features, isolated points and
points with a high local variance were additionally removed.

2.3 Channel classification

The points remaining after the removal of non-field objects are
classified into two classes by means of structural classification.
For this purpose first structural attributes are determinedat each
grid point. As a result at each grid point a multi variate feature
vector is created that can be used as input for a standard remote
sensing classification method.

Slope and curvature attributes At each remaining LIDAR point,
the four following attributes are determined: slope, curvature,
TPI and smoothed TPI. Slope is chosen as an attribute because
at both sides of a buried channel, the elevation is increasing with
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Figure 2: GBKN maskLeft: Original GBKN line data;Middle: Final GBKN mask.Right: GBKN mask overlaid on LIDAR data.

respect to the surrounding field. To derive slope, a plane is fitted
by least squares to a suited squared neighborhood of a LIDAR
point. From the planar parameters, an estimation of the local
slope is derived using Horn’s method, (Burrough and McDon-
nell, 1998). Curvature is chosen as an attribute because theterrain
at an elevation caused by a buried channel is convex as it is lo-
cally protruding. Flat terrain has a mean curvature of zero,while
convex terrain has positive mean curvature. Here an approxima-
tion of mean curvature is derived from local partial derivatives
by locally fitting a second degree polynomial surface to a suited
squared neighborhood, see for more details (Besl and Jane, 1986)
and (Nahib, 1990).

To reduce the computational costs of the least squares adjust-
ment involved in the many slope and curvature determinations,
a down-sampling strategy is applied. After an analysis of differ-
ent down-sampling rates, in which slope values obtained from a
down-sampled data set where compared to slope values from the
full 2m grid input data set, it was decided to use only 10 % of the
data.

TPI and smoothed TPI attributes The Topographic Position
Index (TPI) is a measure of the elevation of a location compared
to the surrounding landscape, (Weiss, 2001). To compute the
TPI-value of a single pixel the difference between its elevation
and the average elevation of a neighborhood around that cellis
calculated. Most frequently an annular neighborhood is used,
that is, all cells between a certain minimal and maximal distance
are used in the calculation. A positive TPI-value means thatthe
cell is higher than its surroundings (at the specified neighborhood
size) while negative values mean it is lower. A TPI-value of zero
indicates that the cell either lies on a flat area or on a constant
slope. The TPI is of course strongly dependent on the scale. Here
TPI-values are computed using a minimal distance of 80 m and
a maximal distance of 100 m. From the TPI-values also a fourth
attribute is determined, the smoothed TPI. This is just the mean
of the TPI values in a 49× 49 grid points window and helps to
distinguish between small and large scale topographic features.

Maximum likelihood classification As a result of the struc-
tural attribute determination, at each grid point a 4D attribute
vector is given, consisting of slope, mean curvature, TPI and
smoothed TPI attribute values. The availability of these attribute
vectors allows us to apply standard classification techniques from
remote sensing. Here Maximum Likelihood classification is ap-
plied.

The Maximum Likelihood Classifier, (Gao, 2008), uses statis-
tics from class signatures to determine if a given pixel belongs
to a class. Each class signature is derived by manually selecting
small areas that are known to belong to a certain class. These
areas are called training samples. The training samples in this re-
search have been selected based on manual interpretation ofthe

height data and by looking at independent reference data, inthis
case the digital paleogeographic map, compare Fig. 1, right. In
Fig. 3 the location of the training samples is shown. The results
of the classification were slightly cleaned using the morphologi-
cal operators ‘majority filter‘ and ‘conditional dilation‘to remove
small outlying classification results and fill small holes, e.g. (Jain,
1989).

3. RESULTS, VALIDATION AND DISCUSSION

In this section the results of the automatic classification of the Al-
blasserwaard LIDAR data are presented, validated and discussed.
First visual results are discussed. Then two validation methods
based on soil drillings are described, together with the results of
the actual validations.

3.1 Visual validation

The blue points in Fig. 5 indicate LIDAR 2m grid points clas-
sified as ‘buried channel‘. Clearly some more or less connected
channel structures in East-West direction are recognizable. Si-
multaneously, many thicker fragments classified as ‘buriedchan-
nel‘ are visible. Based on a visual evaluation it is not directly
obvious if these thicker fragments indeed correspond to channel
deposits. Also anomalies are visible in the classification results:
thin, straight lines appear at many locations and are mainlycor-
responding to terrain close to roads and ditches.

Fig. 8 shows a zoom-in of the classification results, again inblue,
superimposed on areal imagery data. The area in Fig. 8 approx-
imately corresponds to the red rectangle in Fig. 5. This image

Figure 3: Training samples used for the classification process.
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confirms that the classification is still influenced by infrastruc-
ture: The classification algorithm reports buried channelsnear
and at farmyards and along a small ditch which indicates thatthe
GBKN infrastructure database is not complete and that the filter-
ing procedure should be further improved.

3.2 Drilling data description

For this research two independent validation data sets based on
soil drillings are available. The first is a map product, the second
set consist of a large amount of single drillings, interpreted by the
authors.

Digital paleogeographic map A digital paleogeographic map
of the complete Rhine-Meuse delta during the Holocene (includ-
ing the locations of buried channel deposits) is described in (Be-
rendsen and Stouthamer, 2001). The Alblasserwaard sectionof
this map, Fig. 1, right, is used as validation in this research. The
map is based on more than 25 years of field research using over
200 000 manual boreholes, 45 000 archaeological findings and
1 200 radiocarbon datings. The map is stored in vector format,
each individual area consists of a polygon. For each area up to 12
different attributes are stored like channel size, channellength,
age, year of beginning, year of ending, etc. The age of the chan-
nels on the map are given in years Before Present, where Present
is defined as the year 1950. For this research four main age cat-
egories are distinguished, indicated by different colors in Fig. 1.
These periods have been manually chosen based on the distribu-
tion and amount of channels abandoned in these periods.

Figure 4: Classified DINO drillings.

DINO drillings The DINO database contains data and infor-
mation of the subsurface of The Netherlands, (DINOLoket, 2000).
The archive contains among others shallow boring measurements
that are suitable to use as reference data for this research.They
cover primarily the shallow subsurface and contain standardized
information about the type of sediments and their depth. In total
2 680 individual drillings were available for the Alblasserwaard.
The eastern part has a high drilling density, in the western part
only a very limited number of drillings is available.

After importing the DINO data, each drilling was automatically
analyzed to determine if the drilling was part of a buried channel
deposit. This was done by applying a basic filter: search for sand
layers that are cumulatively more than 3 meters in thicknessin
the shallow subsurface between 3 and 12 meters. If more than
3 meters of sand was found, the drilling was classified as buried
channel deposits. In all other cases the drilling was classified as
non channel. The reason to discard the top 3 meter is that sand

layers can be present there due to other reasons, like construction
works. The analysis of all of the drillings in the eastern part is
shown in Fig. 4. This form of automatic interpretation of drilling
data is prone to errors. This means that in this case the amount of
correctly interpreted drillings is largely unknown. Stillin Fig. 4
the spatial correlation between drillings and LIDAR classification
results is visible.

3.3 Validation results

Further visual validation is obtained by comparing the automati-
cally classified LIDAR points to the digital paleogeographic map
and to the classified DINO drillings. For this project this was
done using the ESRI Flex viewer, (ESRI, 2009). This program
allows internet users to simultaneously view within their normal
browser the different spatial layers on available background im-
agery, just as within a GIS environment. A screen shot is shown
in Fig. 8. According to the digital paleogeographic map thisfig-
ure contains buried channel deposits from three periods, com-
pare Fig. 1, right. In red some relative old (6270-4621 yBP) and
wide buried channels are visible, in orange another wide, slightly
younger (4620-3701 yBP) channel is given. while some relatively
young (3700-1700 yBP) smaller channel deposits are shown in
yellow. The LIDAR data classified as channel deposit (in blue)
gives the best match with the orange channel, while some match-
ing results on the yellow channels are found as well. There seems
to be hardly no correlation between the blue LIDAR channel de-
posits, and the large and old red channels. Similarly the classi-
fied DINO drillings give good agreement over the orange chan-
nel, while the DINO drillings give mixed responses over the red
channel. Many DINO drillings outside the areas classified bythe
two other methods as buried channel are indeed red, but also here
exceptions exist.

Table 6: Classified LIDAR vs. paleogeographic map
Map with all channels

LIDAR channel 3.5 % 6.3 %
non-channel 23.5 % 66.7 %

Map 4620-1700 yBP
LIDAR channel 2.0 % 7.6 %

non-channel 5.4 % 84.9 %
channel non-channel

These observations are partly confirmed by the numeric compari-
son over the region of Alblasserwaard as a whole. In Table 6, two
confusion matrices of the LIDAR buried channel classification
compared to the paleogeographic map are given. The top matrix
compares the LIDAR classification to all buried channels shown
in Fig. 1, right; in the bottom matrix the comparison is restricted
to those channels in the paleogeographic map that are dated be-
tween 4620 and 1700 yBP, i.e. the yellow and orange channels in
Fig. 1, right. The diagonals give the percentages of pixels where
map and classified LIDAR agree, the upper right entry is the per-
centage of pixels that are non-channel in the reference map,but
are classified as channel. The reverse holds for the bottom left en-
try. Although the overall classification accuracy, i.e. thetrace of
the confusion matrix, equals 70 %, kappa, a measure of similarity
without chance agreement, only equalsκ = 0.06. By removing
the youngest and oldest channel class from the comparison, the
amount of agreement improves to 87 % with an associated kappa
value ofκ = 0.21.

There are several possible reasons for this lack of agreement.
First of all it should be noted that a condition for a high degree
of agreement is that a buried channel deposit always resultsin a
locally higher elevation. Although there is strong evidence that
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Figure 5: Buried channel classification results. The red rectangle approximately corresponds to the area of Fig. 8. The inset shows the
location of the Alblasserwaard in The Netherlands.

this condition in general is fulfilled, it is not yet sufficiently clear,
what buried channel characteristics result in what amount of local
elevation setup. Other reasons originate in the processingof the
available information. In the composition of the paleogeographic
map, errors are associated to the interpretation and interpolation
of the used drillings. The reason that the youngest, green, chan-
nels in the Paleogeographic map do not give a good comparison
with the classified LIDAR data is simply that these channels ei-
ther still exist at approximately the same location or that buildings
and roads are present along or on the remains. In both cases the
LIDAR data for these regions is simply filtered out in the data
processing procedure.

Table 7: Classified DINO drillings vs. Classified LIDAR and pa-
leogeographic map.

DINO drillings
LIDAR channel 6.3 % 7.3 %

non-channel 26.8 % 59.6 %
Map channel 15.0 % 18.6 %
non-channel 18.1 % 48.2 %

channel non-channel

In Table 7 also the confusion matrices between the classified
DINO drillings and the classified LIDAR results, top, and the
paleogeographic map, bottom, are given. Both the LIDAR result
and the map have a comparable percentage of agreement (traceof
both matrices) with the classified DINO drillings. They do how-
ever differ in the type of misclassification: in the LIDAR clas-
sification a relative large percentage of points were classified as
non-channel that were channels according to our automatic in-
terpretation of the DINO drillings. Again this could be caused
by currently present infrastructure: many DINO drillings were

obtained in the green zones, i.e. regions marked as young, chan-
nel deposits in the paleogeographic map, Fig. 1, right, where no
reliable LIDAR surface height data is available.

4. CONCLUSIONS AND RECOMMENDATIONS

In this work, an original approach for the detection of buried
channel deposits from high resolution LIDAR data has been de-
scribed and validated. The first results indicate that to some ex-
tend it is possible to automatically determine the locationof sand-
rich channel areas: relatively young (4620-1700 yBP) and wide
(∼ 100m) channel deposits are often detected by the described
method based on classification of a feature vector consisting of
structural attributes derived from LIDAR data. Current results
are however still far from a form where they could be applied in
for example road construction. The results of this large case study
also demonstrate that there are many assumptions/steps involved
in both deriving the initial classification results and in validating
these results. In future work, the impact of these assumptions on
the final results should be further investigated.

Comparison to the paleogeographic map indicates that the depth,
age and probably also size of the channel deposits are parameters
whose influence on the relative elevation should be further in-
vestigated. The digital paleogeographic map is derived based on
an interpretation of actual soil drillings and an interpolation step
to connect identified channel locations to a braided networkof
channels. This last step has not been implemented yet for ourau-
tomatic buried channel classification. To improve computational
feasibility, the original LIDAR data has been downsampled in
this study. To improve classification results it is recommended to
start by analyzing a small area at full resolution in order to, first,
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Figure 8: Buried channel classification results.Blue: Automatic classification LIDAR data;Red, orange, yellow: classification
according to digital paleogeographic map, compare Fig. 1;Red dots: DINO drillings classified as non-channel;Green dots: DINO
drillings classified as channels.

obtain better insight in what (channel deposit) signals areexactly
present in the data and, second, to adapt the classification strategy
accordingly.
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ABSTRACT: 
 
Traditional pixel-based classification methods yield poor results when applied to synthetic aperture radar (SAR) imagery because of 
the presence of the speckle and limited spectral information in SAR data. A novel classification method, integrating polarimetric 
target decomposition, object-oriented image analysis, and decision tree algorithms, is proposed for land use and land cover (LULC) 
classification using RADARSAT-2 polarimetric SAR (PolSAR) data. The new method makes use of polarimetric information of 
PolSAR data, and takes advantage of object-oriented analysis and decision tree algorithms. The polarimetric target decomposition is 
aimed at extracting physical information from the observed scattering of microwaves by surface and volume for the classification of 
scattering data. The main purposes of the object-oriented image analysis are delineating objects and extracting various features, such 
as tone, shape, texture, area, and context. Decision tree algorithms provide an effective way to select features and create a decision 
tree for classification. The comparison between the proposed method and the Wishart supervised classification was made to test the 
performance of the proposed method. The overall accuracies of this proposed method and the Wishart supervised classification were 
89.34% and 79.36%, respectively. The results show that the proposed method outperforms the Wishart supervised classification, and 
is an appropriate method for LULC classification of RADARSAT-2 PolSAR data. 
 
 

1. INTRODUCTION 

LULC classification of PolSAR data has become an important 
research topic since PolSAR images through ENVISAT ASAR, 
ALOS PALSAR and RADARSAT-2 were available. 
Classification methods for PolSAR images have been explored 
by many researchers (Rignot et al., 1992; Chen et al., 1996; 
Barnes and Burki, 2006; Alberga, 2007). Recently some 
polarimetric decomposition theorems have been introduced 
(Cloude and Pottier, 1996; Freeman and Durden, 1998; Yang et 
al., 1998; Cameron and Rais, 2006), and classification methods 
based on the decomposition results were also explored by some 
researchers (Cloude and Pottier, 1997; Lee et al., 1999; Pottier 
and Lee, 2000; Ferro-Famil et al., 2001). The polarimetric 
decomposition is aimed at extracting physical information from 
the observed scattering of microwaves by surface and volume 
for the classification of scattering data. However, so far most of 
the classification methods for PolSAR images are pixel-based, 
and have limitations for representing objects in high-resolution 
images and difficulties to utilize the abundant information of 
PolSAR imagery. The performance of pixel-based classification 
methods is affected by speckles, and only tonal information of 
pixels can be used by these methods. Moreover, the results of 
the pixel-based methods are almost incontinuous raster format 
maps, which are hardly to use to extract objects of interest and 
update geographical information system database expediently. 
 
In recent years, object-oriented image analysis has been 
increasingly used for the classification of remote sensing data 
(Evans et al., 2002; Geneletti and Gorte, 2003; Li, et al., 2008). 
By delineating objects from remote sensing images, the object-
oriented analysis can obtain a variety of additional spatial and 
textural information, which is important for improving the 
accuracy of remote sensing classification (Benz et al., 2004). 
However, with the addition of spatial and contextual variables, 

there are hundreds of features that can potentially be 
incorporated into the analysis. Therefore, feature selection can 
present a problem in object-based classification (Laliberte et al., 
2006). Since recently some polarimetric decomposition 
theorems have been introduced, which brings abundant 
polarimetric information, the problems of feature selection 
become more intractable. 
 
Decision tree algorithms can be used to solve the problems of 
feature selection. Decision trees are commonly used for variable 
selection to reduce data dimensionality in image analysis 
(Lawrence and Wright, 2001). Classification accuracies from 
decision tree classifiers are often greater compared to using 
maximum likelihood or linear discriminant function classifiers 
(Laliberte et al., 2006). Some studies have indicates that 
decision trees can provide an accurate and efficient 
methodology for classification of remote sensing data (Friedl 
and Brodley, 1997; Swain and Hauska, 1977; Mclver and Friedl, 
2002). 
 
The objective of this study is to explore a new classification 
method of integrating polarimetric decomposition, object-
oriented image analysis, and decision tree algorithms for 
PolSAR imagery. In this method, 39 polarimetric descriptors 
were first calculated by using the H/A/Alpha polarimetric 
decomposition and combined with the parameters of the 
scattering and coherency matrix to form a multichannel image. 
Next, during the object-oriented image analysis, image objects 
were delineated by implementing a multi-resolution 
segmentation on the Pauli composition image of RADARSAT-2 
PolSAR data. Meanwhile, a total of 1253 features were 
extracted for each image object. Then, a decision tree algorithm 
was used to select features and create a decision tree for the 
classification. Finally, the LULC classification of RADARSAT-
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2 PolSAR image was carried out by using the constructed 
decision tree. 
 
 

2. METHODOLOGY 

2.1  Polarimetric target decomposition 

Target decomposition theorems were first formalized by 
Huynen (Huynen, 1970), and then many decomposition 
methods were proposed by other researchers. In this study we 
just focus on H/A/Alpha decomposition (Cloude and Pottier, 
1997). The H/A/Alpha decomposition is also called 
eigenvector-eigenvalue based decomposition. This 
decomposition method is free from the physical constraints 
imposed by multivariate models because it is not dependent on 
the assumption of a particular underlying statistical distribution. 
 
The most important observable measured by radar system is the 
3×3 coherency matrix T3, and it is written as: 
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where, Shh and Svv denote the copolarized complex scattering 
amplitudes; Shv and Svh denote the cross-polarized complex 
scattering amplitudes, respectively; * denotes conjugate, 
and ｜｜ denotes module. 
 
According to the H/A/Alpha decomposition theorem, T3 can be 
decomposed as follows: 
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where λ1 λ2 λ3 are the eigenvalues of T3, and ∞>λ1>λ2>λ3>0. ui 
for i=1,2,3 are the eigenvectors of T3 and can be formulated as 
follows: 
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where, the symbol T stands for complex conjugate. 
 
The pseudo-probabilities of the T3 expansion elements are 
defined from the set of sorted eigenvalues. 
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where pi is called the probability of the eigenvalue λi and 
represents the relative importance of this eigenvalue to the total 
scattered power. 
 
In general, the columns of the 3×3 unitary matrix U3 are not 
only unitary but mutually orthogonal. This means that in 

practice, the parameters (α1, α2, α3), (β1, β2, β3), (δ1, δ2, δ3), and 
(γ1, γ2, γ3) are not independent. Thus, each polarimetric 
parameter is associated with a three-symbol Bernoulli statistical 
process. In this way, the estimate of the mean polarimetric 
parameter set is given by (Lee and Poitter, 2009): 
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The eigenvalues and eigenvectors are the primary parameters of 
the eigenvector-eigenvalue based decomposition of T3. The 
different secondary polarimetric descriptors are defined as a 
function of the eigenvalue and eigenvetors of T3 for simplifying 
the analysis of the physical information provided by this 
decomposition (Lee and Poitter, 2009): 
 
1) Polarimetric scattering entropy (H) 
The polarimetric scattering entropy defines the degree of 
statistical disorder of each distinct scatter type within the 
ensemble. 
 
2) Polarimetric scattering anisotropy (A) 
The anisotropy measures the relative importance of the second 
and the third eigenvalues of the eigen decomposition. It is a 
useful parameter to improve the capability to distinguish 
different types of scattering process. 
 
3) Combinations between entropy (H) and anisotropy (A) 
• The (1- H)(1- A) image corresponds to the presence of a 

single dominant scattering process. 
• The H(1- A) image characterizes a random scattering 

process. 
• The HA image relates to the presence of two scattering 

mechanisms with the same probability. 
• The (1- H)A image corresponds to the presence of two 

scattering mechanisms with a dominant process and a 
second one with medium probability. 

 
4) SERD and DERD 
Single bounce Eigenvalue Relative Difference (SERD) and the 
Double bounce Eigenvalue Relative Difference (DERD) are 
sensitive to natural media characteristics and can be used for 
quantitative inversion of bio- and geophysical parameters. 
 
5) Polarization asymmetry (PA) and Polarization fraction (PF) 
PF ranges between 0 and 1, when λ3=0 the entire return is 
polarized, and when λ3>0 the polarization fraction drops. The 
PA measures the relative strength of the two polarimetric 
scattering mechanisms. 
 
6) Radar vegetation Index (RVI) and Pedestal height (PH) 
The RVI was used for analyzing scattering from vegetated areas. 
The PH is another polarization signature of measuring 
randomness in the scattering. 
 
7) Target randomness parameter (PR) 
PR is very close to the entropy (H) and provides the similar 
information. 
 
8) Shannon entropy (SE):  
This parameter is a sum of SEI and SEP. SEI is the intensity 
contribution that depends on the total backscattered power, and 
SEP the polarimetric contribution that depends on the Barakat 
degree of polarization. 
 

In: Wagner, W., Székely, B. (eds.): ISPRS TC VII Symposium – 100 Years ISPRS, Vienna, Austria, July 5–7, 2010, IAPRS, Vol. XXXVIII, Part 7A
Contents Author Index Keyword Index

199



 

The information provided by the H/A/Alpha decomposition of 
the coherency matrix can be interrelated in terms of the 
eigenvalues and eigenvectors of the decomposition or in terms 
of secondary polarimetric descriptors. Both interpretations have 
to be considered as complementary. In this study, PolSARPro 
4.0 software was used to implement the H/A/Alpha 
decomposition (López-Martínez, 2005). 
 
2.2 Object-oriented image analysis 

At present most of orbital radar images are obtained using only 
one single frequency. There are significant confusions if 
classification is purely based on a single band of SAR images 
(Li and Yeh, 2004). One way to compensate for the limited 
information of single frequency is to derive more features such 
as texture and shape for the classification beside of spectral 
information of radar images. Object-oriented image analysis can 
be used on radar images to extract such type of information. 
Such analysis is especially useful in improving the classification 
accuracy of high-resolution images (Langford, 2002). 
 
There are two steps in the object-oriented analysis: (1) Image 
segmentation; (2) Feature extraction. In this study, multi-
resolution segmentation was used to delineate objects based on 
shape and color homogeneity (Benz et al., 2004) from the Pauli 
composition image of RADARSAT-2 PolSAR data. Pauli 
composition has become today the standard for PolSAR image 
display, and thus it is often used for visual interpretation and 
observation. In order to obtain the best discrimination results, 
both color and shape heterogeneity is used to adjust the 
segmentation. The object-oriented package, Definiens 
Developer 7.0 (previously called eCognition), is used to 
implement the object-oriented image analysis. 
 
The multi-resolution segmentation algorithm is a bottom up 
region-merging technique starting with one-pixel objects. 
During the region-merging process, smaller image objects are 
merged into bigger ones, and the underlying optimization 
procedure minimizes the weighted heterogeneity of resulting 
image objects for a given resolution over the whole scene. 
Heterogeneity is determined based on the standard deviation of 
color properties and their shapes. The merging of a pair of 
adjacent image objects leads to the smallest growth of the 
defined heterogeneity. The process will stop if the smallest 
growth exceeds the threshold defined by a scale parameter. 
 
Various types of features can be obtained via object-oriented 
image analysis, such as mean value of pixels and standard 
deviation of pixels in an image object, mean difference to 
neighbors, area, length, GLCM Homogeneity, GLCM Contrast 
and so on. The interrelations among objects can be defined and 
utilized as additional information for classification.  
 
2.3 Decision tree algorithm 

The task of this work is to determine the class of each image 
object based on their features. Since a large set of features can 
be extracted from image objects, the selection of proper features 
is important for classification. Decision trees are commonly 
used for variable selection to reduce data dimensionality in 
image analysis (Lawrence and Wright, 2001). Decision trees are 
used to predict membership of cases or objects in the classes of 
a categorical dependent variable from their measurements on 
one or more predictor variables. In these tree structures, leaves 
represent classifications and branches represent conjunctions of 
features that lead to those classifications. 
 

Decision tree algorithms have many advantages: (1) they are 
white box model and simple to understand and interpret. If a 
given result is provided by the model, the explanation for the 
result is easily replicated by simple math; (2) Decision trees are 
able to handle both numerical and categorical data, and requires 
little data preparation; (3) They are robust and perform well 
with large data in a short time; (4) Decision trees, performing 
univariate splits and examining the effects of predictors one at a 
time, have implications for the variety of types of predictors that 
can be analyzed. 
 
In this study, QUEST was used to implement the LULC 
classification. The QUEST is a binary-split decision tree 
algorithm for classification and data mining (Loh and Shih, 
1997). A decision tree can be created based on training samples 
using QUEST. After the decision tree is constructed, it can be 
used to identify the class of other unknown cases. 
 
 

3. IMPLEMENTATIONS AND RESULTS 

3.1 The study area and data processing 

The study area is located in the Panyu District with latitudes 
22º51´ to 22º58´ and longitudes 113º20´ to 113º33´ of 
Guangzhou in southern China. Panyu lies at the heart of the 
Pearl River Delta, and has a total land area of 1,314 km2 and a 
population of 926,542. This district was an agricultural country 
before economic reform in 1978 but has been transformed 
recently into a rapidly urbanized area. Since Panyu became a 
district of Guangzhou in July 2000, intensive land development 
has occurred to provide housing to the residents of Guangzhou 
City. Huge profits have been generated through property 
development, which results in the increase of land speculation 
activities and illegal land development. Accurate and timely 
LULC information can provide government with scientific 
information for making management policies to control and 
prevent illegal developments at an early stage. 
 
The RADARSAT-2 image with the fine quad-pol (FQ12) and 
Single Look Complex (SCL) obtained on 21 March 2009 was 
used in this study (Figure 1.). The image has a full polarization 
of HH, HV, VH and VV, a resolution of 5.2 × 7.6m and an 
incidence angle of 31.5 degrees. Data processing included 
radiometric calibration, geometric calibration, slant range to 
ground range and image filtering. Lee refined filter, which 
proves to be efficient in polarimetric SAR images, was applied 
to the RADARSAT-2 data. 
 
 

 
Figure 1.  RADARSAT-2 Quad-Pol image of the study area 

(Pauli Composition: HH+VV, HV, HH-VV) 
 

The final LULC map displays categories including built-up area, 
water, barren land and vegetation. In field work, a total of 497 
field plots were selected across typical LULC classes based on a 
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clustered sampling approach (McCoy, 2005). A suggestion by 
Congalton and Green (1999), based on experience with the 
multinomial distribution, is to use a minimum of 50 samples for 
each category. A minimum sample unit should be no smaller 
than 3×3 cluster of pixels or a polygon of comparable size for 
either training sites or accuracy assessment sites (McCoy, 2005). 
In this study, the sampling size per field plot ranged from 15 to 
54 pixels, which was determined by the size of a ground photos 
taken concurrently. The collected field plots were divided into 
two groups for the training and validation. There were 210 plots 
in the training group and 287 plots in the validation group. The 
first group was used to select features and create a decision tree 
with QUEST for the classification, and the second group, which 
included 7520 pixels, was used to verify the results of the 
LULC classification. An ALOS image of the 10m multispectral 
bands obtained on 31 November 2008 was used as a reference 
map to assist the collection of ground true information. 
 
3.2 Polarimetric target decomposition results 

The H/A/Alpha decomposition was used to extract polarimetric 
descriptors from the RADARSAT-2 data. A total of 39 
descriptors were extracted and combined with the elements of 
the scattering and coherency matrix to form a PolSAR 
multichannel image. The descriptors and the corresponding 
image channels are listed in Table 2. 
 
 
Channel Descriptor Channel Descriptor Channel Descriptor 

1 HH 19 p2 37 H  
2 HV 20 p3 38 A  
3 VH 21 α  

39 (1-H)(1-A) 

4 VV 22 α1 40 (1-H)A 
5 HH+VV 23 α2 41 H(1-A) 
6 HV+VH 24 α3 42 HA 
7 HH-VV 25 β  43 SERD  

8 T11 26 β1 44 DERD 
9 T12 27 β2 45 PA 
10 T13 28 β3 46 PF  
11 T22 29 δ  47 RVI 

12 T23 30 δ1 48 PH  
13 T33 31 δ2 49 PR 
14 λ  32 δ3 50 SE  
15 λ1 33 γ  51 SEI 

16 λ2 34 γ1 52 SEP 
17 λ3 35 γ2   
18 p1 36 γ3   
 

Table 2.  Descriptors and corresponding channels of the 
PolSAR multichannel image 

 
3.3 Image segmentation results 

The multi-resolution segmentation was used to delineate image 
objects and extract their features. The scale parameter 
determines the maximum change in heterogeneity that may 
occur when merging two image objects. Adjusting of the value 
of scale parameter influences the average object size. A larger 
value leads to bigger objects and vice versa. The optimal scale 
parameters for the multi-resolution segmentation were found 
according to some experiments. The corresponding 
segmentation results related to different segmentation scale 
parameters are shown in Figure 3. The segmentation with a 
scale of 10 was enough to delineate accurate land parcels.  
 

Since the combined image consists of 52 channels, the number 
of features that can be extracted from one single object is as  

 
Figure 3.  Determining the optimal scale for segmentation of 

Radarsat-2 image. 
 

high as 1253. These features are the indigenous parameters of 
Definiens Developer 7.0, and they are listed as the following 
four major categories: 
1) 208 (4×52) indicators related to the statistical values of each 

object: min, max, mean, and standard deviation of each 
layer; 

2) 624 (12×52) indicators related to texture (e.g., Grey-level 
co-occurrence matrix (GLCM) Homogeneity, GLCM 
Contrast, GLCM Dissimilarity, and GLCM Entropy); 

3) 364 (7×52) indicators related to spatial relationship (e.g., 
mean difference to neighbors, and mean difference to 
brighter neighbors); 

4) 57 indicators related to shape (e.g., area, length, number of 
segments, and curvature/length (only main line) were 
extracted from an object; 

 
3.4 Land use and land cover classification results 

The classification maps using the proposed method and the 
Wishart supervised classification were produced as the 
comparison (Figure 4). The Wishart supervised classification 
was implemented by using the PolSARPro 4.0 software (López-
Martínez, 2005). 
 
3.5 Accuracy evaluation 

Accuracy evaluation was carried out based on field 
investigation. The accuracy statistics of these two methods were 
produced in Table 5 and 6. The overall accuracy of our method 
was 89.34%, which was much higher than the Wishart 
supervised classification method, with an overall accuracy of 
79.36%. Moreover, the overall kappa accuracy was also 
increased from 72.41% to 85.76% by using this proposed 
approach. The commission and omission errors can be 
measured by the user’s and procurer’s accuracy. The proposed 
method distinguished each class better than the Wishart 
supervised classification did, especially for identifying the built-
up area. In the Wishart supervised classification, the accuracy of 
the user for the built-up area is very poor (50.28%). In this 
proposed method, however, the user’s accuracy of the built-up 
area was much higher (77.84%). In the classification, industrial 
buildings with wide flat roof were commonly confused with 
barren land because of similar scattering mechanism. Some 
shadow of buildings was also prone to be classified as barren 
land. Otherwise, some buildings that have specific orientations 
not aligned in the azimuth direction or have complex structures 
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Figure 4.  Land use and land cover classification results (a) 
Proposed method, (b) Wishart supervised classification. 

 
such as rough roofs were assimilated into volume scattering 
class and then assigned to the vegetation class. In some 
mountain area covered with vegetation, some shadow was also 
prone to be classified as barren land. Barren lands with water on 

their surface or high soil moisture were misclassified as water in 
the classification result. Some polluted water areas were also 
assigned to the barren land. 
 
 

4. CONCLUSIONS 

This paper proposed a new method that integrates polarimetric 
decomposition, object-oriented image analysis, and decision 
tree algorithms. The comparison between the proposed method 
and the Wishart supervised classification method indicates that 
the proposed method outperforms the Wishart supervised 
classification method, and can reduces incontinuous 
phenomenon effectively. The results show that the overall 
classification accuracy of the proposed method was 89.34% 
whereas it was 79.36% in the Wishart supervised classification 
method. Moreover, the overall kappa accuracy of the proposed 
method was also higher than that of the Wishart supervised 
classification method. The object-oriented image analysis is the 
suitable image processing method for information extraction to 
support the classification of polarimetric SAR images. Decision 
tree algorithms are efficient tools for the object-oriented 
classification of polarimetric SAR image. The experiments have 
indicated that the proposed method is an appropriate method for 
LULC classification of polarimetric SAR imagery. 
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ABSTRACT: 
 
In this paper, four new reduced-references (RR) metrics are proposed for measuring the visual quality of hyperspectral images after 
having undergone spatial resolution enhancement. These metrics can measure the visual quality of hyperspectral images whose full-
reference (FR) image is not available whereas the low spatial resolution reference image is available. A FR metric requires the 
reference image and the test image to have the same size. After spatial resolution enhancement of hyperspectral images, the size of 
the enhanced images is larger than that of the original image. Thus, the FR metric cannot be used. A common approach in practice is 
to first down-sample an original image to a low resolution image, then to spatially enhance the down-sampled low resolution image 
using an enhancement technique. In this way, the original image and the enhanced image have the same size and the FR metric can 
be applied to them. However, this common approach can never directly assess the image quality of the spatially enhanced image that 
is produced directly from the original image. Experimental results showed that the proposed RR metrics work well for measuring the 
visual quality of spatial resolution enhanced hyperspectral images. They are consistent with the corresponding FR metrics.  
 

1. INTRODUCTION 
 
Measurement of image quality is of fundamental importance to 
many image processing applications. Image quality assessment 
algorithms are in general classified into three categories: full-
reference (FR), reduced-reference (RR), and no-reference (NR) 
algorithms. True NR algorithms are very difficult to design and 
little progress has been made (Sheikh et al, 2005). FR algorithms 
are easier to design and the majority of image quality assessment 
algorithms are of this type. In FR quality assessment, a reference 
image of perfect quality is assumed to be available. However, in 
RR or NR quality assessment, partial or no reference information 
is available.  
 
Mean square error (MSE) is the simplest FR metric between the 
reference image x and the processed image y: 
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where N is the total number of pixels in the images x and y. The 
MSE is easy to compute and implement in software and 
hardware. However, the MSE is not a good image quality 
measure as it is not well matched to perceived image quality. 
Two distorted images with the same MSE may have very 
different types of errors, some of which are more visible than 
others. Thus one image may look very much similar to the 
reference, whereas another may look very much distorted.  
 
Peak signal to noise ratio (PSNR) is also a popular FR metric to 
measure the quality of a reconstructed image, and it is defined 
as: 
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The PSNR has been used as a standard metric in image 
denoising and other related image processing tasks.  
 
Wang and Bovik (2002) proposed the Q index for a reference 
image x and an image y to be evaluated, 
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where μx and μy are sample means, σx

2 and σy
2 are sample 

variances, and σxy is the sample cross-covariance between x and 
y. The Q index is a FR metric and it is easy to calculate and 
applicable to various image processing applications. It 
outperforms the MSE significantly under different types of 
image distortions. Wang et al (2004) also developed the 
structural similarity (SSIM) index, which is also a FR metric, by 
comparing local correlations in luminance, contrast, and 
structure between the reference and distorted images. The SSIM 
index is defined as: 
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where μx and μy are sample means of images x and y, σx

2 and σx
2 

are sample variances, and σxy is the sample cross-covariance 
between x and y. The constants C1, C2, C3 stabilize SSIM when 
the means and variances become small. The mean SSIM 
(MSSIM) over the whole image gives the final quality measure. 
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Sheikh and Bovik (2006) developed a visual information fidelity 
(VIF) index for FR measurement of image visual quality. Let 
e=c+n be the reference image, and n zero-mean normal 
distribution ),0( 2IN nσ  noise. Also, let f=d+n′= gc+v′+ n′ be the 
test image, where g represents the blur, v′ the additive zero-mean 
Gaussian white noise with covariance Iv

2σ , and n′ the zero-

mean normal distribution ),0( 2IN nσ  noise. Then, VIF can be 
computed as the ratio of the mutual information between c and f, 
and the mutual information between c and e for all wavelet sub-
bands except the lowest approximation subband.  
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All the metrics above are popular metrics published in the 
literature for FR image quality assessment. However, they 
require the reference image and the test image to have the same 
image size. After spatial resolution enhancement of 
hyperspectral images, the size of the enhanced images is larger 
than that of the original image. Thus, these metrics cannot be 
used to assess the quality of the enhanced images. A common 
approach in practice is to first down-sample an original image to 
a low resolution image, then to spatially enhance the down-
sampled low resolution image using an enhancement technique. 
In this way, the original image and the enhanced image have the 
same size and the FR metrics can be applied to them. However, 
this common approach can never directly assess the image 
quality of the spatially enhanced image that is produced directly 
from the original image. The image quality of the enhanced 
image measured based on the down-sampled low resolution 
image may or may not reflect the real quality of the image that is 
enhanced directly from the original image, as the down-sampling 
procedure introduces artificial effects.  
 
This paper proposes new RR metrics. A brief review about the 
RR metric is given here. Wang and Simoncelli (2005) proposed 
an RR image quality assessment method based on a natural 
image statistic model in the wavelet transform domain. They 
used the Kullback-Leibler distance between the marginal 
probability distributions of wavelet coefficients of the reference 
and distorted images as a measure of image distortion. A 
generalized Gaussian model was employed to summarize the 
marginal distribution of wavelet coefficients of the reference 
image, so that only a relatively small number of RR features are 
needed for the evaluation of image quality. Li and Wang (2009) 
proposed an RR algorithm using statistical features extracted 
from a divisive normalization-based image representation. They 
demonstrated that such an image representation has simultaneous 
perceptual and statistical relevance and its statistical properties 
are significantly changed under different types of image 
distortions. Engelkea et al (2009) developed RR objective 
perceptual image quality metrics for use in wireless imaging. 
Instead of focusing only on artifacts due to source encoding, they 
followed an end-to-end quality approach that accounts for the 
complex nature of artifacts that may be induced by a wireless 
communication system. 
 
In this paper, four new RR metrics were proposed for measuring 
the image fidelity of a testing image that has higher spatial 
resolution (i.e. larger size than that of the original image). It is 
assumed that a low spatial resolution reference image is 
available, whereas the high spatial resolution reference image is 

not. These four proposed RR metrics do not require the sizes of 
the reference image and the test image to be the same.  
 
The iterative back projection (IBP) (Irani and Peleg, 1991, 1993) 
technique was chosen to enhance the spatial resolution of testing 
hyperspectral images in order to demonstrate the usefulness of 
these metrics. Experimental results reported in section 3 show 
that the proposed metrics can measure the image quality of the 
spatial resolution enhanced images very well. 
 
 

2. CONSTRUCTING NEW RR METRICS FROM 

EXISTING FR METRICS 
 
In this section, four new RR metrics are proposed for assessing 
the image quality of a spatial resolution enhanced image. They 
can be derived as follows. 
 
Let the size of the low spatial resolution image f be P×Q, and the 
size of the corresponding spatial resolution enhanced image g be 
2P×2Q. This means that the spatial resolution of image f is 
enhanced at a factor of 2×2. The following four  down-sampled 
images at a factor of 2×2, can be defined as: 
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)2:2:2,2:2:2(22 QPgg =                                   (9) 

 
 
where )2:2:,2:2:( QjPig , (i=1,2; j=1,2), is a matrix which 
starts at the pixel (i,j) of image g and extract every other pixels in 
g along both the x and the y directions with a step of 2. Since the 
low spatial resolution image f and the images jig ,  (i,j=1,2) have 
the same image size, one can use any FR metrics to measure the 
image quality between them. The following four RR metrics are 
proposed in this paper: 
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Experimental results conducted in the next section show that 
these four RR metrics can measure the image quality of a spatial 
resolution enhanced image very well. Even though these four RR 
metrics are derived for a special spatial resolution enhancement 
factor 2×2, it is easy to extend it to other spatial resolution 
enhancement factor M×N, where both M and N are positive 
integers. 
 
The IBP is chosen to enhance the spatial resolution of the testing 
images. For simplicity, this paper only considers spatially 
increasing the resolution by a factor of 2×2. It is easy to extend 
IBP to even higher resolution enhancement. IBP consists of two 
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steps: (i) projection, and (ii) back-projection. It enhances spatial 
resolution of an image by performing projection and back-
projection iteratively until satisfactory results are obtained. In 
IBP, the imaging is regarded as a projecting process that includes 
shifting, under-sampling and blurring operations to generate a set 
of low resolution images. So the reconstruction of a high-
resolution image from these low resolution images can then be 
regarded as a back-projecting process which includes de-
blurring, up-sampling and anti-shifting operations. This back-
projection is performed in an iterative way. The IBP algorithm 
converges rapidly, and can meet the need of real-time processing 
since it only deals with some simple operations. Generally, the 
resultant image has satisfactory visual effect after 10 iterations. 
 
For the sake of comparison with IBP, interpolation is used to 
enhance the spatial resolution of the testing images. The bilinear 
interpolation was chosen as the interpolation method in the 
experiments. 
 
 

3. EXPERIMENTAL RESULTS 
 
In this section, a number of experiments were conducted to 
demonstrate the feasibility of the proposed RR metrics. Three 
hyperspectral data cubes were tested in this paper. The 2-
dimensional (2D) band images of the data cubes are used to test 
the proposed RR metrics. The first hyperspectral data cube was 
acquired using the Airborne Visible/Infrared Imaging 
Spectrometer (AVIRIS) in the Cuprite mining district, Nevada, 
in 1997. The original scene with size of 614×512 pixels and 224 
bands is available online at 
http://aviris.jpl.nasa.gov/html/aviris.freedata.html. The upper-
right corner of the scene that consists of 350×350 pixels and 224 
bands are cut out. This scene is well understood mineralogically 
and it has been made a standard test site for validation and 
assessment of remote sensing methods (Chen and Qian, 2007, 
2008a, 2008b, 2009; Wang and Chang, 2006). Due to water 
absorption and low SNR, the bands 1-3, 105-115 and 150-170 
are removed. As a result, a total of 189 bands are used in our 
experiments. Figure 1 shows the image of the Cuprite data cube 
at wavelength 827 nm (band #50). 
 
  

 
 
Figure 1. The AVIRIS Cuprite scene at displayed at wavelength 
827nm (spectral band #50). 
 
 
The second hyperspectral data cube was acquired using the 
airborne Short-wave-infrared Full Spectrum Imager II (SFSI-II). 
The data cube was collected over Key Lake in northern 
Saskatchewan, Canada for studying the capability of imaging 

spectrometers in identifying uranium mine and associated 
activities. The data cube was acquired with a ground sample 
distance (GSD) of 3.19m×3.13m. The size of the data cube is 
1090 lines by 496 pixels by 240 bands.  The scene of the testing 
data cube includes a mill complex and a mine complex. Figure 2 
shows an image at wavelength 1304 nm (band #16) of this data 
cube. 
 
The third hyperspectral data cube was also collected using the 
SFSI-II for studying target detection from short wave infrared 
hyperspectral imagery. The GSD of the data cube is 
2.20m×1.85m. The size of the data cube is 140 lines by 496 
pixels by 240 bands. Man-made targets with different materials 
and sizes were deployed in a mixed of sand and low-density 
grass cover within the scene of the data cube. Seven pieces of 
awnings with varying sizes ranging from 12m×12m to 
0.2m×0.2m, four pieces of polythene, four pieces of white tarp 
and four pieces of white cotton with varying size ranging from 
6m×6m to 0.5m×0.5m were deployed. In addition, a 3m×3m 
piece of white tarp was placed on a large vinyl turf mat of size 
11m×14m. Figure 3 shows a region-of-interest (size: 140×140) at 
wavelength 1289 nm (band #13) of this data cube. 
 
 

 
 
Figure 2. The Key Lake scene displayed at wavelength 1304 nm 
(spectral band #16). 
 

Figure 3. The SFSI-II data cube with man-made targets 
displayed at wavelength 1289 nm (spectral band #13). 

Ideally, the IBP and bilinear interpolation should be used to 
enhance the spatial resolution of every spectral band in the 
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hyperspectral data cubes, and then the proposed four RR metrics 
were used to assess their image quality. However, due to the 
workload of computing the IBP and the metrics for the whole 
datacubes, as a consequence, bands #16, #50 and #13 have been 
chosen in the experiments for the Cuprite data cube, the Key 
Lake data cube, and the Target data cube, respectively. 

The PSNR, Q index, MSSIM, and VIF are of widely used FR 
metrics in image processing. In the experiments, these four FR 
metrics are compared to their corresponding RR metrics. Table 
4 lists the experimental results of the metrics applied to the 
spatial resolution enhanced images by using IBP and 
interpolation. The IBP was run for 30 iterations in order to 
generate a higher quality spatial resolution enhanced image.  
 

 
 

Full-Reference metrics Reduced-Reference metrics 
Data cube 

Spatial 
Enhancement 

Method PSNR Q MSSIM VIF PSNR Q MSSIM VIF 

IBP 36.51 0.82 0.91 0.69 43.82 0.97 0.99 0.87 Cuprite 
Interpolation 35.67 0.78 0.90 0.48 38.37 0.92 0.96 0.75 

IBP 34.87 0.75 0.89 0.77 40.11 0.96 0.98 0.87 Key Lake Interpolation 32.41 0.70 0.87 0.54 34.59 0.87 0.94 0.78 
IBP 53.33 0.78 0.99 0.77 61.67 0.97 1.00 0.98 Target 

datacube Interpolation 53.14 0.74 0.99 0.65 56.35 0.89 1.00 0.88 
 

Table 4. Experimental results of four FR image quality metrics and the four proposed RR metrics of the test images that are spatially 
enhanced by using the IBP and interpolation methods. For the FR metrics, a test image is first down-sampled at a factor of 2×2, then 

spatially enhanced at a factor of 2×2. For the proposed RR metrics, a test image is spatially enhanced by a factor of 2×2 without a 
prior down-sampling. 

 
 
For the FR metrics, a test image is first down-sampled at a 
factor of 2×2, then is spatially enhanced at a factor of 2×2 in 
order to satisfy the requirement of the processed image having 
the same size as the reference image. For the proposed RR 
metrics, an original test image is spatially enhanced at a factor 
of 2×2 without a prior down-sampling. From the table, it can be 
seen that IBP-based method always produces better results than 
the bilinear interpolation no matter whether the original image 
is down-sampled or not. More importantly, the proposed RR 
metrics measure the image quality of the spatial resolution 
enhanced images very well, and they are consistent with the 
corresponding FR metrics. This indicates that the proposed RR 
metrics are reliable metrics for measuring the quality of the 
spatial resolution enhanced images. 
 
 

4. CONCLUSION 
 
In this paper, four new RR metrics are proposed to measure the 
quality of the spatially enhanced hyperspectral images. These 
metrics do not require the sizes of the reference and test images 
to be the same. However, all FR metrics published in the 
literature require both images to have the same size. The IBP and 
bilinear interpolation are used to increase the spatial resolution of 
a testing image. Experimental results show that the proposed 
four RR metrics can measure the image quality of the spatial 
resolution enhanced images very well. Even though only 
hyperspectral images are tested in this paper, the proposed 
metrics can be used to measure the image quality of any other 
spatially enhanced images. 
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ABSTRACT:

In this paper we present a comparative case of study of different methodologies for image sharpening. The evaluated methodologies
are classic procedures such as Brovey (BR), Intensity Hue Saturation (FIHS), and Principal Component Analysis (PCA); two
procedures based on wavelet transforms: Wavelet à Trous (WAT) and MultiDirection MultiResolution (MDMR); and one method of
a geostatistical nature, Downscaling Cokriging (DCK). The comparison of the fused images is based on the quantitative evaluation
of their spatial and spectral characteristics by calculating statistical indexes and parameters to measure the quality and coherence of
the resulting images.
Synthesis of the obtained results shows that the algorithm fusions based on wavelet and DCK yielded better results than did the
classical algorithms. Particularly, the DCK geostatistical method does not introduce artefacts in the estimation of the digital levels
corresponding with the source multispectral image and, in this sense, can be considered the most coherent method. The MDMR
method produces the merged images with the highest spatial quality.

* Corresponding author

1. INTRODUCTION

The arrival of new sensors and satellites in recent decades has
notoriously favoured the availability of remotely sensed images
with enhanced spatial and spectral resolution. In practice, a
more effective use of this information entails the application of
image fusion techniques in order to obtain a final product with
improved spatial and spectral resolution suitable for a specific
application.

The simplest fusion techniques are based on the direct
substitution of some bands for visualization or in a simple
arithmetic transformation, such as the Brovey (BR) method or
the FastIHS method (Tu, 2005). Some other classic image
fusion algorithms are more complex and involve
transformations of the images and substitution of components,
e.g. Principal Component Analysis (PCA) or Intensity Hue
Sturation (IHS) transform.

A set of image fusion methods based on wavelet theory have
recently been proposed (Amolins et al., 2007). These fusion
algorithms may be considered as an extension of the High Pass
Filtering (HPF) method, since they hold that spatial information
is contained in the high frequencies. The wavelet transforms
extract detailed information of the panchromatic image to
integrate it in the multispectral image by means of methods
based on the frequency or the spatial context. An advantage of
these techniques is that the wavelet function can be modified to
enhance specific features, which can be useful for a particular
application (Amolins et al., 2007).

A further methodological alternative to the above is founded on
geostatistical methods, which explicitly account for spatial
variability characteristics of the images to be fused (Chica-
Olmo and Abarca-Hernández, 1998). The geostatistical fusion
model is based on the Cokriging method. One variant of this

methodology is the Downscaling Cokriging method (DCK),
proposed by Pardo-Iguzquiza et al. (2006), which considers
relevant aspects for image fusion purpose such as pixel size
(information support), the direct and cross-spatial correlations
of the image digital values, and the point spread functions of the
sensors.

Although several comparative studies of remote sensing image
fusion methods have been published, there are only a few that
include a detailed assessment of results obtained with a broad
range of available techniques. The aim of this study is to
perform a detailed comparative analysis of a set of image-fusion
algorithms representative of the different methodological
approaches. To this end, several classic methods based on
arithmetic transformations or substitution of components were
chosen: Brovey (BR), Fast IHS (FIHS) and Principal
Component Analysis (PCA); two methods based on wavelet
transforms: Wavelet à Trous (WAT) and MultiResolution
MultiDirection (MDMR); and finally, a method of a geostatistic
nature, Downscaling Cokriging (DCK).

2. RELATED WORK

2.1 Image sharpening approaches

Below we briefly describe the selected fusion algorithms that
were chosen for comparative study.

BR Method: It is a very popular method of easy application,
which is based on simple arithmetic applications, in which each
band of the colour image is multiplied by the high resolution
image and divided by the sum of the multispectral bands.

PCA Method: PCA is based on the application of a classic
procedure of principal component analysis of the original bands
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of the mustispectral image. In the calculation of the principal
components, the common information of the set of multispectral
bands is contained, mainly, in the first component. This
component is substituted by the panchromatic band, equivalent
in radiometric information content, but having better spatial
resolution. Inverse transformation allows the fused image to be
obtained.

FIHS Method: The IHS is based on the transformation of the
colour space, from RGB to IHS, and substitution of the
resulting band intensity with the panchromatic image of high
spatial resolution. By applying the inverse transformation after
substitution, one obtains a multispectral image that is similar to
the initial one, but has improved spatial resolution. The FIHS
fusion algorithm is based on the same theoretical principals as
the IHS, but the process of inverse transformation is simplified
(Tu, 2005).

WAT Method: Wavelet transforms are considered as a bank of
filters that, upon application to a sequence of levels of
decomposition, divide the signal (e.g. satellite image) into high
and low frequency components (Amolins et al., 2007). When
decomposition at different levels is applied, we speak of
multiresolution decomposition.

The transform denominated Wavelet à Trous, or WAT consists
basically of the application of a series of consecutive
convolutions for different levels of degradation. WAT calls for
an iterative filtering process, in which a series of degradation
filters are used to obtain the wavelet. Because it is not a decimal
algrorithm (with holes), the point of departure is an initial filter
to which rows and columns are iteratively added, with zeros
introduced between the rows and columns of the filter of the
previous iteration, until the desired resolution is achieved.

The WAT method, unlike algorithms such as the pyramidal one
of Mallat is characterized by the directional independence of the
filtering process, without spatial compression of the different
levels of degradation. Therefore, the image for each level of
degradation has half the resolution of the previous one, but the
same size, so that the information contained in each is
redundant.

The wavelet coefficients Akj
uj+n(x) are calculated as the

difference between two consecutive levels of degradation:

     
1

j j j

j jj

k k k
u n u nu nA x DN x DN x    (1)

DN represents the digital number of a pixel of location x = (x,y)
belonging to spectral band kj of the original image.

Following an additive criterion, if DNkj
uj+n(x) represents the

successive degradations that contain the information of low
frequencies of the original multispectral image, and Akjuj+n(x)
the respective wavelet coefficients that contain the high
frequency information, it is possible to obtain a fused image of
high resolution by means of the sum of the low frequencies
contained in the degraded multispectral image and the high
frequencies extracted from the panchromatic image.
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MDMR Method: The MultiDirection MultiResolution fusion
algorithm (Lillo-Saavedra and Gonzalo, 2007) is a modification
of the WAT that incorporates directional transforms. It is an
algorithm meant to attain optimal equilibrium between the
spectral and the spatial resolution of combined images, via the
application of directional ellipsoidal filters.

The fusion process is virtually identical to that explained under
the WAT method.
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However, we see that the level of degradation has been replaced
by that of the directional filter of orientation θ. Unlike WAT, 
this is a highly anisotropic algorithm, which allows for trade-off
between the desired spatial and spectral resolutions (see
Lakshmanan 2004).

Downscaling Cokriging Method: The fused image of high
spatial resolution obtained by means of this geostatistial
method, DCK, is expressed as a linear combination of the
experimental images (Pardo-Iguzquiza et al., 2006; Atkinson et
al., 2008):

 0

0
0

0
1 1

( ) ( )
j

j

j

nM
k k
u ji u i

j i

DN DN
 

 x x (4)

where:
DNb

a represents the digital number of a satellite image for the
spectral band b and with a spatial resolution (pixel size) a and
for a particular spatial location. The circumflex symbol above
DN denotes that it is an estimated image or one fused by
cokriging, whereas without the accent it is designated as an
experimental image. Other annotations are:
b=k0 spectral band whose spatial resolution should be
improved.
b=kj experimental spectral band included in the process of
fusion by cokriging.
a=u0 spatial resolution or pixel size of the fused image.
a=uj spatial resolution or pixel size of an experimental image
used in the fusion.
M: number of experimental bands used in the fusion.
nj: number of pixels of the neighborhood used for the
experimental image of the spectral band.
λ0

ji : optimal weight applied to DNkj
uj(xi) in the estimation of

DNk0
u0(xi).

The optimal weights given above are obtained by means of the
resolution of a system of linear equations known as a cokriging
system. This system is derived by imposing that the estimator be
unbiased:
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and minimizing the variance of estimation

 0
0

0 0

2
0 0E{[ ( ) ( )] } min

k k
u uDN DN x x (6)

where E{.} is the operator of mathematical expectation.

The cokriging system also accounts for three key aspects of
fusion: the size of the pixel of the experimental images (support
effect), the direct and crossed variograms of the radiometric
bands, and the point spread functions of the sensor. (For a more
detailed description of the cokriging system see Pardo-
Iguzquiza et al., 2006; Atkinson et al., 2008).

2.2 Evaluation approaches

A set of statistical parameters and indexes were calculated to
quantify the differences between the spectral information of the
compared images, and, moreover, to measure the spatial and
spectral quality overall:

-Correlation coefficient between the original multispectral
image and the fused images.

-Mean Error and Root Mean Square Error of the original and
the fused image.

-The ERGAS index (Erreur Relative Globale Adimensionnelle
de Synthèse) (Wald 2000):
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  (7)

where h/l is the ratio between the resolution of the panchromatic
image and the multispectral image, N is the number of spectral
bands (Bk) of the fused image, Mk is the mean value of each
spectral band, and RMSE is the Root Mean Square Error
calculated between the fused image and the multispectral
original.

To measure the spatial quality of fused images, authors Lillo-
Saavedra et al. (2005) put forth a modification of the classic
spectral ERGAS, referred to as the spatial ERGAS:

 
2

2
1

( )1
100

N
spatial k

spatial
kk

RMSE Bh
ERGAS

l N P

  (8)

This index differs from the previous one in that it uses the
original panchromatic band (PK) instead of the multispectral
one.

-The Image Quality Index, proposed by Wang and Bovik (2002)
as an alternative to the Mean Square Error. It models the

differences between two given monochromatic images as a
combination of three separate factors: loss of correlation,
luminance distortion, and contrast distortion.
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where and are the mean of the original and the fused images,
respectively, σ2

O and σ2
F are the variances, and σOF is the

covariance between the original image and the fused one.

- Index of spatial quality proposed by Zhou et al. (1998). This
index measures the spatial quality of a fused image in relation
with the spatial information provided by the panchromatic
image. The algorithm applies a Laplacian filter to extract the
high frequency information and compute the correlation
coefficient between the sharpened image and the original
panchromatic one.

-The “coherence measure” between the fused images and reality
was obtained by calculating the correlation coefficient and the
real errors (Mean error, ME and Root Mean Square Error,
RMSE; (see Figure 2).

3. RESULTS AND DISCUSSION

The study is illustrated using a sector of a multispectral
Landsat7 ETM+ scene of 944 km2 (1024x1024) and its
corresponding panchromatic image, with a spatial resolution of
30m and 15m, respectively. The image was acquired on 20 July
2002 over the metropolitan area of Granada, in southeast Spain.
The scene corresponds to path 200 row 34 of the Landsat
Worldwide Reference System (WRS) (figure 1).

Figure 1. False colour composition image of the study area.
Boxes A and B are two sectors of different land cover context.

The best reference for assessing the quality of a fused image is
obviously the “true image” that the analyst wishes to obtain via
the fusion method. In practice, this is however not feasible. For
this reason, we designed an experiment in which the original
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multispectral and panchromatic images could be degraded (by a
factor of 2) to resolutions of 120m and 30m, respectively, in
order to obtain fused images with a resolution of 30m (figure 2).
In this way we were able to compare the results of fusion with
the “true” or “real” image (e.g., coherence measures).

Figure 2. General scheme of the methodology used for
comparative assessment of image fusion algorithms.

3.1 Application of the fusion algorithms

Classic methods: The classic fusion algorithms, BR, PCA or
FIHS. These methods do not require definition of filters or the
study of spatial variability between images, as required in the
case of wavelet based and geostatistical based procedures.

Wavelet based:
WAT
In order to apply Wavelet à Trous fusion, a fusion ratio of 4:1
between the degraded multispectral Landsat image (120 m) and
the degraded panchromatic image (30m) was considered. Two
levels of degradation were applied to the multispectral image, so
that two sets of wavelet coefficients were obtained, one
containing detail between 120 m and 60 m and the other from
60 m to 30 m.

MDMR
In order to establish directionality and the optimal filter
parameters, a great number of experiments were carried out
applying different levels of degradation (l = 21, 22, 23, 24) for
different combinations of a and b. The values of the filter
parameters (a and b) were divided into two intervals. The first,
defined between 0.1 and 0.5, using intervals of 0.1; and the
second was ranged from 1 to 5 at intervals of 1. This gave a
total of 100 different combinations for each partition frequency
or degradation level (400 fused images). The resulting products
of fusion were evaluated quantitatively using the ERGAS
spatial and spectral indexes. For the selection of the best fused
image by means of the MDMR algorithm, we determined the
one in which the mean spatial and spectral ERGAS were lowest,
and the difference between the two close to 0. This served as a
guarantee of quality of the fusion, while affording balance
between the spatial and spectral resolution of the fused image.
According to the restrictions explained above, a filter with four
directions and an adjustment of parameters a and b was selected
which provided a fused image with a mean ERGAS equal to

2.15. Nonetheless, the values of a and b, together with the
number of directional filters, can be adjusted to highlight the
spectral or the spatial resolution so as to attain lower ERGAS
values.

Geoestatistical based (DCK): This method requires the
variographic analysis of the multispectral and panchromatic
images: the experimental and the induced models of the simple
variograms of the different bands of the multispectral and
panchromatic images, as well as the cross-variograms between
these images. A linear model of corregionalization with two
superimposed exponential structures was used: one of short
range (45 m) and the other of long range (728 m). The practical
ranges are 135 m and 2184 m, respectively. The sills of the
simple and cross-variograms of the multispectral and
panchromatic bands at point support level were all calculated
using a process of numeric deconvolution and an adjustment of
weighted squared minima.

Fusion by downscaling cokriging was done using two bands,
the band whose spatial resolution we wished to improve, and
the panchromatic one. The results of the Cokriging system
provided the weights that were applied to the high and low
spatial resolution images; that is, the multispectral and
panchromatic ones, respectively.

3.2 Evaluation of the overall quality

In this section, we present the results of the fusions and the
assessment of the spectral and spatial quality of the fused
images.

Two subsectors with different environmental context were
chosen for detailed evaluation (figures 1 and 3). The fused
images show considerable differences in visual quality
depending on the integration technique applied. The BR and
PCA methods have a negative impact on the colour of the
image, decreasing contrast and increasing colour saturation. The
FIHS and the WT methods achieve better spatial detail and give
rise to sharper images, reflected most notably in the linear
features present in the urban zones (figure 3 sector A).
However, the greater the spatial enhancement the greater the
spectral distortions and moreover, contrast is reduced, and an
effect of radiometric homogenization is produced, which causes
a loss of texture. This effect is particularly appreciable in the
image obtained using the MDMR method, where the vegetation
areas seem to be fuzzy. Finally, the geostatistical method (DCK)
is the one that best conserves contrast, saturation and texture
with respect to the original reference image, yet in certain areas,
for instance in the urban ones, a coarser spatial resolution can
be observed.

In order to quantify the quality of the images several indexes
were calculated taking into account the original multispectral
Landsat image, in the case of the spectral indexes, and the
panchromatic image, in the case of the spatial indexes.
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Figure 3. False colour compositions 432 (RGB) of the original
multispectral image and the fused images for test sectors A and

B.

In general, correlation coefficients indicate that a relatively
large correlation in the near infrared (NIR) band exists for all
the fusion methods analysed (0.896 to 0.958) (table 1).
Correlations are however considerably larger for the green
(0.940 to 0.962) and red visible (0.952 to 0.967) bands, due to a
better spectral correspondence with the panchromatic band.
With regard to image integration methods performance, PCA
presents the smallest correlation coefficients for all the bands
(0.896 to 0.955). In contrast, the DCK offers the best
correlation with the multispectral image (0.958 to 0.967). Table
1 show that the RMSE are small for methods DCK, WAT and
MDMR, while the rest of the algorithms present larger RMSE
values, especially the BR method.

BR PCA FIHS WAT MDMR DCK

CC G 0.953 0.943 0.940 0.946 0.944 0.962

CC R 0.967 0.955 0.966 0.958 0.952 0.967

CC NIR 0.931 0.896 0.945 0.932 0.928 0.958

RMSE G 51.68 17.05 15.14 5.82 5.90 4.88

RMSE R 66.44 24.18 17.39 8.40 9.11 7.49

RMSE NIR 65.83 23.53 12.60 6.58 6.75 5.16

Spatial
ERGAS

10.327 3.005 2.826 2.431 2.129 2.943

Spectral
ERGAS

11.036 3.284 2.845 2.111 2.167 1.319

Average
ERGAS

10.682 3.144 2.835 2.271 2.148 2.131

Q 8x8 0.647 0.875 0.881 0.871 0.860 0.879

Q 16x16 0.658 0.901 0.911 0.905 0.887 0.921

Q 32x16 0.665 0.914 0.928 0.925 0.907 0.940

Q 64x64 0.668 0.922 0.939 0.938 0.922 0.951

Q 128x128 0.670 0.926 0.947 0.948 0.935 0.960

Average Q 0.662 0.907 0.921 0.917 0.902 0.930

Zhou 0.972 0.972 0.995 0.997 0.996 0.857

Table 1. Values of the different parameters analysed to estimate
the spectral and spatial quality of the fused images.

With regard to the spatial, spectral and mean ERGAS values
(table 1), all the fusion methods, except the BR and PCA,
generate good quality merged images. However, image fusion
methods based on wavelet transforms (MDMR and WAT) and
geostatistics (DCK) clearly outperform the rest of algoritms.
MDMR and DCK are the ones providing larger spatial and
spectral quality (2.129 and 1.319 respectively). DCK has a
lower mean ERGAS than the others with a value equal to 2.131.
The WAT method presents indexes of spatial and spectral
quality that are better balanced (2.431 and 2.111 respectively).
All the fusion methods, except BR, result in improved spectral
quality with respect to the degraded multispectral image. The

In: Wagner, W., Székely, B. (eds.): ISPRS TC VII Symposium – 100 Years ISPRS, Vienna, Austria, July 5–7, 2010, IAPRS, Vol. XXXVIII, Part 7A
Contents Author Index Keyword Index

213



DCK method yields the best results with an average Q equal to
0.930.

The Zhou spatial index (table 1) present high values in all cases,
except under DCK, which gives a value of 0.857.

3.3 Assessment of coherence

The coherence of digital levels when comparing the target
image and those estimated by means of the fusion algorithm has
been considered in this study. We elaborated a “coherence
measure” based on: mean error, Root Mean Square Error (table
2) and the correlation coefficient of each band estimated with
respect to its corresponding “true” multispectral band (table 2).
DCK is the most coherent, as it presents a maximum correlation
coefficient (practically equal to 1) and it minimizes the RMSE
for all the bands. The rest of the methods give correlation
coefficients that are similar (all lower), whereas the RMSE and
the ME of the classic methods are significantly less coherent
than those of the wavelet methods.

BR PCA FIHS WAT MDMR DCK

ME G -50.15 -15.73 -13.73 0.03 0.0341 -0.44

ME R -63.25 -21.82 -15.69 0.03 0.0378 -0.45

ME NIR -64.69 20.90 -11.08 0.04 0.0387 -0.44

RMSE G 51.40 16.31 14.17 3.00 3.6581 0.66

RMSE R 65.89 23.20 16.10 4.88 5.8669 0.69

RMSE NIR 65.59 22.98 11.45 3.65 4.3800 0.67

R G 0.98 0.97 0.97 0.98 0.9749 0.99

R R 0.99 0.98 0.99 0.98 0.9778 0.99

R NIR 0.97 0.92 0.98 0.97 0.9641 0.99

Table 2. Parameters of coherence between the true or real
multispectral image and the fused images: mean error, Root

Mean Square Error, and correlation coefficient.

4. CONCLUSIONS

The assessment of the global quality of all merged images has
demonstrated that the algorithms based on wavelet transforms
(WAT and MDMR) and the geostatistical algorithm,
Downscaling Cokriging (DCK), produce better spectral and
spatial results than the classic image fusion methods employed.
These classic methods, with the exception of FIHS, introduce
some colour distortions which can be observed in the visual
analysis. The WT, along with FIHS method, enhance the spatial
details of certain zones presenting specific patterns, such as the
reticulate pattern of urban zones, although they introduce some
distortions in more homogeneous zones such as areas covered
with natural vegetation.
The assessment of the global quality of all merged images has
demonstrated that the algorithms based on wavelet transforms
and Downscaling Cokriging (DCK), produce better spectral and
spatial results than the classic image fusion methods employed.

The analysis of the values of correlation coefficients, RMSE,
spectral ERGAS and Q shows that the DCK method is the
algorithm that best preserves the multispectral information of
the original image. The MDMR method was the most efficient
in increasing the spatial resolution of the image (as indicated by
spatial ERGAS index and Zhou index). Finally, from the overall
viewpoint of both spectral and spatial indexes, WAT is the
method that presents the most balanced results.
The DCK is the most coherent method of those studied here,
because it does not introduce artefacts in the estimation of the
digital numbers.
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ABSTRACT:

A cartographic application of remotely sensed images integrated in a distributed water balance is presented. The imagery consisted in
an annual series of Landsat 7 ETM+, from where the NDVI (Normalized Difference Vegetation Index) and the land uses/land cover
(lu/lc) map were extracted. The soil database came from a permanent experimental network of 23 stations for continuous
measurement of soil moisture (REMEDHUS, Soil Moisture Measurement Stations Network) at the Duero Basin (Spain). The
theoretical basis of the water balance application derives from FAO56, which is improved with a spatial frame implemented in the
computerized tool HIDROMORE. In addition to the image inputs, climatic and soil properties databases were also integrated. Maps
of Actual Evapotranspiration (AET), Deep Percolation (DP), and Irrigation rates (I) were extracted. Soil moisture series were
simulated for each REMEDHUS station, and the validation of the simulation was performed comparing simulated soil moisture
against field-measured. The results for the area-average soil moisture are: RMSE (Root Mean Square Error)=0.02 cm3cm-3, AI
(Agreement Index)=0.90 and R (correlation coefficient)=0.82. It was found that the parameters which showed the most influence in
the maps appearance were the soil characteristics (water content at field capacity and at wilting point), precisely the parameters that
most spatially vary and are the most difficult to acquire.

1. INTRODUCTION

Combining remotely sensed data with a water balance is a
frequent approach in hydrological modeling. Images can be
used to estimate the spatial distribution of the
evapotranspiration of locations within the scene as well as
regional distributions of water balance components
(Wegehenkel and Kersebaum, 2005). Regarding FAO56 (Allen
et al., 1998), the use of remotely sensed NDVI can improve the
tabulated values of some calculation parameters (i.e., Fraction
of Vegetation Cover (FVC), basal crop coefficient (Kcb)), and
the lu/lc map can assign spatial patterns to some others, such as
irrigation rates, root depth, and plant height. The innovation of
HIDROMORE is that it makes possible the integration of
standard calculations of FAO56 with the spatial database
resulting from Landsat (for vegetation parameters), plus the soil
map (for soil parameters) and the map interpolated with the
available weather stations (for climatic parameters). The
operational aim of this application −conceived for calculating
irrigation optimum rates close to real time− rules out highly
complex methods of image treatment. Regarding the geometric
correction, an RMSE smaller than pixel size is suitable for a
correct recording of all the images (Wolfe et al., 2002;
Schroeder et al., 2006). As for the radiometric correction, due to
the complexity of knowing the atmospheric parameters, the use
of Dark Object Sustraction (DOS) method is frequent (Chavez,
1989). The main objective of this research was to present a
cartographic application of multitemporal remotely sensed
images integrated in a distributed water balance model to derive
maps of key hydrological variables that are useful for water
management. Simple but effective processing methods of
calibration, correction and classification of the multitemporal
remotely sensed images were applied in order to integrate the
results in the balance calculation. A second goal was to discuss
the resulting maps and validate them with in-situ soil moisture
observations.

2. STUDY AREA, SOIL AND CLIMATE DATABASES

The study area is located in the central region of the Duero
Basin, in the Castilla y León region of Spain (Figure 1). The
climate is continental-Mediterranean, with around 400 mm of
average annual precipitation. Mean temperature is 12 ºC, with
long, cold winters and hot summers. The average annual
potential evapotranspiration is 1025 mm according to Penman-
Monteith method. Land uses are mainly crops.

Figure 1. Lu/lc map of REMEDHUS area.

Distributed over 1300 km2 the REMEDHUS network is made
up of 23 stations for the measurement and monitoring of soil
moisture (Martínez-Fernández and Ceballos, 2005). The soil
database has a grid distribution of 3x3 km2. For each one of
these cells (146), several parameters are known at surface level:
texture and water content at field capacity (FC), at wilting point
(WP) and at saturation (sat). The climatic database
(precipitation, P, and Penmann-Monteith-based reference

_________________________________________________________________________________________________________________________________________________________________________________________________________
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evapo-transpiration, ET0) came from one automatic weather
station located in the REMEDHUS network.

3. MATERIAL AND METHODS

3.1 Image processing

A series of Landsat 7 ETM+ images from 2002 was used, scene
202/031, L1G path-oriented level. The series covered the whole
year and allowed the study of the growing season of rainfed
crops (spring) and irrigated crops (summer-autumn). All the
scenes were clear and free of clouds.

For the geometric corrections, the physical model (Toutin,
2004) was chosen, based on the Landsat 7 orbital parameters
and 24 ground control points, as well a digital elevation model
of 1 m resolution, and the nearest neighbour resampling
method. The global bundle adjustment showed an RMSE(X) of
0.68 pixels and RMSE(Y) of 0.70 pixels for all the images
altogether.

The radiometric calibration and atmospheric correction were
performed for red and infrared bands on each date. The
procedure consisted of one-step transformation, following the
method proposed by Pons and Solé-Sugrañés (1994). This
method computes standard values of solar irradiance, calculated
distance sun-earth, and standard values of aerosol optical depth
for the red and infrared bands. DOS methods and topographic
correction were also integrated.

Due to the difficulty of having a useful map during the study
period, the spatial patterns of occupation of land are usually
derived from remotely sensed maps. In this study, Landsat-
derived map of lu/lc is used for: a) assigning the root depth, b)
identifying irrigated crops, and c) thresholding the plant height
and Kcb for each class. Irrigated crops map is used for
estimating the irrigation water required to avoid water stress in
their area along the growing season. Two factors were taken
into account when selecting the thematic categories of the lu/lc
map: similar temporal evolution of the plant cover (based on
the evolution of NDVI curves) and representativeness of classes
for the study area. For this last choice, Corine Land Cover map
of 2000 and statistics of the Geographic Information System for
Agricultural Plots (SIGPAC) were consulted (75% rainfed
grasslands, 9% irrigated grasslands, 11% forest-pasture, 2%
vineyards). The six categories chosen were rainfed cereal crops,
irrigated crops, unproductive, water, vineyards, and forest-
pasture (pasture cover with scattered trees).

The strategy of classification depends on modeling
requirements. As NDVI is the most effective single spectral
dimension to derive land cover types (Cihlar et al., 1996), its
temporal series were made the basis of the lu/lc classification,
and each NDVI date was an input band. Regarding the
algorithm, two methods were tested: segmentation of NDVI
values (Vincent and Pierre, 2003) and the maximum likelihood
algorithm applied to a supervised classification. The training
areas were extracted mixing the SIGPAC database and a field
campaign.

For validating the two maps, control plot error and confusion
matrix were applied. The map resulting of the supervised
procedure had a mean accuracy of 86,83% and the map
resulting of the segmentation, one of 69,2%. The confusion
matrix showed a mean accuracy of 79,81% and kappa

(Lillesand and Kiefer, 1999) of 0,69 for the supervised map and
78,85% and kappa 0,63 for the segmented map. In summary,
the best procedure seemed the supervised classification, so the
lu/lc map resulting of it was chosen for the integration in
HIDROMORE.

3.2 Modelling

3.2.1 Theoretical background: FAO56 procedure, also called
KcET0 approach, calculates reference and crop
evapotranspiration from meteorological data and crop
coefficients (Allen, 1998). Using the dual crop coefficient
approach, the calculation of AET is performed as:

AET=ET0(KsKcb+Ke) (1)

In this dual form, the term KsKcbET0, represents the
transpiration component, and the term KeET0, represents the
soil evaporation component. Basal crop coefficient, Kcb, is the
transpiration coefficient at a potential rate, i.e. when water is
not limiting transpiration, and it is usually obtained from
tabulated values; Ks describes the effect of water stress, and it is
calculated according the water content in the root layer, that it is
estimated from a daily water balance. The soil evaporation
coefficient, Ke, is calculated from the water balance on the
upper soil surface layer.

The soil moisture content in the root layer was calculated as a
residual value of the water balance equation, and can be
expressed as a water deficit or depletion (Dr). The balance was
daily calculated in the following way, for day i:

Dr,i=Dr,i-1-Pi-Ii+AETi+DPi (2)

where Dr,i is the depletion for day i; Dr,i-1 is the depletion for the
day i-1; DPi is deep percolation for the day i, or the amount of
water that exceeds the field capacity; and Pi, Ii and AETi are
effective precipitation, irrigation rate and AET for the day i
respectively. Surface runoff was not considered in the current
application.

The above described approach, which was developed initially
for crops under optimal management conditions, can be also
applied to natural or non-pristine vegetation (Allen et al., 1998).
The problem in this case is how to obtain Kcb for crops or
vegetation out of perfect growing conditions. The solution
applied in this paper for solving this, is to obtain the time series
of Kcb from the time series of NDVI, applying a previously
developed relationship NDVI-Kcb. To obtain NDVI daily
values, we interpolate linearly from the dates where the image is
available. The schema of the application and other intermediate
parameters are shown in Figure 2.
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Figure 2. Schema of the FAO56 procedure in the
HIDROMORE application. TAW, RAW, TEW, REW

expressed water limits of the soil in the root zone (TAW and
RAW) and at surface (TEW, REW). All other parameters are

defined in the text.

3.2.2 HIDROMORE: HIDROMORE is a computerized tool
for estimating evapo-transpiration and aquifer recharge based
on FAO56 methodology in a distributed way. This application
proposes an improvement of this methodology by incorporating
the spatial databases (NDVI, lu/lc map, soil and climatic maps)
and using them to parametrize the calculation. Thus,
HIDROMORE transforms the water budget of FAO56 into a
spatially distributed balance, and the resulting parameters can
be studied as raster maps. The temporal scale (daily) and the
distributed nature of the simulation (maps) make it adequate for
a good management of water resources.

HIDROMORE uses the lu/lc map to compute some parameters
of the model, as stated before. The NDVI has been used to
calculate the Kcb according to the formula of Bausch and Neale
(1987). NDVI was also the basis of the FVC calculation,
following the observations on barley by González-Piqueras
(2006).

Kcb=1.36 NDVI-0.03 (3)

FVC=1.19 NDVI-0.16 (4)

Both methods applied an empirical linear relationship. Even
though the NDVI-Kcb equation can be different depending on
the vegetation cover type, only the relationship for grassland

was used for the entire area, owing to the prevalence of this
cover (84%). Relationships for other crops such as vineyards
are being studied for future research with in situ measurements.

4. RESULTS AND DISCUSSION

The distributed balance afforded a daily maps series of the
results: AET, DP and I. Accumulated values can also be
extracted (Figure 3). The map spatial sampling matches the
Landsat spatial resolution, and for each pixel, the parameter
takes a digital floating number corresponding to the parameter
value. The influence of the soil database (tiles of 3x3km) is
noticeable in the appearance of such maps.

REMEDHUS Area

AET (mm)

185-260

260-335

335-410

410-485

485-560

560-635

635-710

710-785

785-860

860-935

Figure 3. Map of accumulated AET in 2002.

Qualitative analysis was done for each class of the lu/lc map,
extracting monthly and annual AET and DP (Table 4). The
categories with higher evapotranspiration were irrigated crops
and forest-pasture. The highest percolation was for irrigated
crops and vineyards, due to their shorter growing period,
together with more sandy soil texture in these categories.
Irrigation maps can be used to extract the amount of theoretical
irrigation water of each plot of this coverage. The mean
irrigation amount in 2002 for the whole coverage was 458 mm
(maximum is 656 mm and minimum 75 mm).

Table 4. Total AET and DP for lu/lc categories in 2002.

The monthly values showed that the highest evapotranspiration
was for irrigated crops in summer –its growing period (Figure
5). For rainfed cereals, the full activity period was spring, when
they consumed the natural precipitations and the water reserves
of soil. For vineyard and forest-pasture, this period is delayed
until the beginning of summer.

AET (mm) DP (mm)
Forest-pasture 533.30 9.00
Irrigated crops 809.13 183.44
Rainfed cereals 413.42 69.25

Vineyard 327.55 164.95
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Figure 5. Montly AET for every lu/lc.

The quantitative map assessment was done by means of the
simulated soil moisture against the field soil moisture at the
REMEDHUS stations. Analysis of RMSE, R, and AI (Willmott,
1987) for 23 stations was performed. HIDROMORE afforded
good results for the stations-average soil moisture (R=0.82;
AI=0.90; RMSE=0.020 cm3cm-3), especially for rainfed cereals
(R=0.91; AI=0.92; RMSE=0.024 cm3cm-3).

Regarding the maps, the gridded shape of them (Figure 3)
shows the dependency of the water balance on the parameters of
soils, particularly FC and WP. When these values were very
low or very high for one cell, they afforded extremes values of
evapotranspiration or percolation in this cell, producing a
discontinuity.

5. CONCLUSIONS

Some results of a distributed water balance model based both on
FAO56 and remotely sensed data were presented in this paper.
The integration of the remotely sensed data afforded a detailed
description of some vegetation parameters used in the
calculation, otherwise these parameters should be tabulated
under the FAO56 premises. The model outputs were maps of
evapotranspiration, percolation and irrigation rates together
with a soil moisture simulation over an area of 1300 km2. Pre-
processing of image consisted, despite more complex
alternatives, on orthorectification by physical model,
radiometric calibration and correction with standard conditions
of atmosphere and DOS method, and topographic correction.
Supervised classification had the best accuracy for extracting
the lu/lc map. The results showed a good agreement between
simulated and field soil moisture in terms of RMSE, AI and R.
The maps qualitative analysis agrees with the expected
behaviour of the agricultural uses in the area. The parameters
that had more influence in the spatial distribution of the balance
were FC and WP, related with the high spatial variability of
soils. HIDROMORE improves FAO56 in integrating remotely
sensed data and it affords maps of hydrological variables that
are very useful for agricultural management. Future research
will be done on simulated soil moisture maps vs. other image
products of this parameter, i.e. SMOS Level 2 products.
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ABSTRACT:

We analyzed Landsat MSS and ETM+ images to detect 25-year land-cover change (1976-2001) in the critical Taguibo Watershed in
Mindanao Island, Southern Philippines. This watershed has experienced historical modifications of its land-cover due to the presence
of logging industries in the 1960s, and continuous deforestation due to illegal logging and slash-and-burn agriculture in the present
time. To estimate the impacts of land-cover change on watershed runoff, we utilized the land-cover information derived from the
Landsat images to parameterize a GIS-based hydrologic model. The model was then calibrated with field-measured discharge data
and used to simulate the responses of the watershed in its year 2001 and year 1976 land-cover conditions. The availability of land-
cover information on the most recent state of the watershed from the Landsat ETM+ image made it possible to locate areas for
rehabilitation such as barren and logged-over areas. We then created a “rehabilitated” land-cover condition map of the watershed (re-
forestation of logged-over areas and agro-forestation of barren areas) and used it to parameterize the model and predict the runoff
responses of the watershed. Model results showed that changes in land-cover from 1976 to 2001 were directly related to the
significant increase in surface runoff. Runoff predictions showed that a full rehabilitation of the watershed especially in barren and
logged-over areas will likely to reduce the generation of huge volume of runoff during rainfall events. The results of this study have
demonstrated the usefulness of multi-temporal Landsat images in detecting land-cover change, in identifying areas for rehabilitation,
and in evaluating rehabilitation strategies for management of tropical watersheds through its use in hydrologic modeling.

* Corresponding author.

1. INTRODUCTION

Human-induced land-cover changes pose negative impacts to
watershed ecosystems. It has been widely recognized that
changes such as forest cover reduction through deforestation
and conversion for agricultural purposes can alter a watershed’s
response to rainfall events, that often leads to increased
volumes of surface runoff and greatly increase the incidence of
flooding (McColl and Aggett, 2007; Cebecauer and Hofierka,
2008). The detection of these changes is crucial to provide
information as to what and where the changes have occurred
and to analyze these changes in order to formulate proper
mitigation measures and rehabilitation strategies.

Remote sensing (RS) techniques have been used extensively to
provide accurate and timely information describing the nature
and extent of land resources and changes over time. In
watershed research and hydrological sciences, RS has played a
major role because of its ability to provide spatially continuous
data, its potential to provide measurements of hydrological
variables not available through traditional techniques, and its
ability to provide long term, global-wide data, even for remote
and generally inaccessible regions of the Earth (Engman, 1996).
It is perhaps for land-cover data derivation that RS has made its
largest impact and comes closest to maximize its capabilities in
watershed research (Engman, 1995). This has prompted
researchers and watershed planners to exploit land-cover
information derived from remotely-sensed images in a variety

of hydrological modeling studies, most especially in surface
runoff predictions (Melesse and Shih, 2002; Bach et al., 2003;
Pandey et al., 2008). The addition of Geographic Information
System (GIS) technology further enhanced these capabilities
and added confidence in the accuracy of modeled watershed
conditions, improved the efficiency of the modeling process and
increased the estimation capability of hydrologic models
(Bhuyan, et al., 2003).

A common approach in integrated RS-GIS-Modeling for event-
based watershed runoff predictions usually involves (1) the
derivation of land-cover related parameters of the models from
remotely-sensed images, (2) the use of GIS to prepare the model
and to extract additional parameters, (3) calibration and
validation of the model using field measured data to test its
efficiency, and then (4) use the model to simulate runoff and
use the simulated information to characterize the conditions of
the watershed (O’Connell, et al., 2007; Vafeidis, et al., 2007).
For land-cover change impact predictions in watersheds, the
same approach is generally followed except that the model is
run first for an initial land-cover condition, then the land-cover
related parameters of the models are altered to reflect the
change, and the model is re-run (O’Connell, et al., 2007). The
effect of the change is estimated based on the differences
between the runoff hydrographs simulated in the initial and
“changed” conditions, respectively. Several studies have
utilized the RS-GIS-Modeling approach for assessing the
impacts of land-cover change to the hydrologic response of
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Figure 1. The Taguibo Watershed in Mindanao Island, Philippines

watersheds to rainfall events (e.g., Helmschrot and Flügel,
2002; McColl and Aggett, 2007; Leblanc, et al., 2008).
However, a majority of them is focused on modeling the
hydrological response of watersheds to future changes in land-
cover. Very few studies relate the hydrological responses of
watershed to its past and present conditions. In watershed
management, this is of paramount importance as the
information derived from modeling can be directly related to
the changes in land-cover as well as to the overall condition of
the modelled watershed. Proper mitigation measures and
efficient conservation strategies can then be formulated upon
examination of the root causes of watershed problems, and
hence, leading to its rehabilitation.

The location and nature of change which has occurred in a
watershed can be explicitly recognized using a post-
classification comparison approach of land-cover change
detection from RS images (Coppin et al., 2004). This approach
uses separate classifications of images acquired at different
times to produce difference maps from which ‘‘from–to’’
change information can be generated (Jensen, 2004). Among
the several classifiers available, the Maximum Likelihood
Classifier (MLC) has been widely used to classify RS data and
successful results of applying this classifier for land-cover
mapping have been numerous (e.g., Cherrill et al., 1994;
Cingolani, et al., 2004; Hagner and Reese, 2007) despite its
limitations due to its assumption of normal distribution of class
signatures (Swain and Davis, 1978). Its use has also been
effective in a number of post-classification comparison change
detection studies (e.g., Helmschrot and Flügel 2002; Muttitanon
and Tripathi 2005; Chowdhury 2006; Vagen 2006). While
recent studies have indicated the superiority over MLC of
newly developed image classifications techniques based on
decision trees (DT), neural networks (NN) and support vector
machines (SVM) (e.g., Huang et al., 2002; Shuying et al., 2005;
Otukei and Blaschke 2010), the advantage of MLC over these
classifiers remains to be significant owing to its simplicity and
lesser computing time. This is very crucial, especially for rapid
land-cover mapping and change detection analysis of numerous

multi-temporal images. Moreover, the accuracy of any classifier
is affected by the number of training samples and by selecting
which bands to use during the classification. As reported by
Huang et al. (2002), improved classification accuracies of MLC,
DT, NN and SVM can be achieved when training data size is
increased and when more bands are included. In the case of
Landsat image classification, improvements due to the inclusion
of all bands exceeded those due to the use of a better classifier
or increased training data size, underlining the need to use as
much information as possible in deriving land cover
classification from RS images (Huang et al., 2002).

In these contexts, our goal here is to exemplify the importance
of land-cover change detection by RS image analysis to provide
relevant information on past and present conditions of a
watershed. Specifically, we applied post-classification
comparison analysis of Maximum Likelihood-classified Landsat
MSS and ETM+ images to detect 25-year land-cover change in
the critical Taguibo Watershed in Mindanao Island, Southern
Philippines. We then relate the changes in land-cover to the
responses of the watershed to rainfall events using a GIS-based
hydrologic model. The model is also used to test planned
rehabilitation measures and strategies to approximate their
success or failure in addressing the problems of the Taguibo
Watershed

2. THE STUDY AREA

The Taguibo Watershed in the province of Agusan del Norte in
the island of Mindanao, Philippines (Figure 1) is a region that
has experienced extensive alteration of its land-cover ever since
the start of operation of several logging industries with Timber
License Agreements (TLAs) in the 1960’s until the early 1980s
(DENR, 2003). Its forest cover was severely reduced by logging
and clear-felling, and the former logged-over areas were opened
up to intensive farming, thereby accommodating the influx of
farmers who were intent in cultivating semi-temperature high
value vegetables. More than 25 years later, a recent report by
the Department of Environment and Natural Resources (DENR,
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2003) indicated a very serious condition of the watershed:
significant increase in runoff volume during rainfall events and
extensive sedimentation of rivers and streams due to
proliferations of eroded areas in the watershed’s landscape.
While it has yet to be proven, the DENR asserted that the
denudation of the watershed’s forest cover and its conversion to
grasslands as well as for agricultural purposes are the prime
reasons for the occurrence of these problems. The situation was
further aggravated by the continuous presence of illegal logging
and slash-and-burn farming activities in the upland portions of
the watershed (DENR, 2003). These alarming situations have
prompted the DENR to come up with rehabilitation efforts such
as reforestation of formerly logged areas and agro-forestation in
highly eroded landscapes to mitigate the problem of increased
runoff generation and high rate of sedimentation. While these
efforts to address the negative impacts of land-cover change on
hydrological functions are necessary, they can only be fruitful if
information on the location and extent of the areas that need
rehabilitation is available. Moreover, relevant information that
portrays space-time relationships of land-cover to hydrological
functions is often required to formulate proper mitigation
measures and efficient conservation strategies. All of these can
be achieved through analysis of multitemporal RS images and
hydrologic modeling.

The Taguibo Watershed has a drainage area of 75.532 km2. It is
composed of plains, steep hills and mountains. According to the
Taguibo River Watershed Management Plan (DENR, 2003),
majority of the soils in the watershed belongs to hydrologic soil
group B (loamy and silty-loamy soils) which indicates medium
runoff potential (SCS, 1985). Clayey and shallow soils
belonging to hydrologic soil group D (high runoff potential) are
generally observed in areas with 50% or more slope. The study
area has no distinct dry season; pronounced rainfall occurs from
November to January.

3. METHODS

3.1 Landsat image analysis and change detection

Orthorectified Landsat MSS and ETM+ images covering the
study area acquired on April 17, 1976 (path 120, row 54) and
May 22, 2001 (path 112, row 54), with pixel resolution of 57-m
and 28.5-m, respectively, were obtained from the Global Land-
cover Facility (GLCF), University of Maryland
(http://glcf.umiacs.umd.edu). These images are part of the
GLCF GeoCover collection which consists of decadal Landsat
data which has been orthorectified and processed to a higher
quality standard. Documentations on the orthorectification
process can be found in the GLCF GeoCover website at
http://glcf.umiacs.umd.edu/research/portal/geocover/.

The images were radiometrically corrected to at-sensor radiance
using the standard Landsat calibration formulas and constants.
A fast atmospheric correction using dark-object subtraction
(Schowengerdt, 1997) was also implemented. Normalised
Difference Vegetation Index (NDVI) images were also
computed from the radiometrically and atmospherically-
corrected images. Only the portions of the images covering the
study area were subjected to image analysis. Six (6) land-cover
classes were identified from the images through visual
interpretations with the aid of existing land-cover and
topographic maps published by the DENR as references. These
include barren areas, built-up areas, forest, grassland, mixed
vegetation (combination of forest, tree plantation, shrub land

and grassland) and water bodies. In this study, barren areas are
defined as those portions of the watershed with exposed soil
and in which less than half of an areal unit has vegetation or
other cover while built-up areas are those portions of intensive
human use with much of the land covered by structures. The
forest class is defined as parcels of land having a tree-crown
areal density of 10% or more and are stacked with trees capable
of producing timber or other wood products. Grasslands are
those portions where the natural vegetation is predominantly
grasses and/or grass-like plants.

Built-up areas were only detected on the 2001 Landsat ETM+
image. We assumed that built-up areas in the 1976, although
present, were limited in extent so that they were not visible in
the Landsat MSS images primarily because of the sensor’s low
spatial resolution. Representative samples of each class were
collected from the images for supervised image classification.
The training samples were collected in such a way that the
assumption of normal distribution of the MLC is satisfied and
that the separability of the classes (computed using the Jeffries-
Matusita Distance) (Richards and Jia, 1997) is ≥ 1.7. Another
independent set of samples were likewise collected for accuracy
assessment. A minimum number of 30 ground truth pixels were
randomly chosen for each class, following the guidelines of Van
Genderen et al. (1978) to obtain a reliable estimate of
classification accuracy of at least 90%.

The MLC was used to classify the Landsat images with the
inclusion of the NDVI. The accuracy of each classified images
were independently assessed. Four measures were used to assess
the accuracy of the classified images namely, the overall
classification accuracy, kappa statistic, producer’s accuracy
(PA) and user’s accuracy (UA). Initial trials were done to
classify the input images using the Minimum Distance,
Mahalanobis Distance and Parallepiped classifiers. However,
the accuracies of each classified image using these classifiers
were significantly lower (<90%) than those of the MLC-
classified images. The two resulting land-cover maps were then
subjected to post-classification comparison change detection
analysis to examine the location, extent and distribution of land-
cover change in the study area. The 2001 land-cover map was
first re-sampled to 57-m resolution prior to change detection.

3.2 Hydrologic modelling

Hydrologic modeling was performed using the Soil
Conservation Service-Curve Number (SCS-CN) model (SCS,
1985). The SCS-CN model, also called the runoff curve number
method, for the estimation of direct runoff from storm rainfall is
a well established method in hydrologic engineering and
environmental impact analyses and has been very popular
because of its convenience, simplicity, authoritative origins, and
its responsiveness to four readily grasped watershed properties:
soil type, land-use/land-cover and treatment, surface condition,
and antecedent moisture condition (Ponce and Hawkins, 1996).
The popular form of the SCS-CN model is:
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where P is total rainfall, Ia is initial abstraction, Q is direct
runoff, S is potential maximum retention which can range (0,
∞), and λ is initial abstraction coefficient or ratio. All variables
are in millimeters (mm) except for λ which is unitless. The
initial abstraction Ia includes short-term losses due to
evaporation, interception, surface detention, and infiltration and
its ratio to S describes λ which depends on climatic conditions
and can range (0, ∞). The SCS has adopted a standard value of
0.2 for the initial abstraction ratio (SCS, 1985) but this can be
estimated through calibration with field measured hydrologic
data. The potential maximum retention S characterizes the
watershed’s potential for abstracting and retaining storm
moisture, and therefore, its direct runoff potential (Ponce and
Hawkins, 1996). S is directly related to land-cover and soil
infiltration through the parameter CN or “curve number”, a
non-dimensional quantity varying in the range (0–100) and
depends on the antecedent moisture condition of the watershed.
Higher CN values indicate high runoff potential. For normal
antecedent moisture conditions (AMCII, 5-day antecedent
rainfall (AR) is 0.5 – 1.1 inches), the curve number values for
land-cover types and soil textures (hydrologic soil groups B and
D) prevalent in the study area are shown in Table 2. The
AMCII CN values can be converted to AMCI (dry condition,
AR<0.5 inches) and AMCIII (wet condition, AR>1.1 inches)
using the formula of Chow, et al. (1988).

AMCII Curve Number (CN)Land-cover
Soil Group B Soil Group D

Barren areas 86 94
Built-up areas 74 86
Forest 55 77
Grassland 61 80
Mixed Vegetation 58 79
Water 98 98

Table 2. AMCII CN values for different land-cover types under
hydrologic soil groups B and D which are prevalent in the study

area. (Source: SCS, 1985)

The SCS-CN model was implemented using the Hydrologic
Engineering Center-Hydrological Modeling System or HEC-
HMS (USACE, 2000). The SCS-CN model was co-
implemented with the Clark Unit Hydrograph method (for sub-
watershed routing of runoff), the Exponential Baseflow
Recession model, and the Muskingum-Cunge model for
channel routing. A thorough discussion of these three
additional models can be found in Chow et al. (1988). Model
parameterizations were done using HEC-GeoHMS (USACE,
2003), the ArcView GIS-based pre-processor of HEC-HMS.
HEC-GeoHMS was used to delineate 11 sub-watershed
boundaries and reproduce topologically-correct stream network
through a series of steps collectively known as terrain pre-
processing, by utilizing the surface topography information
from a Shuttle Radar Topography Mission (SRTM) DEM as the
origin of the boundaries and stream network. Average CN
values for each sub-watershed were computed based on the
2001 and 1976 land-cover maps. Sub-watershed time of
concentration and storage coefficient parameters of the Clark
Unit Hydrograph model as well as initial values of the recession
constant in each sub-watershed were first assumed but these
values were later optimized during the calibration stage.
Muskingum-Cunge model parameter values were obtained from
river profile and cross-section surveys.

The HEC-HMS model was calibrated using rainfall events
recorded at the inner portion of the watershed, and discharge

hydrographs measured at the main outlet for the June 25-27,
2007 period. Records of 5-day accumulated rainfall depths
before the simulation showed an AR>1.1 inches, indicating
AMCIII. Hence, the AMCII values were transformed to
AMCIII using Chow, et al. (1988)’s formula. Model calibration
was done to fine-tune the λ parameter of the SCS-CN model,
and the time-related parameters of the Exponential Baseflow
Recession model and Clark Unit Hydrograph model, which
were initially assumed. The absence of sources of land-cover
information for the state of the watershed when the calibration
data were collected prompted us to parameterize the model
using the 2001 land-cover map. During this period, available
satellite images were all covered with clouds. We assumed that
no significant change in land-cover had occurred from 2001-
2007. The Nash-Sutcliffe (1970) Coefficient of Model
Efficiency, E, was used to evaluate the performance of the
hydrologic model during calibration. E ranges between -∞ and
1.0 (1 included) with E = 1 being the optimal value. Values
between 0.0 and 1.0 are generally viewed as accepted levels of
performance while values ≤ 0.0 indicates that the mean
observed value is a better predictor than the simulated value,
which indicates unacceptable model performance.

3.3 Runoff predictions in three land-cover conditions

The calibrated hydrologic model was then used to simulate
surface runoff in the 11 sub-watersheds under three land-cover
conditions namely, 2001, 1976 and a “rehabilitated” condition.
The latter was derived from the analysis of the 2001 image,
where areas in urgent need of rehabilitation were identified.
This includes areas classified as grassland and barren. In the
“rehabilitated” land-cover map, grassland areas were re-
classified as “forest” while barren areas were converted to
“agro-forested areas” which is composed of mixed vegetation.
This is in accordance to the rehabilitation strategy planned by
the DENR. In using the calibrated hydrologic model for
predicting the impacts of land-cover change, as emphasized by
the use of the three land-cover condition scenarios, only the CN
parameter of the model that has a direct relationship with land-
cover was altered. The same rainfall events used previously for
model calibration were utilized again in the simulations. The
results of the simulations were then analyzed (1) to determine
the runoff responses of the watershed in 3 land-cover
conditions, (2) to identify how different are these responses
from each other, and (3) to verify if rehabilitation strategies
could help in the reduction of runoff in the watershed under the
assumption that the same rainfall events will take place.

4. RESULTS AND DISCUSSION

4.1 Land-cover change in the Taguibo Watershed

The land-cover maps of the study area for 1976 and 2001
derived from Maximum Likelihood-classified Landsat images
are shown in Figure 3 (a and b). The 1976 land-cover map has
an overall classification accuracy of 96.06% and kappa statistic
of 0.95 while the 2001 land-cover map obtained 96.79%
accuracy and kappa statistic of 0.96. Producer’s and User’s
Accuracy for each land-cover type are listed in Table 4. It can
be observed that the two land-cover maps are above satisfactory
because of more than 90% Producer’s and User’s Accuracy for
each land-cover class.

Comparing the two maps, we were able to determine changes in
land-cover from 1976-2001 with respect to the total area of the
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watershed (Table 5). Interestingly, the analysis showed a
6.52% reduction in forest cover, a 13.69% reduction in mixed
vegetation, a 4.46% increase in barren areas and 15.54%
increase in grassland in the study area in the span of 25 years.
The 4.46% increase in barren areas maybe attributed to more
recent human-induced alterations of the watershed such as
increase in agricultural areas, forest denudation due to illegal
logging and slash-and-burn farming and harvesting of planted
trees (DENR, 2003). A portion of the 6.52% reduction in forest
cover maybe also due to these mentioned activities. On the
other hand, the reduction in mixed vegetation cover and
increased in grassland areas may be the result of the historical
modification of the watershed landscape by logging industries
and the influx of farmers who were intent to cultivate the
logged-over areas by planting high-valued vegetables and rice
crops. When the potential for agricultural productivity of these
areas have lessened through time, these were left over for
grasses to grow (DENR, 2003). A very good basis of this is the
15.54% increase in grassland areas. As shown in the next
sections, these changes in the watershed’s land-cover definitely
will have an effect on its hydrologic functions, especially on its
runoff response to rainfall events.

1976 Land-cover Map 2001 Land-cover
MapLand-cover

classes
PA UA PA UA

Barren areas 92.50 94.87 98.15 92.98
Built-up areas 100.00 92.75 100.00 100.00
Forest 98.39 98.39 98.96 95.00
Grassland 93.10 98.18 94.51 100.00
Mixed
Vegetation 93.33 96.55 100.00 100.00
Water 92.50 94.87 91.67 100.00
Table 4. Producer’s (PA) and User’s Accuracy (UA) of the

land-cover maps (in %).

Land-cover
classes

1976 Area
(km2)

2001 Area
(km2)

% Change from 1976
with respect to total

watershed area
Barren areas 5.201 8.569 +4.46
Built-up areas - 0.300 +0.40
Forest 46.287 41.366 -6.52
Grassland 7.271 19.008 +15.54
Mixed 15.703 5.359 -13.69

Vegetation
Water 1.070 0.930 -0.19

Table 5. 1976-2001 land-cover change statistics.

4.2 Hydrologic model predictions of runoff

Figure 6 shows the results of the calibration of the hydrologic
model with field measured data for the June 25-27, 2007 period.
The computed E value is 0.92 indicating a highly acceptable
performance. However, there are portions of the simulated
hydrograph that overestimate the outflow and underestimate the
peak discharge. The average residual was computed as 2.95
m3/s. Plausible explanations for these slight differences in the
simulated and measured hydrographs are the fact that the land-
cover information used to parameterise during model calibration
may be different to the actual land-cover of the study area when
the field data were collected. Nevertheless, as the computed E
value is very close to 1, the model could be used with modest
efficiency for runoff predictions under different land-cover
conditions of the watershed.
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Figure 6. Hydrologic model calibration result.

4.3 Runoff predictions in 3 land-cover conditions

Figure 3c shows the “rehabilitated” land-cover map of the
watershed. In this map, the watershed is in an ideal condition
where barren areas and grasslands detected from the 2001

Figure 3. Land-cover maps of the Taguibo Watershed derived from the analysis of Landsat images: (a.) 1976, (b.) 2001 and (c.)
rehabilitated. Numbers indicate sub-watersheds.

(a.) (b.) (c.)
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Landsat ETM+ image as consequences of anthropogenic
disturbances, were rehabilitated through their conversion to
mixed vegetation and reforestation, respectively.
Model predicted accumulated runoff volume at each outlet of
the 11 sub-watersheds is shown in Figure 7. It can be observed
that there were minimal differences in the accumulated runoff
volumes in sub-watersheds 1, 2, 3 and 4 for the three land-
cover conditions. This means that these sub-watersheds
experienced minimal changes in land-cover. The graph also
illustrated the high runoff potential of these particular sub-
watersheds. Although the majority of land-cover in these areas
is forest, the runoff generated during rainfall events is high.
This demonstrates the effects of steep slopes and the
shallowness of the soil in these areas that give minimal span for
the rainwater to infiltrate the ground.
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Figure 7. Model predicted accumulated runoff volume for the
11 sub-watersheds from June 25-27, 2007 under 3 land-cover

conditions.

Pronounced variation in runoff volumes were observed for the
remaining watersheds in the 1976 and 2001 land-cover
conditions, most especially in sub-watersheds 5, 6, 7, 9, 10 and
11. It can be stated that changes in major land-cover types in
these areas, specifically the increase of barren areas and
grasslands and the decrease in forest and mixed vegetation
covers (Table 8) have directly affected the hydrologic response
of the watershed to rainfall events – rainfall interception and
infiltration have been affected such that huge volumes of
surface runoff are generated. In terms of total surface runoff
accumulated at the main outlet of the watershed (Table 9),
model predictions showed that accumulated runoff volume in
1976 were 10.62% lesser than in 2001. Rehabilitation of the
sub-watersheds through planting of mixed vegetation and
reforestation was found effective. We computed that it reduced
the accumulated runoff volume in 2001 by 23.85%. These
results provide quantitative estimations that rehabilitation
strategies proposed by the DENR, should they be 100%
implemented, are most likely to reduce the volume of runoff
generated during rainfall events in the Taguibo Watershed.

SW
No.

Area,
km2

% change
in Barren

Areas

%
change

in Forest

% change
in

Grassland

% change
in Mixed

Vegetation
5 8.748 +3.80 -3.68 +5.91 -6.20
6 16.483 +7.27 -26.95 +27.05 -8.96
7 3.224 +12.52 -18.22 +25.93 -23.51
9 3.459 +2.71 +1.91 +24.05 -27.82

10 9.056 +9.01 +3.35% +13.64 -21.12
11 16.540 +2.39 -5.66% +23.84 -21.20
Table 8. Major land-cover change from 1976-2001 in sub-

watersheds (SW) 5, 6, 7, 9, 10 and 11. Percentage of change is
computed with respect to the area of the sub-watershed.

The results of the hydrologic model simulations indicate that
significant increase in runoff volumes during rainfall events can
be attributed to the reduction in forest and mixed vegetation
cover due to their conversions to grasslands and barren areas.
These results are consistent with those of Costa et al. (2003)
and Siriwaderna et al. (2006).

Land-cover
condition

Accumulated watershed
runoff volume, x103 m3

% Difference from
the 2001 condition

1976 376.771 - 10.62%
2001 421.540

Rehabilitated 320.996 -23.85%
Table 9. Accumulated runoff volumes in 3 land-cover

conditions (total for 11 sub-watersheds) for the June 25-27,
2007 period.

5. CONCLUSIONS

We have presented an analysis of 25-year land-cover change in
the critical Taguibo Watershed in Mindanao, Philippines using
post-classification comparison analysis of Maximum
Likelihood-classified Landsat images. We expanded our
analysis by incorporating the detected changes in land-cover to
a GIS-based hydrologic model. This allowed us to better
understand the impacts of the land-cover change to the increase
in surface runoff during rainfall events in the Taguibo
Watershed. The Landsat image analysis also provided us a very
quick identification of areas that need rehabilitation. Using the
hydrologic model, we tested planned rehabilitation strategies
that were aimed to reduce surface runoff, and we were able to
express the effectiveness of these strategies. One of the most
important results of this study is that we were able to establish
the direct relationship between forest and mixed vegetation
cover reduction to increases in surface runoff.

In conclusion, this study has demonstrated the usefulness of
multi-temporal Landsat images in detecting land-cover change,
in identifying areas for rehabilitation, and in evaluating
rehabilitation strategies for management of tropical watersheds
through its use in hydrologic modeling. Although the methods
used in this study was applied in a relatively small watershed,
its applicability to large watersheds and river basins is also
possible as long as there are available Landsat images to derive
land-cover information needed for detecting and locating the
changes, and for hydrologic modeling. With the availability
over the internet of Landsat images acquired since 1972, the
methods employed in this study can be readily applied for
watershed land-cover change monitoring, management and
rehabilitation. Moreover, this study made use of the MLC in
Landsat image classification. While the land-cover maps
derived from the classifications are highly accurate, it is mainly
due to the satisfaction of the assumptions of the MLC for class
signatures to be normally distributed, and to the high degree of
separability of the class signatures. In some cases, the number
of training samples to obtain class signatures is limited and/or
may not have normal distributions, which restricts the MLC to
get the ideal result. The use of other classifiers such as DT, NN
and SVM can solve this problem but at the cost of increase in
computation time.
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ABSTRACT: 
 

In managing a multipurpose dam, knowledge of inflow is essential in planning and scheduling discharges for optimal power 
production and irrigation supply, and flood control. Utilization of satellite imagery improves inflow estimates provided by 
digital spatial data instead of those from calculations on drawn maps; the former yields measurements over an area instead of 
extrapolations from point measurements. Using remote sensing data, GIS techniques, and programming in Java®, an Inflow 
Monitoring from Basin  Assessment Calculations (IMBAC)  system  was  developed  to  estimate  inflow in  the  Magat  
watershed;  its  dam  is  one of the  largest multipurpose dams in Southeast Asia.  Magat’s 117-km2 reservoir stores water to 
irrigate roughly 850 km2 of farmland and its 360-MW hydro-power plant contributes electricity for Luzon, the Philippines’ 
largest island.  The reservoir and dam facilities are jointly managed by the National Irrigation Administration and the SN 
Aboitiz Power  Incorporated; but authorization of discharges during extreme weather conditions is with the country’s 
meteorological agency, the PAGASA. With the complex nature  of  Magat  Dam’s  multi-stakeholder   management  involving  
public  and  private  entities  with  different  discharge motivations, a vital decision support system that concerns inflow 
estimation is paramount. 
This paper presents the results of the developed methodology, IMBAC, to estimate inflow using remote sensing data as an   
alternative to the water-level approach that is currently being used. IMBAC simulations achieved results which capture the 
behavior of the Magat watershed response. With more field information to further calibrate the approach, it can be used to build 
scenarios and simulate inflow estimates under varying watershed conditions. 

 
 

1. INTRODUCTION 
 

Dams  are  structures  built  to  create  a  water   reservoir,  a 
hydraulic head and a water surface (Vischer & Hager, 1998). 
Reservoir operation involves water allocation planning, intake 
and storage, and  discharge control. Knowledge of intake or 
inflow parameters is essential in planning and scheduling dam 
discharges,  measuring  and  anticipating  current  and  future 
power production, optimizing its hydropower operations, and 
preventing floods. Inflow is a measure of the amount of water 
entering a reservoir (USACE,  2007). The lack of accurate 
estimation of inflow parameters is one of the main difficulties 
in real-world reservoir operations management (Fourcade and 
Quentin, 1994). 

 
Developments   in   Remote   Sensing   (RS)   have   triggered 
numerous studies on hydrometeorological model creation and 
calibration due to the ability of  RS in providing spatially- 
distributed input data (Becker & Jiang, 2007; Kongo & Jewitt, 
2007; Wu et al., 2007). Utilization of satellite  imagery can 
improve  reservoir  inflow  estimates  by   providing  digital 
spatial  data  instead  of  calculating  from  drawn  maps,  and 
yielding   measurements   over   an   entire   area   instead   of 
extrapolating  from  point  measurements.  Patterns  from  RS 
imagery can be translated into a deterministic distribution of 
input data over a wide area on a pixel-by-pixel basis (Brunner 
et  al.,  2007).  Coupled  with  the  improving  capabilities  of 
Geographic  Information  Systems  (GIS)  for  simulation  and 

data   visualization,   RS   becomes   a   powerful   source   of 
information that can aid decision makers in the management 
of reservoirs (Kunstmann et al., 2008). 
 
There are a number of efforts to improve inflow  estimation 
using  computational  methods  such  as   neural  computing 
(Gilmore,  1996;  Kote  &  Jothiprakash,  2008).  Researches 
involving low resolution satellite images for the 
characterization  of  watersheds  around  a  reservoir  (Gupta, 
2002) have been completed and some of them are focused on 
certain parameters such as land cover, rainfall (Li et al, n.d.), 
land surface temperature (Rawls et al, n.d.), surface geology 
(Ticehurst et al, 2006), soil moisture  (Vivoni et al, 2006), 
vegetation   (Bormann,   2007),   topography   and   hydraulic 
roughness (Aberle & Smart, 2003). These researches are used 
to  improve existing decision-making and discharge  policies 
(Avakyan et al, 2002). 
 
Reservoir  managers  in  the  Philippines  base  their   inflow 
estimates  on  water  level  information.  With   the  lack  of 
alternative  estimation  and  forecasting  abilities  the  Magat 
reservoir managers adapt their  management policies to the 
current water level  measurements and  rainfall statistics. In 
this  paper,  we present the integration of satellite-derived 
information  from  Remote  Sensing  (RS),  and   Geographic 
Information   System   (GIS)   visualization   and   simulation 
capabilities in improving the Magat  Dam inflow estimation 
process. 
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2. THE STUDY AREA 
 

2.1. Spatial characteristics 
 

This case study was conducted in the watershed of Magat 
River in Luzon, the largest island of the  Philippines. It is 
bound by the  latitudes  17o02'08" and  16o06'05"  and the 
longitudes  120o50'00"  and   121o30'00".  The watershed is 
4463.27 km2  in horizontal area and is administratively divided 
between the provincial governments of  Ifugao,  Isabela and 
Nueva   Vizcaya.   The   reservoir    is   approximately   350 
kilometers from the capital city, Manila. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. The study area. 
 

2.2. Physical characteristics 
 

The  climate  of the  SW portion  of the  watershed  has  two 
pronounced seasons: wet from May to October and dry from 
November to April. The rest of  the watershed doesn't have 
pronounced seasons but May to October is relatively wet and 
the other months are relatively dry (Bato, 2000). 

 
Various forms of clay loam and silt loam soils  characterize the 
whole Magat watershed. Igneous  rocks  with high silica 
content  (granite  and  rhyolite)   and  rocks  with  low  silica 
content  (basalt)  as  well   as  scattered  sedimentary  rocks 
abound.  Four  major  sets  of  fault  lines  run  in  across  the 
watershed (Palispis, 1979). 

 
2.3. Reservoir structures 

 
Magat Dam is a multipurpose dam which impounds a  large 
reservoir  of  water  from  the  Magat  river.  It  has  a  storage 
capacity of 1.08 billion cubic meters for irrigation to 950 km² 
of   land   and   360-MW    hydroelectric   power   generation 
(Elazegui  &  Combalicer,  2004).  Its  flood  spillway  has  a 
capacity of 32,000 m3/s. 

 
2.4. Human activities 

 
Agriculture  is  the  most  prevalent  type  of  land-use  in  the 
watershed. Gold and copper mining interests are also present 
in  Nueva  Vizcaya  (Elazegui  &  Combalicer,  2004).  Some 
areas of Ifugao and Isabela  are noted for tilapia production 
and other aquaculture activities. 

 
2.5. Reservoir operation and watershed management 
 
Magat Dam is owned and operated by the National Irrigation 
Administration. They provide the discharge policy based on a 
weekly Irrigation Diversion  Requirement (IDR). In April of 
2007,  the  operation  of  the  hydroelectric  power  plant  was 
transferred from the National Power Corporation (NPC) to SN 
Aboitiz Power (SNAP) after a privatization sale  enabled by 
Republic Act 9136 or the Philippine Electric Power Industry 
Reform Act (EPIRA) of 2001. 
 
 

3. MATERIALS AND METHODS 
 
3.1. Landsat imagery 
 
We used the archived 1991, 2002, 2005, 2008 and 2009 8-bit 
GeoTIFF format images of the study area from Landsat 4, 5 
and 7 (L4, L5 and L7). They are designed to capture images 
over a 185 km swath and gather data at an altitude of 705 km. 
The study area is within the World Reference System (WRS- 
2) path 116, rows 48 and 49. The 30m spatial resolution gives 
sufficient information for the purposes of our study. 
 
3.2. ASTER GDEM 
 
The Advanced Spaceborne Thermal Emission and Reflection 
Radiometer    (ASTER)    instrument    has    an    along-track 
stereoscopic capability to acquire  stereo image data with a 
base-to-height ratio of 0.6. B-H ratios between 0.5 and 0.9 are 
found to be optimal  for DEM creation from satellite stereo 
pairs  (Hasegawa et al., 2000). It provides a 1 arcsecond 
(~30m) resolution, which bodes well with that of the Landsat 
images.  From  the  ASTER  GDEM,  the  Slope  Raster  was 
derived and the Flow Direction Raster was produced using the 
D8 method. 
 
3.3. TRMM data 
 
TRMM is a joint project of the US National Aeronautics and 
Space  Administration  (NASA)  and   the  Japan  Aerospace 
Exploration Agency (JAXA). It  was launched from Japan’s 
Tanegashima  Space  Center   on  November  27,  1997.  The 
primary  purpose of this mission is to observe and estimate 
rainfall. 
 
3.4. Software 
 
We used ESRI® ArcGIS™ v9.3 (2008) and ITT Industries® 
ENVI™  v4.3  (2006)  as  our  platforms  and  Java®  for  our 
programming needs. 
 
3.5. Brief overview of the methodology 
 
Let 

Qa = reservoir inflow during time, t  
Qb = reservoir outflow during time, t  
Qr = reservoir storage during time, t 

 
note that  
 

      (1) 

 
where A = surface area of reservoir 

dh = change in water level height 
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                    dt = change in time  
 
We then get the relationship for the storage volume, V. 
 

          (2) 
 
If the outflow is zero, we get the relationship: 
 

     (3) 

   
Eq. (3) shows the basic relationship between the water level and  
the  inflow.  Through  the  long  experience  of  the  dam 
managers, they can estimate how much  and when the water 
will enter the reservoir given the rainfall data received from 
the  rain  gauges.  The  volume  of  the  water  that  enters  the 
reservoir is  based  on a graph derived from the bathymetry 
data.  A discrepancy due to a time lag variable, the  inflow's 
arrival delay caused by abstractions such as surface roughness 
(Stephenson  &  Meadows,  1986),   is  expected  from  this 
procedure because the current  method does not account for 
watershed characteristics quantitatively. 
 
One of the primary uses of remote sensing in this study is the 
mapping of the Magat watershed’s land cover. The eleven 
classes used were a mix of artificial  (cultivated/man-made) 
and natural features: Cloud, shadow, water, riverwash, fallow 
field, medium growth field, mature growth field, bare ground, 
dense forest, sparse forest and built-up. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Data flow in a classification process.  
(Schowengerdt, 2006: p.389) 

 
We tested four types of supervised classifiers (Parallelepiped, 
Minimum  Distance,  Mahalanobis  Distance  and  Maximum 
Likelihood) and two types of unsupervised classifiers (Isodata 
and K-means). The Maximum Likelihood Classifier produced 
the highest overall classification accuracy. 
 

 

Classifier Overall 
Accuracy 

Kappa 
Coefficient

Parallelepiped 86.9176% 0.8303 
Minimum Distance 86.6824% 0.8260 
Mahalanobis Distance 78.1741% 0.7211 
Maximum Likelihood 94.7671% 0.9301 
Isodata 69.5529% 0.5996 
Kmeans 68.8941% 0.5909 
 

Table 4. Overall Accuracy Table 
 
We used the  Maximum  Likelihood  Classifier   because  it 
produced the highest overall classification accuracy (Table 4). 
The classifier assigns the pixels to  their corresponding class 
based on the odds or likelihood that they fit in to that class. 
The function for each image pixel is calculated by the formula 
offered by Richards (1999: p.240),  
   (4) 
 
where i = class 

x = n-dimensional data (n is the number of bands) 
p(ωi) = probability that class wi  occurs in the image 
|∑i| = determinant of the covariance matrix of  the 
data in class wi 
∑i-1 = its inverse matrix 

  mi  = mean vector 
 

 
 
Figure 4. Maximum likelihood classification land cover map of 

the Magat watershed. 

In: Wagner, W., Székely, B. (eds.): ISPRS TC VII Symposium – 100 Years ISPRS, Vienna, Austria, July 5–7, 2010, IAPRS, Vol. XXXVIII, Part 7A
Contents Author Index Keyword Index

229



 
Enhancement and mosaicking of the digital elevation  model 
were done. Thereafter, database building and  preparation of 
the layers in a spatial software environment; Initial extraction 
of   information   such   as   flow   direction,    accumulation, 
watersheds and subwatersheds, drainage  networks etc., were 
done using primitive and modified programming scripts.  
 
 

 
 

Figure 5. The IMBAC application flowchart 
 

The  next  stage  features  the  latter  part  of  the  hydrologic 
processing  in  Java®.  The  purpose  of this  application  is  to 
create a system that estimates inflow using raster datasets as 
input. The raster layers are subjected to operators representing 
hydrologic  processes.  Figure 5  shows  the  assembly of the 
program skeleton and the coding process in its alpha stage. 
 
The  initial  layers  required  as  input  are  the  rainfall  data, 
canopy cover data, soil cover data and  elevation data. The 
rainfall data from TRMM were combined in a single text file. 
For the soil and land  cover rasters, each class was assigned 
with representative integers. 
 
From the DEM, the Slope Raster was derived and the  Flow 
Direction  Raster  was  produced  using  the  D8  method.  An 
additional text file representing the  digitized reservoir was 
also  included  for  the  application  to  perform  some  of  its 
functions like termination. 
 
The Maximum Interception  Storage  is  calculated  from the 
formula modified from von Hoyningen-Huene (1981), 
 

  (5) 
 
The Interception Loss for the timestep is therefore calculated 
using an exponential function by Hedstrom and  Polmeroy 
(1998), 

  (6) 

 
 
where  P  = precipitation 

Smax  = maximum interception storage. 
Si (t-1)  = interception storage remaining from the 
previous time step. 
fth,d   = bypassing fraction. 

 
The infiltration loss model used is proposed by Horton (1939), 
 

    (7) 

 
where Ft = infiltration volume at time t. 
 f0 = maximum infiltration rate. 
 fc = minimum infiltration rate. 
 k = decay constant. 
 
After calculating for the losses, the resulting virtual run-off 
matrix is subjected to the flow algorithms. The flow direction 
raster is one of IMBAC’s key-ins. To generate this raster, we 
used the eight-direction (D8) model described by Jensen and 
Dominique (1988)  wherein a water drop on non-edge pixel 
can move to that pixel’s eight neighbors. It is assumed that the 
direction of steepest drop is the direction of flow. In order to 
solve this, we compute for the maximum drop (Emax) 
 

     (8) 

 
where ∆z = change in the z-value 
 D = distance between pixel centers 
 

 
 

Figure 6. Assignment of flow directions using the D8 model. 
a. elevations, b. flow direction codes, c. flow direction grid 

values, d. symbolic representation of flow directions. (NWS, 
2008) 

 
The  value  of  the  output  pixel  is  specified  to  indicate  the 
direction  of  the  steepest  drop.  The following convention 
(Jensen and Domingue, 1988) is used for the eight valid flow 
direction representations (E = 1; SE = 2; S = 4; SW = 8; W = 
16; NW = 32 ; N = 64; NE = 128).   A 5 by 5 expanded 
neighbourhood is used for instances of more than one  pixel 
having Emax  values. If the processing pixel is  lower than its 
adjacent  pixels,  the  flow will  be  undefined  –  indicating  a 
depression or sink. 
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4. RESULTS AND DISCUSSION 

 
The  graph  below shows  the  comparison  of our  program’s 
computed inflow and the NIA inflow record for the month of 
April 2002. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7. Magat inflow estimates (in m3/s) using the NIA 
records. 

 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 8. Magat inflow estimates (in m3/s) using IMBAC. 

Differences between the inflow estimates  using the current 
method and the simulated IMBAC inflow estimates  can be 
observed.   While   IMBAC   incorporated   the    watershed's 
physical characteristics (canopy cover, slope, soil), 
meteorological conditions  (rainfall), and   hydrological 
processes (infiltration, interception, overland flow), the water 
level method solely relies on the indicated water level in the 
dam which corresponds to a tabulated water surface area and 
its  calculated  volume.  The  water  level  method  is  purely 
computational  and  no  modeling   or   understanding  of  the 
watershed hydrology was involved. 

 
It is worth noting however that though there is a discrepancy in 
the magnitudes of the values  produced,  the trend of the 
simulation graphs is similar to the current method graph. The 
difference during the  first week of the simulations and the 
water level method can be attributed to the discharges made at 
that time. A discharge cut-off was made on April 6, 2002, and 
since they base inflow calculations on water level it explains 
the sudden jump of the graph. The  simulations produced by 
IMBAC produce estimates  with a temporal resolution of 30 
minutes. This is  significantly better than the current method 
which  estimates inflow per day because they capture more 
detail of the watershed response temporally. 

 
IMBAC  simulations  achieved  results  which   capture   the 
behavior of the Magat watershed  response. With more field 
information to further calibrate the approach, it can be used to 
build scenarios  and simulate inflow estimates under varying 
watershed conditions. 

5. CONCLUSIONS 
 
Using  RS  and  GIS,  we  have  created  a  reservoir  inflow 
estimation system, IMBAC, which can be  used  by the dam 
managers as an alternative to the  current water level-based 
method.  The  results  produced  by  IMBAC  simulations  are 
promising.   The   program  is  proven  capable  of  handling 
datasets with large extents, thus, it is useful for  estimation 
inflow  involving  reservoirs  with  large   watersheds.  It  is 
capable of preserving the satellite images' pixel 
characteristics. Each pixel can contain characteristics that are 
hydrologically  relevant;  qualitative  interpretation  of  these 
information   is   useful   in   dealing   with   the   scarcity   of 
geographical data at a regional scale. By preserving the pixel 
characteristics, we can determine  the effects of precipitation 
in  one  area  of  the   watershed  to  the  inflow  estimates-- 
something that the current method cannot do. 
 
In a large study area such as the Magat watershed,  logistics 
play a big role in prioritizing the inclusive  activities in this 
research.  The  vast  size  of  the  study  area  makes  it  very 
difficult to set up  streamflow measurement gauges for each 
sub-watershed. With more time available, more fieldwork to 
measure streamflow and water velocity should be carried out. 
Cross-section surveys for each  of the drainage segments are 
also recommended. 
 
An  updated  source  of  soil  information  will  also  help  in 
refining the inflow estimates. Hydrologic  investigations on 
the  study  area  that  focus  on  infiltration,  percolation  and 
groundwater recharge should be done as well. 
 
The densification of the watershed’s rain gauge network and 
an increase in the frequency of recording measurements will 
also  refine  inflow  estimation  efforts.  A  better  system  of 
archiving and securing digital rainfall records is 
recommended as well. These will also help in  assessing the 
performance of the models used. 
 
The main contribution of this research lies in taking the first 
steps in realizing the potential of integrating  remote sensing 
and GIS information in reservoir  inflow estimation process 
and Philippine reservoir management in general. We took the 
first steps in developing a decision support system customized 
for our country's data situation, economy, policies and multi- 
stakeholder setup. Studies in improving this  framework are 
currently being undertaken to further refine inflow estimates. 
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ABSTRACT:

Remotely sensed images often display spectral variations over heterogeneous regions in the context of land cover classes (LCCs),
which imposes challenges to information extraction from the images. In this paper, an easy-to-apply image classification model,
supervised spectral substratum classifier, is proposed. The classifier first builds spectral LCCs (SLCCs) from a training dataset (TD).
A SLCC comprises the spectral signals of a labeled LCC in TD based on the ground truth. This SLCC is further marked as
homogeneous or heterogeneous according to the statistical properties of the mean value and the standard deviation of all spectral
cases in this SLCC. When this SLCC is marked as heterogeneous, the spectral space of the SLCC will be disaggregated (or clustered)
into substrata by applying statistical cluster analysis. A membership function is then defined for each substratum. To classify images,
fuzzy membership functions are applied to measure similarities between corresponding spectral substrata and any new to-be-
classified cases (pixels). The new cases are classified to the most comparable substrata as determined by the membership functions.
As a case study, a vegetation cover classification over a typical grassland in Inner Mongolia from Landsat ETM+ is conducted. The
result shows that the proposed classification model obtains an overall accuracy of 79.3% and kappa of 0.76. As comparison, a hybrid
fuzzy classifier and a conventional and hard classification of maximum likelihood were applied as references.

* Corresponding author

1. INTRODUCTION

Remote sensing technology has been proved to be practical
and economical means to study land cover changes and to
assess natural resources, especially over large areas (Langley
et al., 2001; Nordberg and Evertson, 2003). Image
classification is widely used to derive useful information from
remotely sensed datasets. Various models, or image classifiers,
have been developed to extract land cover information from
remote sensed images. Image classifiers can be broadly
divided into unsupervised ones and supervised ones.
Unsupervised approaches are often used in thematic mapping
from imagery, and available in most of the image processing
and statistical software packages (Langley et al., 2001). For
supervised classification, a maximum likelihood (ML)
classifier is usually viewed as a classic and most widely used
method (Sohn and Rebello, 2002; Xu et al., 2005). More
advanced classification models, such as artificial neural
network (ANN) and support vector machine (SVM), have
been attempted in recent years (Černá and Chytrý, 2005;
Cristianini and Shawe-Taylor, 2000; Du and Sun, 2008;
Gustavo and Lorenzo, 2009). Fuzzy logic classification, a kind
of probability-based classification, also gets good attentions in
recent years (Triepke et al., 2008).

To get a better classification result, there have been a few
attempts to incorporate different image classification methods.
Lo and Choi (2004) developed a hybrid classification method
that incorporated the advantages of supervised and
unsupervised approaches as well as hard and soft
classifications for mapping the land use/cover of the Atlanta
metropolitan area using Landsat 7 Enhanced Thematic
Mapper Plus (ETM + ) data. They applied a supervised fuzzy

classification to the mixed pixels, and got a slightly better result
than other methods (unsupervised ISODATA, supervised fuzzy,
and supervised maximum likelihood classification methods) in
terms of land use/cover classification accuracy. Laba et al.
(2002) compared the accuracy of a regional-scale thematic map
of land cover at taxonomic resolutions (i.e., different
classification levels). The study showed that the map produced
by the fuzzy-method had an obvious improvement in accuracy
at both low and high taxonomic resolutions. In general, fuzzy
image classifiers are more suitable for heterogeneous areas,
while hard classifications are widely applied in homogeneous
areas (Sha et al., 2008).

We propose in this paper an easy-to-apply fuzzy classification
model (classifier) to extract land cover classes (LCCs) from
remotely sensed images. The classifier first builds spectral
LCCs (SLCCs) from a training dataset. A SLCC will be marked
as heterogeneous if the statistical properties (mean value and
standard deviation) of the cases labeled with this SLCC meet
certain criteria. The spectral space of this SLCC will be
disaggregated (or clustered) into substrata by applying statistical
cluster analysis. Fuzzy membership functions are defined for the
substrata based on the training dataset and then applied to
measure similarities between the new cases and these spectral
substrata and to determine their classifications.

2. METHODOLOGY

Many heterogeneous regions show obvious spectral variations
over LCCs in remotely sensed images. Specifically, the cases
labeled as a single LCC may demonstrate distince spectral
deviations. Under such a condition, the cases labeled as the
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LCC can be clustered into several sub-groups (substrata) with
smaller within-group spectral deviations based on the spectral
properties of the LCC labeled cases. This classification
process is called a spectral substratum classifier.

Five steps are involved in implementing the proposed
classification model. Step 1 creates a classification
information system from the training dataset. Step 2 builds
spectral substrata (SS) space for each SLCC from the training
dataset. Step 3 defines membership functions for assigning
new cases. Step 4 evaluates the classifier’s performance
through a testing dataset. Step 5 classifies new cases by
applying the derived classifier.

Step 1: Creating a classification information system from
the training dataset

For a given nonempty finite set of cases U={xt} (t=1,2,……,n)
where xt indicates case t. Each case xt in U is depicted by a set
of attribute variables Bi={b∙i} (i=1,2,…,m) and labeled by a
class Cj. (j=1, 2, …, n), Cj.

C={C1, C2, …, Ck}, where b∙i has
a continuous value domain, C is a priori class label set, and
the symbol “.” in Cj. indicates one of the candidate classes
from C. That is to say, xt = {bt1 , bt2, …, btm, Cj.} Therefore, U
can also be viewed as a matrix M with n rows and m+1
columns,
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whereas the first m columns are called condition variables and
the last column is a decision result. Cj. denotes different
elements from the candidate class set C. Note that different Bi

may have the same class label.

Any object in U is uniquely determined by the values of its
attributes. In other words, for any object xt

 U with an
attribute set bi describing xt, the object can be uniquely
classified (labeled) as Cj. This form of U (or M) is usually
referred to as a classification information system (CIS). The
notion of classification information systems (sometimes called
data tables, information tables, attribute-value systems,
knowledge representation systems, etc.) provides a convenient
tool for the representation of objects in terms of their attribute
values. The training dataset is taken to build a classifier and
the testing dataset used to test the accuracy of a derived
classifier that has the form of CIS.

Step 2: Building SS-Space for each SLCC from the
training dataset

Let
zjix , denotes the jz

th observation within class Cj for
variable bi, with 1 ≤ jz ≤ n_j, 1 ≤ n_j ≤ n, n_j being the number

of observations in class Cj, and 


k

j
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1

_ =n. For all cases with

such a unique label as Cj in U, calculate the mean values ( jix , )

and the standard deviations (denoted as )( ji C ) of the

observations labeled as Cj for each variable bi (i=1,2,…, m),
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Let


i be the mean value of )( ji C of all Cj (j=1, 2, … k) for

variable bi (i=1, 2, …, m),
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For m variables (bi) in CIS, we can get a S.D. vector  =

(


1 ,


2 , …,


m ) with dimension m. When )( ji C ≥


i (for
variable bi) happens to a candidate class Cj, there exists a larger
deviation of spectral signals among the observations with

respect to variable bi. Therefore, )( ji C ≥


i is used as a
judgment to mark “heterogeneous” for these cases. A recursive
clustering to these cases labeled as Cj is then performed to
determine substrata of the spectral signals until S.D. of each
SLCC (subclasses of Cj, denoted as Cj∙ where “∙” indicates that

the subclasses come from Cj) satisfies )( .ji C <


i .

A two-step hierarchical clustering analysis is recommended by
using the Statistical Package for the Social Sciences (SPSS)
(http://www.wright.edu/cats/docs/docroom/spss/), with the
original candidate class as priori group and Euclidean distance
as the linkage distance measure for variable bi, and the
unweighted pair-group centroids as the linkage rule (LR). In

addition to the control parameter of


i , each subclass has to
meet the requirement of a minimum number of cases (MNC).
When the minimum case requirement is not satisfied, the cases
will be merged with its nearest subclass in terms of Euclidean
distance.

Accordingly, all the original cases can then be either labeled as

Cj if no clustering is needed on the basis of


i , or Cj-f (f=1,
2, …, p, where p is the total number of the substrata after the
clustered cases are labeled as Cj in the training dataset). In other
word, the original k candidate LCC classes can be extended to

 substrata classes where  =
 

k

j

p

f1 1
1 . For each Cj∙, the

combination of jix , and )( ji C , similarly calculated by
Function (2) and (3), is referred to as a spectral substratum
space (SS space) for variable bi and class Cj∙. A clustering
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analysis based on the CIS creates an SS space vector for each
bi (SSi) with  elements defined,

SS={ SS1, SS2, …, SSn}

and SSi ={ss1, ss2, …, ssr},
where ssi= ( jix , , )( ji C )

(5)

Step 3: Defining membership functions from the training
dataset

For any new object (case) that is attributed by bi (i=1, 2, …,
m), the classification task is to find out a substratum (Cj∙) that
has the most comparable properties to the object. Thus, for
any bi, the following membership function is defined to
calculate the similarity measure (SM) between the object and
the class Cj∙,

jSM = }{ jSMMax

and
jSM =
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where j∙ represents Cj if no clustering analysis is made, or Cj-f

(f=1, 2, …, p) if Cj is grouped into p substrata after clustering.
 is called overlapping coefficient for )( ji C . For any Cj,
SMj∙ is the largest value of the similarity measure from the
subclasses (i.e., substrata from the Cj). It can be seen that SMj∙

=1 if bi = jix , , and SMj∙ =0 if |bi - jix , |≥  ∙ )( ji C . The
class label finally assigned to the object will be the label (Cj)
that presents the closest similarity through the Max operation
defined in Function 6.

For any new case, the defined membership (given by Function
6) compares the similarity between the new case and a number
of known class (Cj or Cj-f) determined from the training dataset.
Instead of directly assigning the new case to a known class,
the function selects the most comparable class, to whichthe
new case belong based on the calculated similarity
measurement (SMj∙).

An Example is provided as an illustration:

Suppose, for variable b1, we have 11,x =0.50, )( 1Ci =0.05;

22,x =0.55, )( 21 C =0.02. A given new case has b1 =0.58
and  takes 3.0.

Scenario 1: According to Function 6, SM1=0.47 and
SM2=0.50. This is to say, the new case shows more similarity
to C2 than to C1. Therefore, the new case is more likely to be
C2 if the variable b1 is taken as the input for consideration.

Scenario 2: When the deviation of sample cases is considered,
the cases labeled as C1 must be subdivided into two substrata
through the clustering analysis, C1-1 and C1-2, because of the

fact that )( 11 C =0.05 ≥


1 =0.035. After the clustering
analysis, we get two SS-spaces for C1-1 and C1-2 respectively,

s1-1 = ( 111 ,x = 0.43, )( 111 C = 0.02) and s1-2 = ( 211 ,x = 0.57,
)( 211 C =0.02).

According to Function 6, SM1=max {SM1,1-1, SM1,1-2} = {0,
0.83} = 0.83, and SM2=0.50. Therefore, the new case is more
comparable to C1 if the variable b1 is taken as the input for
consideration. When there are a set of properties (bi) to depict
an object, a weighted average of SM j for all considered bi is
used to decide the similarity measure,

jj SMSM  


n

1i
in

1
 (7)

where jSM is the weighted average SM j for all considered bi,

and ωi stands for the weight for variable bi. We placed equal
weights for the 6 image bands in the case study. jSM measures

the similarity between any new case and Cj, and is computed to
quantify the possibility that the new case belongs to a class Cj.
The given object will be assigned to Cj that has the
largest jSM .

Step 4: Evaluating classifier performance through testing
dataset

The classified results derived from remote sensed images should
be objectively verified and communicated to users so that they
can make informed decisions on whether and how the products
can be used. A testing dataset is used to evaluate the degree of
‘correctness’ of the classified features compared to the actual
ones. Though there are a few evaluation methods, we used a
confusion (or error) matrix to evaluate the classification result,
which describes the goodness of fit between the derived classes
and the reference data through using the measures like overall
accuracy and kappa coefficient.

The testing dataset has a similar format as that of the training
dataset. Any case in the testing dataset has an input vector
denoted as {b1, b2, …, bn} and an actual output class label Cj.
The built fuzzy classifier from Step 3 takes the input vector and
outputs (or assigns) a class label. The classifier outcomes are
compared with the actual ones to build the error matrix. The
overall classification accuracy and Kappa statistic are calculated
to quantify the result (de Leeuw et al. 2006).

Step 5: Classifying new cases by applying the derived
classifier

For any new case that needs to be classified, the derived
classifier, if a reasonable classification accuracy is achieved, is
employed to make classification. To classify a remotely sensed
image, each pixel is a new case that is taken as input to the
derived classifier and an output class label then is determined.
Afterwards, a map covering the image area is sually produced to
show visualize the classification result.
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3. CASE STUDY

The proposed classifier is applied to classify grassland
vegetation from Landsat Enhanced Thematic Mapper (ETM+)
in Xilin River Basin, Inner Mongolia, China (Figure 1). The
study region covers an area of nearly 10, 000 km2 and strides
two Landsat ETM+ scenes. It is one of the most representative
steppe zones in China and the world (Xie et al., 2010). It is
known from the long-term observations and field samplings
that much of the research region is dominated by
heterogeneous plant communities. It is confirmed that hard
and pixel-based image classifications were not the right ways
to map the vegetation cover in this region (Sha et al., 2008).
A vegetation classification system consisting of 11 vegetation
communities is determined based on the plant ecological and
biological features (Table 1). Two image scenes of Landsat
ETM+ (path 124/row 29 and path 124/row 30) on 14 August,
2004, covering the whole region, are obtained and a series of
image preprocessing tasks are performed to produce a
qualified image for classifying vegetation cover (Sha et al.,
2008). Simultaneous 464 ground samples evenly distributed
over the study area were collected in the field with a hand-
held global positioning system (GPS) with an accuracy of 15m
and geo-registered to the image. The ground samples are
divided into two groups: the training dataset and the testing
dataset.
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Figure 1. Study area

The training dataset, including 348 samples with six bands
(variables) and the class labels (C1, C2, …, C11), are taken to
build the spectral substratum classifier. The rest 116 samples
are used to validate its classification accuracy. All of the
samples (training and testing) and the pre-processed image are
used to extract spectral data of each ground sample. Spectral
data for the samples are analyzed with the six reflective bands
of the Landsat ETM+. Bands 1, 2, 3, 4, 5 and 7 of the pre-
processed image are analyzed separately to create a SS space
vector. The six bands of the pre-processed image are
normalized through the following function, respectively,

bi = (b-bMin) / (bMax-bMin) (8)

where bi is the transformed value of any original pixel value (b)
for layer i that has maximum and minimum pixel values given
by bMax and bMin.

class Community type
(named after dominant species) Vegetation type

C1 Cleistogenes squarrosa Typical steppe
C2 Stipa grandis Typical steppe
C3 Achnatherum splendens Meadow
C4 Stipa krylovii Typical steppe
C5 Artemisia frigida Typical steppe
C6 Carex pediformis Meadow steppe
C7 Carex spp. Meadow
C8 Caragana microphylla Typical steppe
C9 Leymus chinensis+Stipa baicalensis Meadow steppe
C10 Leymus chinensis Typical steppe
C11 Salsola collina (Chenopodium

glaucum)
Typical steppe

Table 2. Vegetation classification system

The ‘brightness’ value of each image band of the samples in the
training set was normalized according to Equation 8 to produce
a training data matrix of 348 × 7 (six bands + vegetation type).
Similarly, all testing samples were processed to form a testing
data matrix of 116 × 7. These matrixes are two CISs used to
facilitate our analyses. The six variables (bands) along with the
class label from the training matrix were analyzed to form a SS
space vector {SS1, SS2, SS3, SS4, SS5, SS7}. It was found that
the cases labeled with C1, C2, C4, C5, C10, and C11 in the training
dataset for most of the bands were marked heterogeneous and
thus clustering analysis was applied to form substrata. Take
band 1 as an example, a clustering analysis was performed on
the cases originally labeled as C2, C4, and C10 in the training
dataset. The results of the clustering analyses were reported
Table 3. In other words, the cases in band 1 labeled as C2, C4, or
C10 in the training dataset displayed significant variations,
forming seven substrata. Moreover, the spectral variation of the
variable within each substratum was decreasing when it was
further clustered. As Table 2 revealed, the largest variations
occurred with the cases labeled as C2 since most LCCs in C2
produced three substrata, C2-1, C2-2, and C2-3 (Table 2).

The constructed classifier was then applied to the testing dataset
for an accuracy evaluation. The result of the accuracy test
showed that most reference classes with large sizes of cases
could be well predicted by the classifier. The overall accuracy
of the classifier reaches 79.3% with Kappa valued of 0.76
(Table 3). Considering the accuracy obtained from the classifier,
the spectral substratum classifier could be applied to classify the
whole image according to Equations 6)and 7 to derive the final
vegetation cover map over the study region.
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SSband SSi list 

SS1

C1(0.52, 0.03) C2-1(0.18, 0.04) C2-2(0.31,
0.04) C2-3(0.63, 0.04) C3(0.16, 0.02) C4-

1(0.12, 0.02) C4-2(0.67, 0.02) C5(0.49, 0.04)
C6(0.62, 0.02) C7(0.55, 0.03) C8(0.96, 0.02)
C9(0.40, 0.02) C10-1(0.20, 0.04) C10-2(0.50,
0.03) C11(0.52, 0.02)

15

SS2

C1-1(0.38, 0.03) C1-2(0.64, 0.02) C2-1(0.21,
0.02) C2-2(0.31, 0.03) C2-3(0.53, 0.03)
C3(0.67, 0.02) C4-1(0.37, 0.03) C4-2(0.57,
0.04) C5-1(0.35, 0.02) C5-2(0.73, 0.03)
C6(0.36, 0.03) C7(0.54, 0.02) C8(0.70, 0.02)
C9(0.27, 0.02) C10-1(0.20, 0.04) C10-2(0.24,
0.04) C11(0.42, 0.02)

17

SS3

C1(0.61, 0.03) C2-1(0.30, 0.02) C2-2(0.60,
0.02) C3(0.37, 0.02) C4-1(0.24, 0.03) C4-

2(0.50, 0.03) C5(0.46, 0.02) C6(0.28, 0.02)
C7(0.76, 0.04) C8(0.20, 0.03) C9(0.53, 0.02)
C10-1(0.15, 0.04) C10-2(0.33, 0.02) C11-1(0.29,
0.03) C11-2(0.34, 0.02)

15

SS4

C1(0.32, 0.02) C2-1(0.19, 0.03) C2-2(0.50,
0.02) C2-3(0.69, 0.03) C3(0.44, 0.03) C4-

1(0.37, 0.03) C4-2(0.86, 0.02) C5-1(0.27, 0.02)
C5-2(0.60, 0.03) C6(0.65, 0.02) C7(0.23, 0.02)
C8(0.36, 0.02) C9(0.30, 0.02) C10-1(0.28, 0.02)
C10-2(0.53, 0.04) C11(0.45, 0.03)

15

SS5

C1-1(0.28, 0.02) C1-2(0.39, 0.04) C2-1(0.25,
0.04) C2-2(0.44, 0.02) C2-3(0.83, 0.03)
C3(0.49, 0.03) C4-1(0.28, 0.03) C4-2(0.77,
0.03) C5(0.39, 0.04) C6(0.30, 0.02) C7(0.55,
0.02) C8(0.74, 0.03) C9(0.68, 0.02) C10-

1(0.26, 0.03) C10-2(0.72, 0.03) C11(0.31, 0.02)

16

SS7

C1-1(0.26, 0.02) C1-2(0.59, 0.03) C2-1(0.52,
0.03) C2-2(0.78, 0.02) C3(0.45, 0.02) C4-

1(0.32, 0.04) C4-2(0.54, 0.03) C5-1(0.23, 0.02)
C5-2(0.45, 0.03) C6(0.35, 0.04) C7(0.23, 0.03)
C8(0.51, 0.04) C9(0.23, 0.03) C10-1(0.18, 0.02)
C10-2(0.31, 0.03) C11(0.45, 0.03)

15

Table 3. SS space vector derived from the training dataset
(MNC (minimum number of cases) =5)

Reference classMap
class C1 C2 C3 C4 C5 C6 C7 C8 C9 C1

0

C11 Total User’
s

C1 5 2 1 8 62.5
C2 1 23 1 1 1 1 1 29 79.3
C3 6 1 7 85.7
C4 1 15 16 93.8
C5 2 4 6 66.7
C6 2 2 100
C7 1 2 3 66.7
C8 6 1 7 85.7
C9 1 4 5 80
C10 2 2 1 15 20 75
C11 1 1 1 10 13 76.9

Total 8 28 7 20 6 4 3 6 5 18 11 116
P* 63 82 86 75 67 50 67 100 80 83 91

Overall accuracy: 79.3%; kappa=0.76
P* standards for Producer’s

Table 4. Error matrix for the proposed classifier
The classification performance was further assessed in
comparison with other classification models (Table 5). It was
found that the result from the proposed substratum classifier
produced a comparable accuracy as the hybrid fuzzy classifier
(HFC) did in the same study area (Sha, et al., 2008) and had a
much better performance than the conventional supervised
classifier (CSC) model. In addition, in terms of the procedures
involved, the proposed substratum model was relatively easier
to carry out.

Classification method Percentage
classified Kappa

HFC(Sha et al., 2008) 80.2 0.77
CSC* 69.0 0.63
Spectral Substratum Model 79.3 0.76

*CSC: Conventional supervised classification on the basis of
maximum likelihood.

Table 5. Result comparison with other models

4. CONCLUSION AND DISCUSSIONS

The proposed spectral substratum classifier essentially adopts a
fuzzy or soft classification strategy. Fuzzy classifiers have been
studied for years and proved to produce more accurate
classifications compared to the hard methods especially over a
hetegeneous environment. Under such a condition,, a pixel in an
image may not display an overwhelming similarity to a LCC.
Instead, it would be better to say that the pixel is more likely
belonging to a LCC.

In the applications of environmental mapping from remote
sensed images, two considerations are usually taken into
account to develop a new classification system, when the
sampled cases in the training dataset show distinct spectral
variations even if they belong to the same LCC. First, if the
spectral variations are within a reasonable limit, all cases can be
treated as a class corresponding to a LCC. Second, if the
variations within a spectral LCC (SLCC) are too large, these
cases can be split into two or more subclasses (substrata). The
derived substrata will be used to replace the original SLCC.
Compared to SLCC, these substrata show much smaller within-
group spectral variations. In our research, a hierarchical
clustering analysis is performed with all the variables in the
training dataset as an input vector to derive substrata for the
LCC cases. Each substratum has a membership function defined
by the statistical properties (mean value and standard deviation)
of the cases labeled with this substratum. During the clustering
process for variable i and class Cj, two parameters are examined
to control its running:

1) First, when the standard deviation of all the subclasses
( )( ji C ) is smaller than a predetermined parameter, i.e.,

the average standard deviation (


i ) for all the original
classes, the clustering stops. This strategy assumes that only
a few classes displaying significant spectral variations
among he labeled cases, are to be generated. In other words,


i is the controlling parameter. Though the value of this
predefined parameter can be manually set, setting it too
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small will lead to too many subclasses (substrata) to be
generated, which may make the classifier over-fitting or
having too many noises and thus lacking prediction power.
In the current case study, we compared a few results by

setting different values for the parameter (i.e.,


i ,

1.5×


i , and 0.5×


i ) and found that 1.0×


i performed
best in terms of the classification accuracy test. However,

the trial-by-error method for setting up a value for


i is
neither robotic nor the best for accuracy assessment.
Future efforts should be made to explore better strategies
for setting up the parameter.

2) Second, when the number of cases in a subclass is smaller
than a predefined parameter, MNC (minimum number of
cases), the analysis also stops. For the similar reason, a
substratum containing too few cases in the training dataset
will also lead to over-fitting or having too many noises.

To measure the similarity between any given case and a
substratum from LCCs, a set of membership functions are
defined based on each SS space of each SLCC. We first define
a membership function for each variable for each substratum
and then combine the effect of all the variables to make an
overall determination function given by band weight vector ωi.
A trial-and-test method is employed to set the suitable weight
vector. The membership function defined to measure the
similarity of a given object to a substratum for a single
variable takes the mean value and the standard deviation of the
variable from the substratum labeled cases in the training
dataset. The empirical parameter that affects the measured
similarity value is the overlapping coefficient (  ). As can be
seen from Equation 6, the increase of  also increases the
similarity measure value. While increasing  may lead to
more cases to be classified, misclassification may occur when
doing so. On the contrary, decreasing  may lead to some
cases that actually belong to a substratum get lower similarity
values and thus may be misclassified to other classes. In the
case study, we adopt a value of 3 for  . This value
considered the statistical properties (mean value and standard
deviation) of the proximity between different classes and had
the best accuracy when compared to other settings.

Although a moderate classification accuracy is obtained by the
spectral substratum classifier in our case study, it is one of the
best classification results among the present literature,
considering the complicated vegetation cover and strong
human influences in this region. In addition, the classifier is
also easy to build and could be widely applicable to different
environment conditions. Therefore, we suggest that the
spectral substratum classifier should be further tested to
extract information from remotely sensed images in other
heterogeneous regions.
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ABSTRACT: 

Speckle noise which occurs due to the coherent imaging system is the best known problem of SAR images and in turn, affects 
classification, change detection, biomass estimation and interpretation results. Several adaptive filtering methods have been 
documented to deal with this issue, such as Kuan, Lee, MMSE and Frost filters. These filters do not consider the level of 
homogeneity in the intensity of the pixels. For this reason, they degrade the spatial resolution of image and smooth details, while 
significantly decreasing the speckle noise level. There are other filters such as Enhanced Lee and Gamma Map that utilize the level of 
homogeneity, but they cannot adequately suppress speckle noise. Moreover, pixels whose coefficients of variation are near to 
maximum and minimum threshold values are not correctly filtered using these filters. In addition to these weaknesses, pixels 
surrounding a point scatterer are also treated as point scatterers due to shortcoming of the method of evaluating the coefficient of 
variation for differentiating between them and the point scatterer. We have developed a new method based on the homogeneity level 
for speckle noise suppression and simultaneously edge and feature preservation. Also, an algorithm has been proposed based on local 
statistical information to filter the pixels surrounding point scatterers. The results show an improvement in speckle reduction and 
texture preservation as well as reduction in the number of unfiltered pixels.  

 
1. INTRODUCTION 

 
Speckle noise, also referred to as ‘speckle’ is common to all 
imaging systems which utilize a coherent mechanism to acquire 
images, and SAR images are no exception (Bamler, 2000). In 
coherent systems, backscatter signals add to each other 
coherently and random interference of electromagnetic signals 
causes the speckle noise to occur in the image (Saevarsson et 
al., 2004). In fact, speckle is multiplicative noise that alters the 
real intensity values of features in a scene (Dong et al., 2001). 
Hence, speckle reduces the potential of SAR images to be 
utilized as effective data in remote sensing applications such as 
classification and segmentation, change detection, biomass 
estimation and interpretation, due to a degradation in 
appearance, quality and the recorded power of returns (Ali et 
al., 2008; Lee and Pottier, 2009). For this reason, speckle 
reduction becomes one of the more important tasks in radar 
remote sensing.  

The main requirements that speckle suppression methods must 
meet are speckle reduction, and edge or texture preservation 
(Dong et al., 2001).  In homogeneous areas filtering should only 
reduce the speckle noise level. A minimum unbiased estimator 
such as mean filter or box filter can perform very well and 
efficiently reduce speckle noise level over these areas (Lopes et 
al., 1990 b). Conversely, in the more heterogeneous areas, an 
ideal filter should suppress speckle noise and simultaneously 
preserve the edges and features, so a mean filter is not reliable 
for this type of data. According to these considerations, a good 
adaptive filter should have two important characteristics; first it 
should use an efficient discriminator to separate the speckle 
from the textural information and secondly, the filter should 
adaptively deal with speckle noise based on the type of speckle 
noise model which it follows (Lopes et al., 1990 b).  

In general, speckle noise filters are grouped into two main 
categories:  

 
• Statistical filters that use a priori statistical knowledge about 

speckle noise, the most common being Lee (Lee, 1981), 
Frost (Frost et al., 1982), Kuan (Kuan et al., 1985). These 
filters smooth speckle adequately, but they do not preserve 
details efficiently. Other statistical filters maintain feature 
information at the cost of poor speckle noise reduction, such 
as the Gamma Map (Lopes et al., 1990 a) and Enhanced Lee 
(Lopes et al., 1990 b) filters while all of the mentioned 
filters are based on speckle models. In addition, the latter 
filters are not able to filter large parts of images where the 
coefficient of variation is weak as explained later. There are 
other statistical filters such as mean and median filters 
which are not based on speckle models.  

• frequency domain methods, such as Wavelet and Fourier 
transformations (Dong et al., 2001; Saevarsson et al., 2004; 
Maycock et al., 2007). These filters are not based on speckle 
models. 

In this paper we aimed to develop a filtering method that can 
reduce the speckle noise and at the same time preserve the 
edges and features to acceptable levels.    

 

 

2. SAR FILTERING CONSIDERATIONS 
 

According to Lopes et al. (1990 b) common adaptive statistical 
filters have been developed based on the multiplicative noise 
model that assumes backscatter from a pixel originates from a 
large number of scatterers with independent phase and 
amplitude.  This is not the case for built-up areas. Moreover, for 
the edges and some textured areas where details are smaller than 
the spatial resolution, the multiplicative noise model is 
unsatisfactory. Hence, for these two situations these filters are 
not efficient. On the other hand the filters mentioned above are 
based on using the local coefficient of variation, which is the 
ratio of standard deviation to the mean of pixels. This is known 
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to be an efficient index of the homogeneity level of pixels over 
an image, but not a good textural measure as are second order 
statistical indicators such as the variance (Paudyal et al., 1995). 
In addition to these considerations there are some other 
shortcomings of filters using coefficient of variation as follows: 

1- Using the coefficient of variation for the pixels that surround 
a point backscatterer is not reliable, because the coefficients of 
variation of these pixels are large, since their coefficient of 
variation is affected by the central pixels which are expected to 
be the point scatterers. This shortcoming causes these pixels to 
be inadequately filtered compared with the point scatterers. 
Therefore, applying a robust algorithm to deal with this problem 
is a demanding task. 

2- Pixels with coefficients of variation near to Cmax, the 
maximum coefficient of variation, are not filtered. Also pixels 
with coefficients of variation near to Cu, the averaged 
coefficient of variation over homogeneous areas, are averaged; 
although they are not classified as homogeneous areas, the 
averaging process will cause details to be lost.  

3- For most statistical filters, averaging the pixels in 
heterogeneous areas with edges can lead to errors in filtered 
pixel values, because pixels with different noise models are 
combined in the averaging process.  
 

 
3. METHODOLOGY 

 
According to the previous section, in order to reduce or remove 
the above problems the following tasks are required; (i) A more 
robust criterion to discriminate different parts of image must be 
developed, not only based on homogeneity, but also according 
to textural features, (ii) The averaging of pixel values should be 
based on pixels whose speckle noise models are similar, and 
(iii) The development of an algorithm that deals with pixels 
which surround point scatterers or have homogeneity levels near 
to the maximum coefficient of variation. The method developed 
in this paper has been based on the determination of four 
thresholds from a standard deviation map derived within a 5 ×5 
window. The method can be extended to larger windows. 
 
3.1 Textural Criterion 
 
In this study we have used edge detection masks to generate a 
new criterion for separating different textural areas in a SAR 
image. Considering a 5 × 5 window, it is possible to divide this 
window into nine 3×3 sub-windows corresponding to nine 
geographic directions. The mean value for each sub-window, 
which is called a sub-mean, is calculated and four 3×3 edge 
detection filters are separately scanned over the sub-means. 
Then, the results are summed and set to absolute values. This 
process results in 4 numbers whose standard deviations can 
provide textural information for different parts of a SAR image. 
The standard deviation map can be used as a textural criterion. 
The edge detection filters used are as follows: 

�−1 0 1−1 0 1−1 0 1� , � 0 1 1−1 0 1−1 −1 0� , � 1 1 10 0 0−1 −1 −1� ,�1 1 01 0 −10 −1 −1� 
According to Lee and Pottier (2009), these filters are affected 
by speckle noise less than other filters such as the Sobel filter.   
 
3.1.1 Areas without Edges   
 
Since no significant edges or textural features exist in a 
homogeneous area, except for some isolated pixels with very 

high or low values, it is possible to select the average value of 
the standard deviation map, VNE, as the threshold.  The areas 
with the standard deviation map values below the threshold 
contain no significant feature. Isolated points and their 
surrounding pixels will have relatively high standard deviation 
values compared to other pixels. In order to reduce the number 
of these pixels that may be filtered during the filtering process, 
we defined a second threshold, VNE-max, which is the maximum 
value of the standard deviation map over the homogeneous area. 
Since using the maximum value results in some edges to be 
smoothed over edge areas, in order to reduce this problem, it is 
possible to select an area that has no point scatterers, where the 
standard deviations follow irregular curves, over edge areas. 
The average standard deviation of this area is the second 
threshold for the homogeneous area with a value between VNE 
and maximum value of standard deviations. In summary, the 
non-edged area is divided into two different sub classes using 
two thresholds. 
 
3.1.2 Edge Areas 
 
The second class includes pixels that include edges and textural 
information. The low threshold of this class is VNE-max which is 
the high threshold of the previous class. The high threshold of 
this class, VE-max can be the maximum value in the standard 
deviation map over the area that includes edges and textural 
information.  However, in order to decrease speckle noise level 
more over the heterogeneous area, it is better to select the 
average value of the standard deviation map over point scatterer 
areas as the high threshold for this class.  The map of standard 
deviations over these areas appears as circular shapes, or closed 
curves. 
 
3.1.3 Isolated Point Targets 
 
The third class covering the remainder of image represents the 
point scatterer pixels and their neighbours. These pixels appear 
as closed curves and circular shapes in the standard deviation 
map and have the highest values. Figure 1 shows a part of 
standard deviation map including the different classes. 

 

Figure 1. Standard deviation map for a part of study area; the brightest 
closed curves represent features, opened curves are edge areas and dark 
parts indicated homogeneous areas. 
 
3.2 Filtering Scenarios  
 
Since there are three different classes in terms of textural 
information over the images with different homogeneity levels, 
according to Lopes (1990 b) we need to use different scenarios 
for these different classes.  
 
3.2.1 Non-edge Class Filtering 
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According to previous section this class should be divided in 
two sub classes. The first sub class includes pixels with standard 
deviation values less than or equal to VNE, which means that 
there is no textural information over this sub class. Hence, a 
minimum variance unbiased estimator can efficiently reduce the 
speckle noise level over this sub class without considering the 
textural information. The second sub class that comprises pixels 
with standard deviation values between VNE and VNE-max, 
describes isolated point scatterers. In this case there are two 
groups of pixels (i) pixels whose coefficients of variation are 
less than or equal to Cmax , the coefficient variation over 
heterogeneous area, and (ii) pixels with coefficients of variation 
higher than Cmax.  

For the first group, the mean value of pixels within the selected 
window is used as the filtered pixel value because they are 
considered to be in the non-edge class and using the mean value 
does not degrade the spatial information. The second group 
represents isolated points and their surrounding pixels. 
According to section 2, one of the most important problems 
with the existing filters is that they consider the neighbouring 
pixels of point scatterers in the same way as the point scatterers 
themselves, since the coefficient of variation is not reliable for 
these pixels and hence is unable to separate them from the 
central point scatterer. In order to solve this problem and to 
filter these pixels we developed an algorithm that is called 
‘point scatterer discriminator’. This algorithm is based on the 
assumption that the difference of pixel values between point 
scatterers and their neighbours is high. After labeling a pixel as 
a candidate point scatterer, having a coefficient of variation 
higher or equal to Cmax, a 3×3 window is centered on this point. 
Then, the maximum and minimum pixel values of this window 
are selected and the following equation is executed on all pixels 
within the window: 

D = 
��	
�������	
����	�                  (1) 

 Where DNmax= the highest value within selected window 

             DNmin= the lowest value within selected window  

             DNij= the pixel value of pixel (i,j) 

Then the median and mean values for the matrix of the 
differences, D, are calculated and the larger value, M, is used to 
make a decision about the central pixel. If the central value of 
the matrix of differences is less than M then this pixel is known 
as a point scatterer, otherwise the pixels whose difference 
values are more than or equal to M are selected and the 
coefficient of variation for  selected pixels is calculated. As 
mentioned this sub class is not expected to include textural 
information except point scatterers. For this reason, the pixel is 
known as a point scatterer provided its coefficient of variation is 
higher than Cu, the averaged coefficient of variation over a 
homogeneous area, otherwise the mean value of the selected 
pixels is assigned as a filtered pixel value. Some isolated points 
with very low pixel values derived from this algorithm may also 
be preserved. These points are not recognized as point scatterers 
in the first step of this algorithm; however, the second and third 
steps can solve this problem.   
 
3.2.2 Edge Class Filtering 
 
Filtering the image over this class is more complicated than the 
other classes because these areas include textural information 
such as edges and built-up areas. For this reason, using the 
mean value over this class causes smoothing of the textural 

information and degrading of the image details; however, there 
will still be some homogeneous areas within this class that 
should be smoothed using a mean filter. Since the mean value of 
the standard deviation map over the point scatterer areas is used 
for VE-max, there will be some point scatterers over this class that 
should be preserved.  According to these considerations there 
are three types of pixels, those for which C is less than or equal 
to Cu, those for which C is between Cu and Cmax and those 
whose coefficients of variation are more than Cmax. 

According to Lopes et al. (1990 b), pixels whose coefficients of 
variation are less than or equal to Cu follow a fully developed 
speckle noise model, and should be averaged. Since within the 
edge classes the pixel values vary in terms of homogeneity 
level, averaging all pixels should result in a loss of detail. So, it 
is necessary to select only pixels whose coefficients of variation 
are less than or equal to Cu for averaging. For the pixels whose 
coefficients of variation are higher than Cmax, the point scatterer 
discriminator algorithm is used, thus preserving the point 
scatterers and their neighbours.        

The most complicated filtering in this class is on the pixels 
whose coefficients of variation are between Cu and Cmax 
because pixels in this category display edges and more textured 
areas. On one hand using simple averaging for these pixels is 
unreliable because of the high variability among the pixels. On 
the other hand, even if we utilize averaging using only pixels 
whose coefficients of variation are between Cu and Cmax, it will 
introduce errors because they are not the result of fully 
developed speckle model. Hence, weighted averaging using 
more similar pixels in terms of homogeneity is more reliable for 
the filtering. 

In order to deal with filtering of this part, after selecting pixels 
whose coefficients of variation are between Cu and Cmax, the 
following equation called homogeneity likelihood (HL) is 
applied to find pixels of similar homogeneity within a window 
with respect to the central pixel: 

HL= � ������	
�����                     (2) 

Where   Cc= coefficient of variation for central pixel 

        Cij= coefficient of variation for pixel (i,j) within the 
window 

This index shows the similarity between neighbouring pixels 
with no fully developed speckle model and the central pixel. 
The lower the value of a pixel, the higher the similarity with the 
central pixel in terms of speckle model. Then this index is used 
to weight pixels using the following expression: 

     w ij= exp (- HL)        if Cu < Cij < Cmax 

     w ij= exp (- ∞)            if Cij <= Cu or Cmax <= Cij        (3) 

And in order to normalize the weighting factors, we have:  

W= ∑ ∑ ��,�����                   (4) 

Then the weighted mean value is calculated as follows: 

��� = 
∑ ∑ �.�,���	 �                (5)  

Where            ��,� is the pixel value (i,j) 
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After calculating the weighted mean, the coefficient of variation 
is calculated for the selected pixels. If this value is less than or 
equal to Cu, the filtered value is equal to weighted mean value, 
while if it is higher than Cmax then the original value is 
preserved. For the pixels whose coefficients of variation are 
between Cu and Cmax, the filtering method is as follows: 

Filtered pixel = ���× B+Z× (1-B)       (6) 

B is calculated according to the following equation: 

B= exp (- K×N)              (7) 

Where      K = damping factor 

And N is calculated as follows: 

N = 
�!�����	
���!�               (8) 

Where    CSij = coefficient of variation for selected pixels 

It is apparent that equations (6), (7) and (8) are similar to the 
equations that were proposed for enhanced Lee filter. It means 
that the more heterogeneous the pixels, the less filtering. 
However, there are some differences with the enhanced Lee 
filter including using the weighted mean instead of simple 
averaging, and applying the coefficient of variation for the 
selected pixels instead of calculating this value for all pixels 
within the window. There are some advantages in applying 
these changes. First, as mentioned in section 2, pixels whose 
coefficients of variation are close to Cu are averaged; however, 
their coefficients of variation are higher than Cu and their 
speckle model is not fully developed. Through using the 
weighted mean, this problem is removed because if B equals 1, 
then the filtered value is set to the weighted mean based on the 
noise model similarity. Moreover, for the pixels whose 
coefficients of variation are close to Cmax the Enhanced Lee 
filter treats them as point scatterers, while the modified method 
is able to filter them through calculating the coefficient of 
variation for the selected pixels.  
 
3.2.3 Point Scatterer Class Filtering 
 
Pixels that have values more than or equal to VE-max in the 
standard deviation map are categorized as point scatterer 
candidates because some of them are pixels surrounding point 
scatterers. Therefore, it is necessary to use the point scatterer 
discriminator algorithm to find which pixels are point scatterers.  
 

 
4. FILTER ASSESSMENT 

 
There are several methods to assess the filtered image 
quantitatively according to different aspects such as noise 
reduction, edge preservation, feature preservation (Sheng and 
Xia, 1996).  The results of these different measurements can be 
contradictory. Hence, different assessment methods should be 
used to find the optimum tradeoff among the different aspects of 
image quality assessment (Qui et al., 2004).  
 
4.1 Equivalent Number of Looks (ENL) 
 
This index is calculated using the following equation (Gagnon 
and Jouan, 1997): 

ENL= ( �#$�
%&$�'$(' '#)�$&�*�),             (9) 

The higher ENL value for a filter, the higher efficiency in 
smoothing speckle noise over homogeneous areas. 
 
4.2 Speckle Suppression Index (SSI) 
 
This index is based on the equation as follows: 

SSI= 
-)$( (./)
�#$� (./) × 

�#$� (.0)
-)$( (.0)          (10) 

Where      If = filtered image 

                Io = noisy image 

This index tends to be less than 1 if the filter performance is 
efficient in reducing the speckle noise (Sheng and Xia, 1996).  
 
4.3 Speckle Suppression and Mean Preservation Index 
(SMPI)  
 
ENL and SSI are not reliable when the filter overestimates the 
mean value. We developed an index called Speckle Suppression 
and Mean Preservation Index (SMPI). The equation of this 
index is as follow: 

SMPI= 1 × -)$( (./)
-)$( (.0)            (11) 

And Q is calculated as follows: 

Q= R+34567 (8*) −  4567 (89)3            (12) 

Where     R=   
:;< (=>;?(@A)) – :C? (=>;?(@A))

�#$� (.0)              (13) 

According to this index, lower values indicate better 
performance of the filter in terms of mean preservation and 
noise reduction. 
 
4.4 Edge-Enhancing Index (EEI) 
 
This value indicates how much a filter is able to preserve the 
edge areas and is defined as (Sheng and Xia, 1996): 

EEI= 
∑3��D/���E/3
∑|��D0���EG|             (14) 

Where, DN1f and DN2f = filtered values of the pixels on either 
side of the edge 

              DN1o and DN2o = original values of the corresponding 
pixels  

EEI values are usually less than 1 and higher values indicate 
better edge preservation capability. 
 
4.5 Image Detail-Preservation Coefficient (IDPC) 
 
The correlation coefficient between original image and filtered 
image over fine details such as point scatterers is defined as 
IDPC (Sheng and Xia, 1996).  
 

 
5. RESULTS 

 
In order to test the Proposed algorithm, we used ground-range 
HH and HV polarized L-band magnitude ALOS data that were 
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extracted from SLC data with dimensions 2031×1936 pixels. 
These images cover some homogeneous areas such as water 
bodies, forests, agricultural lands and urban areas and HH 
polarized image is shown in figure 2.  

 

Figure 2. The HH polarized L band image; red rectangular shows the 
selected homogeneous area, yellow rectangular represents the selected 
edged area 
 
5.1 Speckle Reduction 
 
For the assessment of the performance of the filters to suppress 
speckle noise over selected homogeneous area, we used the 
three indices shown in table 3.   

Filter image 
Mean 
(×10-3) 

SD 
 (×10-3) 

ENL 
SSI 

(×10-3) 
SMPI 
(×10-3) 

Noisy 
image 

HH 101.30 53.3 ---- ---- ---- 
HV 28.70 14.8 ---- ---- ---- 

Lee  
HH 101.31 16.8 36.37 315 8.2 
HV 28.70 4.3 44.55 291 7.5 

Kuan 
HH 101.31 16.8 36.37 315 8.2 
HV 28.70 4.4 42.55 297 7.7 

MMSE 
HH 101.31 16.8 36.37 315 8.2 
HV 28.70 4.3 44.55 291 7.5 

Frost 
K=1 

HH 101.30 18.1 31.32 340 8.8 
HV 28.70 4.7 37.29 318 8.2 

Enhanced 
Lee 
K=1 

HH 100.95 28.5 12.55 537 16.8 

HV 28.60 8.2 12.16 556 16.2 

Gamma 
Map 

HH 98.70 20.9 22.30 402 20.2 
HV 27.96 5.76 23.56 399 20.1 

Proposed 
K=1 

HH 101.16 18.9 28.65 355 9.6 
HV 28.70 5.1 31.67 345 8.9 

Table 3. Speckle noise reduction indices for the filtered images 

As table 3 shows, the performance of Lee, Kuan and MMSE 
filters are very good for suppressing the speckle noise over the 
homogeneous areas whereas Enhanced Lee filter is not able to 
reduce the speckle noise efficiently. The Proposed method listed 
in the last line of table 3 shows comparable results in speckle 
noise reduction for HH polarized image. 
 
5.2 Edge Preservation 
 
In order to use EEI index, the edge between water body and 
land was selected. This area is shown within a yellow rectangle 
in figure 1. The results of this index for the filters are given in 

table 4. The best algorithm performance for the edge 
preservation with the highest EEI values is the Enhanced Lee 
and the Proposed method respectively. On the other hand, Frost, 
Kuan, Lee and MMSE filters are not able to preserve the edges. 
It is estimated that in filtered images derived using the 
Enhanced Lee filter and the Proposed method, edges are up to 2 
times sharper than Lee, Kuan, MMSE and frost filters.     

Filter image EEI (×10-3) 

Lee  
HH 396.7 
HV 262.8 

Kuan 
HH 448.1 
HV 289.5 

MMSE 
HH 361.9 
HV 244.5 

Frost 
K=1 

HH 313.4 
HV 254.8 

Enhanced Lee 
K=1 

HH 999.7 
HV 918.1 

Gamma Map 
HH 968.2 
HV 731.6 

Proposed 
K=1 

HH 999.0 
HV 833.2 

Table 4. Edge index values for different filters 
 

5.3 Preservation of Details  
 
More than one thousands pixels representing significant features 
were selected separately over the two images and, the 
correlation between filtered and original images over the 
selected pixels was calculated. Table 5 presents the results of 
this index. The best feature preservation performance belongs to 
Proposed method and Enhanced Lee filter for which their index 
values show no variation for all features. 

Filter image IDPC 

Lee  
HH 0.94 
HV 0.96 

Kuan 
HH 0.95 
HV 0.96 

MMSE 
HH 0.94 
HV 0.94 

Frost 
K=1 

HH 0.91 
HV 0.89 

Enhanced Lee 
K=1 

HH 1.00 
HV 0.99 

Gamma Map 
HH 0.98 
HV 0.98 

Proposed 
K=1 

HH 1.00 
HV 1.00 

Table 5. IDCP of the filters over selected features 
 

5.4 Filtering of Pixels 
 
According to section 2, some pixels should be preserved and do 
not need to be filtered. On the other hand, a filtering method 
should filter all pixels where necessary. As mentioned earlier, 
some pixels surrounding features and point scatterers that 
should be filtered but are not filtered by the Enhanced Lee and 
Gamma filters because of the deficiency of the coefficient of 
variation in their location. We developed an algorithm to deal 
with this problem. In order to assess this algorithm, 100 pixels 
representing point scatterers were selected over these images 
and the coefficient of variation map assessed. Then the filtered 
pixels were divided by the corresponding pixels of original 
images within a 5×5 window. In this way, pixels whose values 
are 1 are categorized as unfiltered pixels. The results were given 
in table 6.  
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Filter Image 
Number of 

unfiltered pixels 

Filtering 
performance 

(%) 
Enhanced 

Lee 
K=1 

HH 2229 11 

HV 2347 6.1 

Gamma Map 
HH 2162 13.5 
HV 2322 7.1 

Proposed 
K=1 

HH 1374 45 
HV 1459 41.6 

Table 6. Number of unfiltered pixels over point scatterers 

Table 6 reveals that the point scatterer discriminator algorithm 
can perform very effectively in compensating for the deficiency 
of calculating the coefficient of variation for the pixels which 
are near the point scatterers. As this table shows, filtering 
performance for the Enhanced Lee and Gamma filters over 
selected point scatterer areas are very poor as they are able to 
filter less than 14 percent of these pixels whereas the proposed 
filter increases the number of filtered pixel to 45 percent.    
   
   

6. CONCLUSION 
 

In this study a new algorithm based on coefficient of variation 
similarity and using a new criterion to segment different parts of 
the SAR image has been proposed. This method was compared 
to six common filters using different quantitative assessment 
methods. According to the assessments that were used in this 
study, some filters such as Lee, Kuan and MMSE filter perform 
very efficiently in dealing with the problem of speckle noise at 
the expense of smoothing features and edges. Some other filters 
such as Enhanced Lee and Gamma Map can preserve details 
very efficient, but they are not able to reduce speckle noise. In 
addition to this, the inadequacy of the coefficient of variation 
causes these filters to be unable to deal with the problem of 
speckle noise of the pixels surrounding point scatterers and fine 
features. Meanwhile, pixels whose coefficients of variation are 
close to Cu are averaged, while if they are higher than Cu they 
should be treated as pixels whose speckle noise model is not 
fully developed.  

In this study we proposed a novel model to deal with these 
problems. As the results show, the proposed filtering method 
can perform acceptably well in speckle reduction and 
simultaneously edge and feature preservation. In addition to 
this, the point scatterer discriminator algorithm that was 
developed in this study and used in the structure of the proposed 
method can compensate for the deficiency in the coefficient of 
variation in separating between point scatterers or features and 
the pixels surrounding them. Finally, the proposed method is 
being examined to prove its validity for other types of data. 
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ABSTRACT:

The most extensive use of Remote Sensing data is in land cover/land use (LCLU) studies by means of automated image
classification. The general objective of this research is to develop an automatic pixel-based classification methodology with the aim
to produce a Regional land use map congruent with the CORINE Land Cover legend. Starting point are detailed ground data, already
gathered fostering interoperability among several Regional bodies’ DBs and high resolution multi-spectral IKONOS imagery.
In the light of land mapping, there are two main features related to IKONOS imagery: lack of spectral information (4 spectral bands)
and high spectral variability (high spatial resolution). This results in problems in terms of class information extraction especially
using pixel-based image classification methods in which spatial information existing between a pixel and its neighbours is not used.
To overcome these deficits, the use of vegetation indexes (NDVI feature and TDVI masks) and texture (GLCM and edge-density
features) is investigated with respect to its impact on land cover/land use classification.
The developed spectral/textural classification schema is compared with the classical approach using only spectral information. An
accuracy assessment is carried out which shows that image data with 4 IKONOS spectral bands plus NDVI band plus 6 texture bands
achieve an accuracy of 80.01% compared to 63.44% of accuracy achieved by using the few spectral bands only. Furthermore it
allows the discrimination of 10 CLC classes.
Experimental results show how, starting from available but also binding data (IKONOS imagery and available Regional ground
data), a classification schema can be developed with enhanced performance and strong relation to the specific setup.

1. INTRODUCTION

This work is part of a wider project whose general objective is
an automatic pixel-based classification methodology aimed at
producing a regional CORINE Land Cover (CLC) land use
map. Starting points are high resolution multi-spectral IKONOS
imagery and ground data already gathered in previous works
(Marcheggiani et al., 2008). The images, provided by Marche
Region Institution, are mono-temporal (June 2006) and with
only 4 spectral bands. The ground data, owned by different
bodies of Marche Region public administration at regional
level, are large and detailed. Consequently the main goal of this
work is the development of a classification schema that can take
advantage of all the available data in Region’s possession
(IKONOS images and Ground data) to investigate the
possibility of a land cover mapping trustable enough to be a
permanent monitoring service of Marche region territory,
congruent with the land use oriented European trend (CLC
legend).
In the light of land mapping, there are two main features related
to IKONOS imagery: lack of spectral information and high
degree of spectral variation due to the high image spatial
resolution. This results in problems in terms of class
information extraction especially using pixel-based image
classification methods in which spatial information existing
between a pixel and its neighbours is not used. To overcome
these deficits and achieve reliable and accurate results, spectral
and texture information (GLCM and edge-density features) are
combined together in the proposed classification schema.

A fundamental goal of this research is in fact to explore the
image texture information and how to combine it with the
spectral signatures to do image analysis. Moreover the use of
vegetation indexes (NDVI feature and TDVI masks) is
investigated with respect to its impact on land cover/land use
(LCLU) classification.
The study case focuses on the north-eastern part of the Marche
region, belonging to the Ancona Province. It covers an area of
approximately 80 km2, comprising urban and rural landscape
and natural Mediterranean environment, among which the
Conero Mountain Natural Park have to be mentioned. Figure 1
gives an overview of the study image and its geographic
location.

Figure 1. Map of Italy and Marche Region (left), test image in
RGB and False Color composition (right).

____________________________
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2. METHODOLOGY

The proposed classification schema is pointed out below in
Figure 2.

Figure 2. Workflow diagram describing the developed
classification schema

The input data are multi-spectral IKONOS images and available
ground samples gathered from different Information Systems
owned by Marche Region and organized in independent learn
and control samples. They are organized in 29 LC classes
according to their cover type and they mostly differ from the
CLC land use oriented nomenclatures. This means that, to
match the CLC legend, they must be grouped together
according to their use (agriculture, settlement etc.) that often
doesn’t fit their spectral response, making the supervised
training process difficult. In this context another objective of
this research is to investigate the best way to combine the 29 LC
classes into CLC nomenclatures.
Vegetation indexes are investigated with different purpose:
NDVI to generate an additional band and TDVI to build binary
masks trough which three supervised classifications are carried
out independently.
Texture features can be generated after having chosen the
spectral bands to process and set the window size parameter
(semivariogram/correlogram-guided texture feature generation).
In particular 28 different texture features are generated
according to two different texture approaches (GLCM and edge-
density features). By means of Standardized PCA these 28
texture features are reduced or selected according to their
loading factor, augmented by the four spectral bands and the
NDVI feature and grouped into three different feature sets that
differ only in the texture subset selection (IKONOS RGBNiR +
NDVI + texture). According to the Jeffries-Matusita (J-M)
average separability distance the best suited feature set can be
chosen. It is used to refine the training data and to run the three
TDVI masked supervised classification. A post processing step
is needed to match the CLC legend and improve the spatial
consistency of the pixel-based classification.
Hereafter the different steps shown in Figure 2 are explained in
more details.

2.1 Semivariogram/correlogram-guided texture feature
generation

Texture features could be theoretically calculated for each
spectral band and for many window sizes but with the

disadvantage of increasing the feature space dimensionality and
redundancy. Some choices must be made.

2.1.1 Spectral band analysis

 AIM: to minimize feature space dimensionality
by selecting optimal channels for texture measures.

 RESULT: Red and NiR bands are selected.
They show highest variances for the different land covers
and low correlation.

The following strategy to select the best band combination is
chosen. The 29 LC classes samples are downgraded in 5 main
cover classes and used as masks to compute covariance
matrices. According to the different 5 LC main classes, the Red
and the NiR band always correspond to the highest variances
which indicate strongest texture features. Moreover they show
low correlation.

2.1.2 Geostatistical correlogram/semivariogram analysis

 AIM: to investigate the optimum window size to
use to generate texture features

 RESULT: 3x3,5x5 and 7x7 window sizes for
the Red band, 3x3 and 5x5 for the NiR band

Semivariograms and Moran’s I correlograms of all the 29 LC
land cover classes are sequentially computed for lag distances
increasing to 20 pixels. The radiometric spatial autocorrelation
of the each particular LC class can be quantified in terms of the
lag (range) that results in the maximum variability (sill) for the
semivariogram and at the same time in a very close to zero
Moran's I value. An example is displayed in Figure 3 and is
related to one of the 29 LC classes (class 40305, Sparsely
vegetated areas).

RED band NIR band

Figure 3. Red and NIR Semivariogram/Correlogram plots

Having a look to all the 29 pairs of LC class variograms and
correlograms, they indicate that semivariances for Red band
mostly start to saturate at a lag of 5 while some classes require 3
and 7 pixels of kernel size. Instead in the NiR band each land
cover class reveal spatial correlation for lag distance of less than
5 pixels. Consequently 3x3, 5x5 and 7x7 are used as window
sizes for the GLCM computation from the Red band, and two
window sizes (3x3 and 5x5) are used to create NiR co-
occurence features. The same window sizes are taken into
account for the edge density image generation.
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2.1.3 Texture feature generation

 AIM: generation of optimal texture features to
add to the originals multispectral bands, before running the
classification.

 RESULT: 20 GLCM features + 8 edge-density
features = 28 texture features generated.

Two different kinds of texture are generated: Grey Level Co-
occurrence (GLCM) and edge-density features.
GLCM texture generation: As suggested by Hall-Beyer (2000)
a combination of only four GLCM measures (Haralick, 1973)
are selected to avoid that texture features are correlated with
each other. In particular mean (MEAN), Variance (VAR),
Entropy (ENT) and Homogeneity (HOM) are computed for the
Red and NiR bands and five window size (respectively 3x3, 5x5
and 7x7 for the Red band and 3x3 and 5x5 for the NiR band)
leading up to the generation of 4 x 5= 20 GLCM features. For
reducing the degrees of freedom of the GLCM texture
generation, the distance between pixels for the co-occurrence
matrix computations is maintained constant at one and the
average of the four main inter-pixel angles (0°, 45°, 90° and
135°) is used, based on the assumption that no land cover
exhibits a preferential directionality. The gray scale quantization
levels is set to 64: it allows to have a better computational and
statistical performance and reduce processing time limiting the
size of the co-occurence matrix to 64 x 64 (instead of 2048 x
2048 because of the radiometric resolution of 11 bit).
Edge-density texture generation: As done before, edge density
maps are produced processing the Red and NiR bands. Firstly,
each band is filtered using a Laplacian high pass filter;
secondly, edges are found by thresholding the filtered image
based on histogram interpretation. Finally, an average filter is
used to produce the edge density map, counting the edge points
in each position of the moving kernel and dividing the number
of edge points by the window size. Two different thresholds for
the Laplacian filter are selected interactively for each band (TR1
andTR2, TNiR1 and TNiR2) and 9x9 and 15x15 are used as average
filter’s window sizes. 4 x 2 = 8 edge-density images are
generated from the Red and NiR bands.

2.2 Texture selection

Before adding the collected 28 texture features as additional
bands to the IKONOS imagery, they are investigated and sorted
according to the standardized Principal Component Analysis
(SPCA) with the aim to extract optimum linear combinations
(Principal Components) of the original texture features that
contain as much as possible variability of the original data.

2.2.1 Standardized Principal Component Analysis
(SPCA)

 AIM: to reduce the generated texture features to
the maximum number of uncorrelated data

 RESULT: 3 different feature sets are
constructed:

 1st Feature set : 4 GLCM PCs + 4 spectral bands
+ 1 NDVI

 2nd Feature set: 6 GLCM&edge PCs + 4
spectral bands + 1 NDVI

 3rd Feature set: 12 high “loading” features + 4
spectral bands + 1 NDVI

Assuming that the original texture features are more or less
equally important, the problem to tackle is that the 28 texture
variables have very different means and/or standard deviations.
In this case a normalization is needed to avoid the importance of

a variable being determined its variance that could dominate the
whole covariance matrix and hence all the eigenvalues and
eigenvectors. This standardization is done by running the
Standardized PCA (SPCA) that equalizes dissimilar variations
in the data set by using a correlation matrix instead of a
covariance matrix (PCA). In particular the SPCA is performed
two times (to the 20 GLCM features first and then to the 28
GLCM&edge features) to construct three different feature sets
that later on must be investigated and selected before going on
with the maximum likelihood classification process.
Compromising three different selection guidelines (cumulative
percentage, Scree plot and Kaiser's rule), the first four GLCM
PC bands and six GLCM&edge PC bands are selected along
with the original four spectral bands and the NDVI band to
build the 1st and the 2nd feature set (to the amount of 9 and
11bands).Then, based on computed component loadings, the
band combination (12 GLCM&edge bands) that have higher
variance explained on various PCs is selected and added to the
other 5 features (spectral bands and NDVI) to build the 3rd

feature set (to the amount of 17 bands).

In order to guarantee that each source (spectrum, texture and
NDVI) makes the same contribution to the feature space and
avoid scale effects in the Maximum Likelihood statistic
computation, each source of data is stretched from 0 to 1before
running the classification schema.

2.2.2 Separability analysis

 AIM: to select the best suited feature set
assessing class separability and expected classification
errors for different feature combinations.

 RESULT: the second feature set (GLCM&edge)
is selected because it corresponds to higher average
separability of LC classes.

Average separability measures between each LC class are
calculated using the three different built feature sets that include
the 4 original image channels, the NDVI and different texture
subsets (GLCM, GLCM&edge-density and “Loading”features).
So, first, the pairwise J-M distances between each pair of
classes is determined for all combinations of two, then the
average J-M distance is computed for each class.
Figure 4 represents the average separabilities of the 29 LC
classes as function of the average J-M distance.
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Figure 4. J-M Average separability for L3 cover classes

As shown in Figure 4, the second feature set (PCs from GLCM
& edge-density features) is the best feature combination in order
to separate the given LC classes because it shows mostly higher
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values for the average J-M distances. The separability of
clusters generated using multispectral bands in combination
with the selected texture images, has improved especially for
agricultural areas and some forest and semi-natural classes.
Without texture the average J-M distance is often below 1.9 that
is the threshold below which the separability is indicated to be
poor.

2.3 Training set refinement (ROI)

 AIM: to improve ROI’s representativeness.
 RESULT: class signatures are “cleaned” using

the selected 2nd feature set and redefined as final ROIs.

Outlying pixels (in feature space) are deleted before computing
the final class signatures. This can be done by self-classifying
the training pixels according to the 2nd feature set. Misclassified
pixels are excluded from the training set recalculating the final
ROI (Region Of Interest) signatures only according to the well
classified training pixels. In the Figure 5 is shown an example
(class 40202) to summarize the “cleaning” workflow.

Original sample Self-classified sample “Cleaned” sample
(ROI)

Figure 5. Class 40202 cleaning and ROI generation

Which kind of texture should be taken into account to improve
the accuracyThe improvement in the training data can also be
checked again in terms of statistical J-M separability: before the
“cleaning” a lot of critical J-M distances (lower than 1.9)
indicate classes non well separated with some overlaps in their
density functions. Improvements are instead shown after the
refinement: the number of critical class pairs decreases from 40
to 22 (highlighted in pink in Figure 6). Looking more closely at
this J-M matrix (Figure 6), it is possible to investigate which LC
classes are still not sufficiently separated in the given feature
space and how to manage them. When the non separable LC
class pairs belong to the same CLC class (level 1 or 2), it is not
really a problem: according to the final CLC nomenclature, they
be merged after the classification into more generalized CLC
classes. Problems remain when it is not possible because the
“critical” classes differ in the CLC level 1 itself. It is for

example the case of the class 40305 (sparsely vegetated areas)
not separable from the class 10308 (mix coverage buildings)
even if belonging to different CLC level 1 class: Forest and
semi-natural areas the former, Artificial surfaces the latter.
An expedient to overcome this problem is the use of vegetation
indices.

2.4 Vegetation Indices

 AIM: to improve the classification accuracy and
minimize the error matrix off-diagonal elements.

 RESULT: two vegetation indexes are generated:
 NDVI to use as additional band in the selected feature

set
 TDVI to build three masks trough which run three

supervised classifications.

TDVI (Bannari et al. 2002) is employed to develop thresholds
useful to build binary masks (Figure 8) trough which three
supervised classification processes are carried out
independently.
Studying the TDVI histograms associated with the more critical
classes, two thresholds (T1=-1.2 and T2=-0.6) are developed
with the aim to identify pixels likely to belong to particular
classes. For example in Figure 8 it is shown how T2 can help to
distinguish the mix coverage building class with value mostly
below T2 from the sparsely vegetated areas class with value
mostly above T2.

T2

T2

Figure 7. TDVI Histogram thresholding

Figure 6. J-M separability class pairs distances after ROI “cleaning”

29 29
CLASS 10101 10203 10204 10205 10306 10307 10308 10309 20101 20102 20203 20204 20205 20206 20207 20208 20309 30101 30102 30203 30205 30206 30307 40101 40202 40203 40204 40305 50303 CLASS

10101 10101

10203 2.00 10203

10204 2.00 2.00 10204

10205 2.00 2.00 2.00 10205

10306 1.99 2.00 2.00 2.00 10306

10307 1.99 2.00 2.00 2.00 1.76 10307

10308 1.98 2.00 2.00 2.00 1.87 1.98 10308

10309 2.00 2.00 2.00 2.00 1.89 2.00 1.66 10309

20101 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 20101

20102 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 1.85 20102

20203 1.99 2.00 2.00 2.00 2.00 2.00 2.00 2.00 1.92 1.89 20203

20204 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 1.92 1.92 2.00 20204

20205 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 1.94 1.97 1.90 2.00 20205

20206 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 1.98 1.98 1.99 1.89 1.97 20206

20207 1.99 2.00 2.00 2.00 2.00 2.00 2.00 2.00 1.93 2.00 1.80 2.00 1.99 2.00 20207

20208 2.00 2.00 2.00 2.00 2.00 2.00 1.99 2.00 1.99 2.00 1.90 2.00 1.95 1.99 1.94 20208

20309 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 1.95 2.00 1.99 2.00 1.79 1.80 20309

30101 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 1.98 2.00 2.00 2.00 30101

30102 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 1.99 2.00 1.99 2.00 2.00 2.00 2.00 30102

30203 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 30203

30205 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 1.99 2.00 1.99 2.00 1.95 2.00 2.00 2.00 1.81 2.00 1.94 30205

30206 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 1.98 2.00 1.96 1.99 1.80 2.00 2.00 2.00 1.99 1.93 1.68 1.69 30206

30307 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 1.98 2.00 1.96 2.00 2.00 2.00 1.79 2.00 2.00 1.69 1.98 30307

40101 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 1.99 2.00 1.94 2.00 2.00 2.00 1.99 2.00 2.00 1.99 1.98 1.98 40101

40202 1.97 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 1.91 2.00 2.00 2.00 1.88 1.83 1.57 2.00 2.00 2.00 2.00 2.00 2.00 2.00 40202

40203 2.00 1.98 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 40203

40204 2.00 1.97 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 1.98 40204

40305 2.00 2.00 2.00 2.00 2.00 2.00 1.87 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 40305

50303 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 50303
CLASS 10101 10203 10204 10205 10306 10307 10308 10309 20101 20102 20203 20204 20205 20206 20207 20208 20309 30101 30102 30203 30205 30206 30307 40101 40202 40203 40204 40305 50303 CLASS

J-M values < 1.9, different CLC level 1 class

L3 : Jeffries-Matusita separability class pairs considering the whole set of 11 bands (4 spectral + 6 PCs texture bands+ 1 NDVI)

J-M values < 1.9, same CLC level 2 class J-M values < 1.9, different CLC level 2 class

Forest and semi-natural areas

Agricultural areas

Artificial surfaces

Water bodies
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TDVI < -1.2 -1.2 < TDVI < -0.6

TDVI > -0.6 RGB composition

Figure 8. TDVI masks and RGB composition

After having defined the two thresholds, it is possible to study
all the 29 TDVI class histograms to decide which sample use as
ROI in each specific classification process. With these three
ROI subsets three complementary Maximum Likelihood (ML)
classification can be carried out independently.

2.5 Supervised classification

 AIM: to classify each pixel into one of the 29
LC classes.

 RESULT: merging of three complementary
classification maps.

The three ML classifications are initially performed by default
assuming that all the cover classes are equally likely. Then they
are adjusted using a-priori information gathered by means of a
ROC (Receiver operating characteristic) analysis linked to the
LC ground data. By means of ROC curves is possible to
visualize the performance of the classification method, in order
to select proper decision thresholds providing the best
classification with the minimum error rate. This ROC analysis
is performed for each classification (3 times) and for all the ROI
involved with the wise to take into account only the ground
information allowed by the specific mask used. This a-prior
information can give a crucial effect to classification results. In
this way the ground data give again a powerful hint to drive the
classification schema development.
After having performed the three ML classifications, the three
outputs are merged into a single classified map by means of
raster calculations.

2.6 Post- classification data manipulation

 AIM: to match the CLC legend and improve the
spatial consistency of the pixel-based classification.

 RESULT: final CLC land cover map

The merged classified image is post-processed combining the
29 LC classes into10 generalized classes, according to the
CORINE Land Cover nomenclature.
Finally post-classification techniques (majority analysis, sieving
and clumpling) are applied to the CLC classified output in order

to eliminate the ‘salt and pepper’ noise, removing gaps within
areas covered by a predominant class.

3. RESULTS

In Figure 9 the performance of the developed spectral/textural
classification schema is assessed drawing a comparison between
the results obtained using only the spectral band and the
improved results achieved integrating texture features (without
and with the use of the TDVI mask).

without TDVI masks with TDVI masks

Prod. Acc. Prod. Acc. Prod. Acc.
Code DESCRIPTION (Percent) (Percent) (Percent)

1.1 Urban Fabric 98.61 97.19 96.02
1.2 Industrial, commercial and transport units 39.45 60.21 73.95

2.1.1 Non-irrigated arable land 47.33 81.32 77.3
2.2 Permanent crops 30.29 64.25 68.25
2.3 Pastures 94.29 74.77 74.71
3.1 Forest 93.06 97.11 96.02
3.2 Scrub and/or herbaceous vegetation assoociations 62.06 91.21 88.19
3.3 Open spaces with little or no vegetation (beaches,dunes,bare rocks) 39.22 48.64 64.99

3.3.3 Sparsely vegetated areas 91.95 94.85 88.63
5.2 Marine waters 100 97.17 99.01

Code Overall Accuracy (Percent) 63.44 74.38 80.07

SPECTRAL SPECTRAL + TEXTURE

Corine Land Cover Legend

Figure 9. Accuracy comparison (spectral versus.
spectral+texture features)

Comparing the spectral and spectral/texture classifications in
Figure 9, it is clear that spectral classification is better suited for
those land use classes with a specific spectral response and well
differentiated from the rest of the units, such as pastures (class
2.3) and marine waters (class 5.2). The distribution of grey
levels in these two classes is very homogeneous, so they are
more difficult to discriminate by texture methods. Rather,
adding texture, their accuracy get worse. On the other hand,
texture techniques are very efficient in classifying landscape
units that contain a high spectral heterogeneity, such as
permanent crops, scrub and/or herbaceous vegetation
associations and non-irrigated arable land (class 2.1). These
classes are not very accurate when classified using the spectral
band only. For example, taking texture measures into account
(without TDVI masks) the accuracy of the permanent crop is
really improved (from 30.29% to 64.25%).
Similar explanation can be given for the industrial, commercial
and transport units: the high edge density encountered in
industrial area (class 1.2) allow to separate them from the other
classes and especially from the open spaces with little or no
vegetation (class 3.3) that were shown to be very spectrally
similar. Regarding these two class an additional improvement is
given by the mask use: class 1.2 can even reach an accuracy of
73.95%. while class 3.3 , although improving, still does not
reach a satisfactory accuracy. This verifies the use of TDVI
masks in the classification schema. However for this last class
(class 3.3) problems can be caused above all by a bad training.
In fact, having a close look at the particular samples generating
the signature, for this class it is clear that they are mostly made
up of beaches (very few samples for the other LC classes
grouped into this class 3.3) and especially spectrally “mixed”
beaches, as they can be in June in Italy because of beach
umbrella and so on.
Another interesting aspect is that the integration of spectral and
texture bands for classification has a synergic effect on the
results, in some cases even improving the accuracy of both
groups of classes (homogeneous and not). However, it is
important to note that , according to the truth data available, the
reported results refer to the inner truth areas of the texture units
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and not to the borders between textures. Further work should be
done to reduce the border effect.
A visual inspection of the final CLC map (Figure 10) confirms
that the results of this developed classification schema are
reasonably good. However an object-based post classification
method is advisable.

Figure 10. Final Corine Land Cover map with legend

4. CONCLUSION

The research shows how is possible to recycle and get benefit
from large and detailed available ground information taking
advantage from the IKONOS imagery and the potentiality
offered today by remote sensing techniques.
To get satisfactory results it is necessary to develop a supervised
classification schema integrating texture features.
The study confirms the utility of textural analysis to enhance the
per-pixel classification accuracy. In particular it shows how is
possible to extract texture features using second order GLCM
statistics and edge-density images and how, after a targeted
feature selection by means of the PCA, is possible to use them
as additional bands in the classification schema. These new
textures turn out to be useful auxiliary data especially for high
resolution data sets suffering from high spectral heterogeneity.
By incorporating these texture features in the classification
schema, it is possible to achieve a higher classification accuracy
compared to the classification of the original IKONOS image.
Particular improvements are shown especially in discriminating
between agricultural species and semi-natural areas (e.g. open
space with little or no vegetation). In particular permanent crops

are impossible to discriminate without texture from the other
classes
The overall accuracy increases to 80.0 % with a Kappa
Coefficient of 0.7337 and the Producer’s accuracies for the
different classes increase as well.
Important to underline is that the use of texture features makes
it possible to well-identify more CLC classes (10 CLC classes
in the study case): thus it is fair to think that, increasing the
amount of information extracted from the image, it is possible
to reduce the support given by the photointerpreter in CLC map
generation.
This work demonstrates the need of a spectral/textural image
analysis for a more accurate land cover type discrimination
when thematic classes are very heterogeneous (high within-
class spectral variance) and spectral information is no longer a
sufficient indicator for the classification.
Anyway no general rules can be recommended by this study for
the texture measure selection: the most appropriate combination
of texture features depends strongly on the surface properties of
the land cover types of interest. What is found by this research
is to optimize the window size according to the available ground
data and also to choose the best feature set in terms of
separability analysis (linked again to the collected ground data).
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ABSTRACT:

Space registration of 2-D images and 3-D models is an important task for geoinformation applications. Space registration connects
the spatial relationship between the image space and object space. It can be implemented by using different control entities like
control points, control lines, control surfaces, etc. 3-D models provide both point and line features. Hence, we establish a procedure
to determine the image orientation by integrating these features. The objective of this investigation is to combine the point and linear
features in space registration. The proposed scheme utilizes collinearity equations in determining the orientation. In this
investigation, we compare three kinds of collinearity equations. The first one is a point-based formulation. The second one is line-
based equations. The third one is a collinearity model that combines the point and line features. The test data include a simulation
data, an aerial image and a close-range image. The experimental results indicate that the proposed scheme is flexible and reliable.

* Corresponding author.

1. INTRODUCTION

A crucial aspect of integrating different geoinformation data is
to establish a common reference frame (Zitova and Flusser,
2003). Registration of image and vector data is an important
task for various applications, such as cartography, texture
mapping, GIS technology, and others. Space registration
establishes the spatial relationship between the image space and
object space. It can be implemented by using different control
entities like points, lines, surfaces, etc. The objective of this
investigation is to combine the point and linear features in space
registration.

The major work of space registration is to determine the
exterior orientation parameters of image data (also called space
resection or triangulation). There are three kinds of equations in
determining the exterior orientations, i.e., collinearity,
coplanarity and coangularity equations (Grussenmeyer and Al
Khalil, 2002). The collinearity equations are well-known for
orientation determination in photogrammetry field. These
equations describe the collinearity geometry of perspective
center, image point and object point. They use the intersection
of linear-rays to determine the exterior orientations. On the
other hand, the coplanarity equations describe the coplanarity
geometry of a perspective center, a line in the image space and
respective lines in the object space. It uses the intersection of
planes to determine the exterior orientations. For coangularity
equations, they indicate the coangularity condition among the
angles of a perspective center and two object points and the
respective angles in a camera frame.

The control entities are used to solve the equations in the
orientation modeling. The entities include control points (Wolf
and Dewitt, 2000), control lines (Akav et al., 2004; Habib et al.,
2005; Jung and Boldo, 2004), control surfaces (Jaw, 2000),
control patches (Jaw and Wu, 2006), etc. The control points
represent a set of 2-D point features in the image space and 3-D

point features in the object space. The point feature is easy to
implement when comparing to others. The control line is a set
of 2-D line features in the image space and 3-D line features in
the object space. This kind of line features mainly occur in
man-made objects like buildings. The control surface describes
a set of 2-D point features in the image space and respective 3-
D surface models. The control patch includes an image chip
database which is used to define the location of the control
points. The control patch usually uses image chip database to
improve the automation of the point measurement.

The point-based triangulation is widely used in
photogrammetric softwares as the control point is the basic
control feature. It can be extended to other entities. In some
typical scenarios, the linear feature can be measured more
flexibly than point feature. Hence, the linear features are often
selected in triangulation besides the point features. The vector
data provide both control point and control line features.
Several investigations have been reported on point-based or
linear-based space resection (Karjalainen et al., 2006) from
vector data. However, there is a lack of investigation to
combine the point and linear features simultaneously on space
resection.

In this investigation, we establish a procedure of image
orientation determination by integrating point and linear
features. The proposed scheme utilizes collinearity equations in
the orientation determination. In this paper, we compare three
kinds of collinearity equations. The first one is a point-based
formulation. The second one is line-based equations. The third
one is a joint equation which combines the point and linear
features. The test data include a simulation data, an aerial image
and a close-range image.
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2. METHODOLOGIES

Space registration utilizes space resection to obtain the exterior
orientation parameters of image. We introduce three different
models in this paper, i.e., point-based space resection, line-
based space resection and joint model.

2.1 Point-based Space Resection

The point-based triangulation employs the collinearity
equations to solve the exterior parameters. The collinearity
equations define the condition of a perspective center, a point in
image space and its corresponding object points that are on a
straight line. Collinearity equations are shown in Equation 1.
Figure 1 illustrates the collinearity condition. As the equations
are non-linear with respect to the parameter, we need to
linearize the equations and solve the parameters iteratively. The
vector, matrix and the elements are shown in Equations 2 and 3.
A more detailed description of the procedure can be found in
(Wolf and Dewitt, 2000).
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In Equation 1, (x, y) are the image coordinates; (x0, y0) are the
principal points; (X, Y, Z) are the object coordinates; (Xc, Yc,
Zc) are the coordinates of perspective center; (m11~m33) are the
elements of rotation matrix from rotation angles (ω, φ, κ); f is
the focal length.

pppp LBV  (2)

In Equation 2, Vp is the vector of residual errors; Bp is the
matrix of the coefficients of unknowns; Δ p is the vector of
unknown corrections of exterior parameters; Lp is the vector of
constant terms. In Equation 3, F and G are the observation
functions from collinearity equations.
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2.2 Line-based Space Resection

Line-based space resection applies the linear features as the
control features. The linear features can be a straight line or a
high-order line (Habib et al., 2003a). The straight lines are
mostly selected in line-based space resection. The mathematic
model of space resection includes collinearity and coplanarity
conditions. Since the collinearity condition is geometrically
stronger than the coplanarity one (Schenk, 2004), we select the
collinearity approach in this study. Figure 2 illustrates space
resection using linear features.

Figure 1. Illustration of point-based triangulation.

Figure 2. Illustration of line-based triangulation.

First, we need to establish a mathematic model for the line
segment. The easiest way to represent a line segment is to use
two end points. We can calculate the line parameter from these
two end points. The line parameters include the starting point
and direction vector. The mathematic model of a line can be
formulated as Equation 4. The parameters are not independent
and they will cause the ill-condition in solving the exterior
orientations. In order to solve the ill-posed problem, we
compute the intersection point of the line and plane of Z=0 first.
Then, we select the starting point which locates in the plane.
The direction vector is also normalized to reduce the parameters.
Finally, the line parameters are reduced from six to four
(Ayache and Faugeras, 1989). The parameters reduction can be
referred to plane X=0, Y=0 or Z=0. The selection of reference
planes is based on the angle between line segment and normal
vector of plane. The smaller angle represents the better
geometry. Hence, we can avoid the problem of no intersection
point between line segment and reference when they are
parallel. Equation 4 demonstrates the function when reference
plane Z=0 is applied. Figure 3 shows the geometry of the line
segment.
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Figure 3. Representation of line-segment.
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In Equation 4, (Xs, Ys, Zs) are the coordinates of a point
located in a line; (X0, Y0, Z0) are the starting point of a line; (dX,
dY, dZ) are the direction vector; (p, q, 0) are the starting point
through the plane of Z=0; (a, b, 1) are the normalized direction
vector; t and s are the scale factor of a line.

We establish the line-based collinearity equations by combining
Equations 1 and 4. The new equation is shown as Equation 5.
Compared with the point-based collinearity equations, the
additional unknowns for line-based equations are the scale
factor of a line. We linearize the equations and solve the
parameters iteratively. The matrix and the elements are shown
in Equations 6 and 7.
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In Equation 5, (x, y) are the image coordinates; (x0, y0) are the
principal points; (X, Y, Z) are the object coordinates; (p, q, 0)
and (a, b, 1) are the parameters of control line; s is the scale
factor of a line; (m11~m33) are the elements of rotation matrix
from rotation angles (ω, φ, κ); f is the focal length.
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In Equation 6, Vl is the vector of residual errors; Bl1 and Bl2 are
the matrix of the coefficients of unknowns; Δ p is the vector of

unknown corrections of exterior parameters; Δ l is the vector of
unknown corrections of scale factor; Ll is the vector of constant
terms.
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2.3 Space Resection by Point and Line Features

In this section, we introduce space resection by integrating the
point and linear features. Figure 4 shows the idea of space
resection using point and linear features. There are some
advantages of using both features in space resection. For
example, when the point and linear features are both available,
we can use the complete information to determine the exterior
orientations simultaneously. Moreover, the controlling
capability of control points is geometrically stronger than
control line. If we add some control points with control line in
space resection, it improves the accuracy of exterior
orientations. We establish a joint model by combining
Equations 2 and 6. The new equation is shown as Equation 8.

This join adjustment model needs to linearize for least squares
adjustment. A number of initial values are needed to obtain an
approximate value. The initial values of exterior orientation
parameters can be determine by Direct Linear Transformation
(Kobayashi and Mori, 1997). The other initial value is the scale
factor of a line segment which can be derived from two end
points. Nowadays, GPS is mounted on specific camera for
camera position. This information is useful for the initial values
of a camera position.
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In Equation 8, Vp and Vl are the matrix of residual errors; Bp,
Bl1 and Bl2 are the matrix of the coefficients of unknowns; Δ p is

the matrix of unknown corrections of exterior parameters; Δ l is
the matrix of unknown corrections of scale factor; Lp and Ll are
the matrix of constant terms.

Y

X
(p,q,0)

(x1,y1)
(x2,y2)

(x3,y3)

Control Point

Perspective Center

Control Line

Figure 4. Space resection by the integration of control point
and control line.
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3. EXPERIMENTAL RESULTS

Three data sets are selected in the experiment. The first one is a
simulation data. The second one is an aerial image. The third
one is a close-range image.

3.1 Simulation Data

Simulation data is used to verify the procedure. We simulate an
aerial image with vertical imaging. In this simulation, we add
random errors to the control features. The random errors are 0.5
pixels in the image space and 0.5 meters in the object space. We
simulate 38 control points (CP) and 41 control lines (CL) in this
study. The 372 independent check points (ICP) are used to
evaluate the accuracy of the exterior parameters. Figure 5
shows the distribution of simulation data. For point-based space
resection, the root mean square errors (RMSE) of ICP are 0.62
and 0.88 pixels in two directions. For line-based space resection,
though the number of control line is more than the number of
control point, the RMSE of ICP is still 0.87 and 1.01 pixels in x
and y directions. The result of line-based space resection is not
as good as point-based space resection. We combine 3 control
points and 41 control lines in our proposed method. The RMSE
of ICP improves to 0.79 and 1.00 pixels. We also combine all
the control points and control lines in space resection. The
RMSE of ICP improves to 0.38 and 0.56 pixels. Tables 1 and 2
summarize the results of simulation data without and with
random error.

Figure 5. Distribution of control features of aerial image.

Table 6. Results of simulation data (without random error).
Unit: pixel Point Line Point+Line
No. CP 38 0 38
No. CL 0 41 41
No. ICP 372 372 372
Mean Sample -8.93E-06 -9.24E-06 -9.27E-06
Mean Line 3.12E-06 1.74E-06 1.84E-06
RMSE Sample 2.24E-04 2.26E-04 2.29E-04
RMSE Line 3.33E-04 3.34E-04 3.39E-04

Table 7. Results of simulation data (with random error).
Unit: pixel Point Line Point+Line
No. CP 38 0 1 3 38
No. CL 0 41 41 41 41
No. ICP 372 372 372 372 372
Mean Sample 0.44 0.44 0.41 0.27 0.03
Mean Line 0.68 0.08 0.06 -0.05 0.37
RMSE Sample 0.62 0.87 0.86 0.79 0.38
RMSE Line 0.88 1.01 1.00 1.00 0.56
σ ω 0.0005 0.0005 0.0005 0.0005 0.0004

σ φ 0.0004 0.0005 0.0005 0.0005 0.0003

σ κ 0.0001 0.0001 0.0001 0.0001 0.0001

σ Xc 0.5045 0.6916 0.6835 0.6815 0.3845

σ Yc 0.6903 0.6939 0.6857 0.6809 0.4859

σ Zc 0.1596 0.1871 0.1842 0.1840 0.1142

3.2 Aerial Image

The second data is an aerial image with 3-D building models.
The image was acquired by an UltraCamD with 1/12,000 image
scale. The image size is 11500 x 7500 pixels. The ground
resolution of the image is about 12cm. The accuracies of 3-D
building corners are 20cm and 35cm in horizontal and vertical
direction. We measure 10 control points and 10 control lines
from the image and maps. The number of independent check
points is 25. Figure 8 shows the distribution of control features
superimposed with aerial image. The corresponding 3-D
building models are shown as Figure 9. The geometric
characteristics of aerial image are similar to simulation data.
The RMSE of ICP is 1.87 and 2.26 pixels in x and y directions
when we apply the point-based space resection. The RMSE of
line-based space resection is 2.50 and 2.86 pixels. The RMSE
of proposed method is 2.17 and 2.54 pixels. Table 10
summarizes the results of aerial image.

Figure 8. Distribution of control features of aerial image.

In: Wagner, W., Székely, B. (eds.): ISPRS TC VII Symposium – 100 Years ISPRS, Vienna, Austria, July 5–7, 2010, IAPRS, Vol. XXXVIII, Part 7A
Contents Author Index Keyword Index

254



Figure 9. 3-D models for aerial image.

Table 10. Results of aerial image.
Unit: pixel Point Line Point+Line
No. CP 10 0 1 10 10
No. CL 0 10 10 1 10
No. ICP 25 25 25 25 25
Mean Sample 0.86 1.05 1.36 0.86 1.09
Mean Line -0.92 -1.77 -1.67 -0.89 -1.35
RMSE Sample 1.87 2.49 2.46 1.87 2.17
RMSE Line 2.26 2.86 2.79 2.24 2.54

3.3 Close-range Image

For close-range image, the image scale is about 1/1,700. The
resolution of the image is about 1cm. The image size is 4288 x
2848 pixels. The rough camera position is recorded by a GPS,
which is mounted on the camera. The lens distortions are pre-
calibrated by using commercial software, i.e., PhotoModeler.
As the building detail in a building model is not very high, we
can only measure a few control features. The accuracy of
reference coordinates are 20cm and 35cm in horizontal and
vertical direction.. The number of control points and lines are 4
and 7 respectively. We also measure 3 independent check
points for accuracy evaluation. The distribution of control
features are shown in Figure 11. The respective building models
are shown in Figure 12. Notice that, the length of the control
lines is quite long related to the image frame. For point-based
space resection, the RMSE of ICP is 14.44 and 9.20 pixels in x
and y directions. The RMSE of line-based space resection is
16.75 and 6.13 pixels. We also combine all the control points
and control lines in space resection. The RMSE of ICP
improves to 15.56 and 6.45 pixels. Table 10 summarizes the
results of close-range image.

Independent Check Point Control Point Control Line

Figure 11. Distribution of control features of ground image.

Figure 12. 3-D models for close-range image.

Table 13. Results of close-range image.
Unit: pixel Point Line Point+Line
No. CP 4 0 4
No. CL 0 7 7
No. ICP 3 3 3
Mean Sample 5.82 9.53 7.76
Mean Line 0.42 -1.17 0.17
RMSE Sample 14.44 16.75 15.56
RMSE Line 9.20 6.13 6.45

4. CONCLUSIONS

In this research, we have proposed a feasible scheme to obtain
the exterior orientations that integrates point and linear features.
The simulation data show that the result of point-based
adjustment is better than the line-based adjustment. The
combine adjustment of these two features may improve the
accuracy. If all the available data involve the adjustment, the
best result is expected when compare to the other models. The
accuracy of orientation for aerial image is around 2.5 pixels in
this investigation. The resolution of image is 12cm and the
accuracy of reference data is about 20cm to 35cm. For close-
range image, the accuracy of orientations is better than 15
pixels. The resolution of image is 1cm. Hence, the accuracy in
the object space is about 15cm. The results are based on the
accuracy of 3-D building models. Thus, if the quality of model
improves, the higher accuracy is expected.
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ABSTRACT:

In the frame of the Remote Sensing applications applied to MODIS data collected by the polar orbiting satellites Terra and Aqua,
operated by the NASA, we present PM MAPPER, a novel data processing system developed for air pollution monitoring. Our
system has derived from the MODIS data an updated set of information consisting of AOT, PM2.5/10, AQI, and surface information
with increased spatial resolutions up to 3x3 km2

. With the fine spatial resolution and augmented background information, the
software is effective in monitoring air pollution at local scale, especially over small urban areas with complicated topography. We
carried out a validation on the data set covering Italy in a period of six months to evaluate the system’s performance. The validation
outcomes show that our results have good quality in comparison with MODIS standard products and a higher capacity in retrieving
AOT information over land areas, especially coastlines where are nearly empty in the MODIS products. Besides, integrated surface
information could be useful for further improvements of aerosol derivation.

* Corresponding author

1. INTRODUCTION

Since the launch in 1999 and 2002, respectively, of the two
Earth Observing System’s (EOS), polar orbiting satellites Terra
and Aqua, operated by the National Aeronautic and Space
Administration (NASA), a large amount of remote sensing data
has been made available to the scientific community. These
data, collected by the MODerate resolution Imaging
Spectrometer (MODIS), described in detail in Salomonson et
al., 1989, cover a spectral range from 0.412 µm to 14.2 µm,
partitioned in 36 channels and are characterized by high spatial
resolution, up to 250 m at nadir. Original MODIS data are pre-
elaborated by a software package, the most recent version of
which is known as “Collection 005” and is described in detail in
Remer et al., 2004. One of the most important products of the
MODIS Atmosphere algorithms applied in Collection 005 is,
among other scientific information, the retrieval of the Aerosol
Optical Thickness (AOT), representative of the amount of
particulates present in a vertical column of the Earth’s
atmosphere. As reported in the above mentioned reference,
these data have been used in recent years for a large amount of
scientific and technological endeavours, ranging from research
on climate evolution, due to aerosol impact on the
characteristics of the atmosphere, to dust sedimentation in the
depth of the oceans.

The use of MODIS data for air pollution monitoring, described
in detail in Wang et al (2003), has recently become a promising
approach because it provides global distribution of aerosol and
its properties for deriving indirect estimates of particulate matter
concentration, one of the major pollutants that affect air quality.
The best available resolution provided by MODIS standard
aerosol products, up to now, is 10x10 km2 that is adequate for
monitoring at global scale but not fine enough at local scale,
such as urban areas. Several researchers have been aiming at
deriving from the original MODIS information, presented as

aerosol data integrated over 10x10 km2, more detailed
information covering areas of 1.5x1.5 km2 (Oo et al., 2008) or
1x1 km2 (Li et al., 2005). The latter reference shows how high
resolution remote sensing can be applied to densely populated
urban areas, like the Hong Kong metropolitan region, to infer
about pollutant distributions and air quality index. PM
MAPPER developed by our research group can be set on the
wake of the above mentioned works because it aims at deriving
from the original data an updated set of information including
Aerosol Optical Thickness (AOT), Particulate Matter
concentration (PM2.5, PM10), and Air Quality Index (AQI) with
increased spatial resolutions to 3x3 km2, taking advantage of
new criteria for deriving from the MODIS data the spectral
characteristics of land areas classified in a series of up to 40
different classes. In Section 2 of this article, we present the
strategy and methodology applied to analyse the MODIS data in
comparison with the standard one. Results obtained with our
version of the data analysis package will be presented in Section
3, while validation of our results, in comparison with the
MODIS standard products, will be discussed in Section 4. On
the basis of the results obtained and of the validations made
thus far, some conclusions will be drawn in section 5, together
with hints about necessary future developments of the new
algorithms.

2. METHODOLOGY

The methodology for deriving AOT information from MODIS
data consists of land and ocean algorithms following the Look-
Up Table (LUT) approach which matches satellite observations
to simulated values in LUT to derive aerosol concentration and
its properties. The algorithms have performed on land/water
pixels which are cloud-free. The covered region (land/water) is
determined by pixel geographical information, and clouds are
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rubbed out by cloud screening process described as MODIS
cloud mask in Ackerman et al (1998).

The algorithm over ocean uses observed radiances in seven
wavelengths (0.47-2.13 µm) as input data and assumes a bi-
modal log-normal distribution for the size of aerosol particles
which are then classified in 5 small and 6 large groups referred
as “aerosol modes”. In the retrieval process, for each
combination of two aerosol modes with size ration η, the total 
radiance at band 0.55 µm is calculated in order to find the best
ratio η and the particle sizes of the small and large modes that 
give the best fit to the measurements in this band. The selection
of aerosol model is performed until the residual error computed
over 6 channels (0.55-2.13 µm) is minimized. During this
process, the optical thickness is derived in all seven channels.
The algorithm over land uses Dense Dark Vegetation (DDV)
approach which derives AOT over dark pixels at the blue and
red channels (0.47 and 0.66 µm). The dark pixels,
corresponding to vegetation or other land regions, are identified
by using correlations between mid-IR reflectance, usually at 2.1
µm or 3.8 µm, and blue and red channels. However, to avoid
the effects of residual cloud contamination and of some bright
surfaces, 50% brightest and 20% darkest pixels are eliminated.
The surface reflectances are computed from the mid-IR channel
mentioned above, based on the empirical relationship between
them as given in Kaufman et al., 1997. Based on the LUTs, the
aerosol concentration and its properties are derived from the
appropriate dynamical aerosol model (urban/industrial, biomass
burning, or dust) selected by the process mentioned in detail in
Kaufman and Tanré, 1997.

In an effort to improve the spatial resolution of the MODIS
aerosol products from 10x10 km2 to 3x3 km2, derive surface
information and then estimate PM concentration and AQI maps
for air pollution monitoring, we developed a new software
package called PM MAPPER (MEEO S.r.l., 2009a). Figure 1
outlines in a schematic way the differences and correlations
between the original MODIS system and the new one in which
our package uses a software program called SOIL MAPPER
(MEEO S.r.l., 2009b) instead of MODIS cloud mask module,
modifies the aerosol algorithms over land and ocean, and
estimates PM concentration and AQI maps from AOT results.

SOIL MAPPER use reflectances in eight wavelengths (0.66,
0.87, 0.47, 0.55, 1.64, 2.13, 11.03, and 12.02 µm) to identify
land, water, and cloudy pixels before applying aerosol retrieval
procedure. This software has been developed in the past years,
based upon spectral fuzzy rule-based per-pixel classification
method, originally presented and discussed in Baraldi et al.,
2006. Unlike the MODIS cloud mask module, it generates a
Land Cover (LC) map by using a rule based system architecture
consisting of a two-level processing steps. To deal with cloud in
particular, the software follows the Automatic Cloud Cover
Assessment (ACCA) approach (Irish, 2000) then enhanced by
spectral signature techniques for discrimination of cloud and
snow covered areas (Dozier, 1989). Using the novelty of this
program package, we are able to determine a set of 57 different
classes, out of which 40 refer to different land types, from dense
vegetation to bare soil, and the remaining classes refer to water
or ice or snow covered land areas.

Figure 1. Main software modules of MODIS aerosol standard
product and PM MAPPER software package.

In order to retrieve AOT concentration maps up to 3x3 km2

spatial resolution, we modify both the original aerosol
algorithms over land and ocean. All related procedures are
considered and adapted on the smaller boxes sized 3x3 or 6x6
pixels of 1000 or 500 m MODIS measurements respectively
instead of 10x10 or 20x20 pixels as presented in the original
MODIS package. Processing on smaller areas leads to the
requirement of adapting some thresholds, such as number of
dark pixels required for a box in DDV algorithm. We solve all
problems related to the definition of thresholds by the linear
reduction method. Except for above modifications, the overall
procedure follows the MODIS original method, as mentioned in
the first part of this section.

PM&AQI retrieval is the last module added to estimate PM
concentration map and then derive AQI map. PM is a complex
mixture of solid and liquid particles that vary in size and
composition, and can be divided into PM2.5 or PM10 by theirs
aerodynamic diameters. PM2.5 and PM10 have been used to
measure the air quality and can be estimated from AOT, based
on the quantitative relationship between them as described in
Wang et al., 2003 and Gupta et al., 2006. AQI and the related
PM concentration afford useful information about the impact of
air pollution on human health. This impact can be evaluated
from the classification of air quality used in the US EPA and
given in Table 2 (Environmental Protection Agency, 1999).

Index Air Quality Category PM2.5
[µg/m3]

PM10
[µg/m3]

0-50 Good 0-15.0 0-50
51-100 Moderate 15.1-40.0 51-150

101-150 Unhealthy for sensitive
groups 40.1-65.0 151-250

151-200 Unhealthy 65.1-150.0 251-350
201-300 Very unhealthy 150.1-250.0 351-420

Table 2. Air risk categories according to US EPA for PM2.5 and
PM10.

Developed by using methodologies mentioned above, PM
MAPPER package has required MODIS Level 1B HDF
(Hierarchical Data Format) radiance and geolocation files as
input and derived an updated set of information consisting of
AOT, PM2.5, PM10, AQI, and surface classes at 3x3 km2 spatial
resolution. The system flowchart is shown in Figure , while the
system’s performance and results will be presented in more
detail in the next section.
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Figure 3. The system overview.

3. RESULTS

PM MAPPER package is developed on Linux operating system
using C, Fortran, and IDL programming languages. One
execution tested on a computer with Intel (R) Core(TM)2 Quad
CPU Q9550 @2.83 GHz, 4Gb RAM and Ubuntu 9.10 platform,
takes in average about 3 minutes and requires ~ 1GB of
memory. In comparison with MODIS package performance
(about 5 minutes and 200MB of memory), our software requires
less time but more memory for an operation. The large memory
requirement is justified by the more comprehensive results and
by the higher resolution but also hints at the need of future
software optimization.

The software outcome consists of Aerosol Optical Thickness
(AOT), Land Cover (LC), Particulate Matter concentration
(PM2.5/10), and Air Quality Index (AQI) maps. Two salient
characteristics of an output set are spatial resolution and land
surface information.
The spatial resolution of AOT maps is increased to 3x3 km2,
which provides more detailed information about the distribution
of AOT. In general, coarse spatial resolution, e.g. 10x10 km2 of
MODIS aerosol standard products, is suitable for pollution
monitoring at global scale because of providing a general view.
However, smaller locations with complicated topography, such
as urban areas, require observation at local scale that implies
more elaborate AOT information. One illustration of our
products is shown in Figure 4. It covers the areas of Italy,
Bosnia, Herzegovina, Croatia, the Mediterranean sea and the
Adriatic sea. Although the considered range is at nation scale,
this example for local air monitoring is appropriate from the
viewpoint of spatial resolution. Our result, displayed in Figure 4
(b), in comparison with MODIS aerosol product in Figure 4 (a),
guarantees the consistence of general spatial distribution of
AOT, especially over seas. This, in theory, proves the stableness
of ocean aerosol retrieval algorithm. However, differences can
be observed over land (Italy, Bosnia, Herzegovina and Croatia),

where our result presents a larger number of retrieval pixels.
The coastline is another noticeable area filled by AOT values in
our product and mostly empty in MODIS product (Figure 4(a)-
(b)). This is due to the ineffectiveness of DDV algorithm over
locations having both land and water pixels which, however,
could be improved by applying processing data on smaller
boxes as in our approach.
Together with the higher spatial resolution, the integrated
surface information with AOT is another remarkable aspect of
our results. For each pixel, corresponding to available AOT, the
surface class is drawn, detailed in up to 57 values, out of which
40 are for land and 17 for other background (e.g. ice, snow,
water, etc.). This integration provides another view of
relationships between AOT and surfaces, which will be
meaningful for investigation and correction of the factors
affecting the AOT retrieval algorithm such as the correction of
AOT bias on different land surfaces (Lary et al., 2009).

Starting from AOT maps, corresponding PM concentration and
AQI maps are derived by our system as shown in Figure 5,
which then is used directly for monitoring air pollution.

Figure 4. (a) MODIS AOT map at 10x10 km2, (b) PM
MAPPER AOT map at 3x3 km2, and (c) classification map.
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Figure 5. (a) PM concentration map and (b) AQI map derived
from AOT map.

4. VALIDATION

In order to evaluate the PM MAPPER products, a twofold
validation analysis has been performed. The first one consisted
in assessing the quality of 3x3 km2 spatial outputs. The second
investigated the system performance more deeply over land
areas by considering its results on different land surfaces. All
assessments are based on the comparison of AOT values in our
products and in MODIS aerosol products. In the validation, the
data set consists of 15 images selected out of a total of 180
images covering Italy in a period of 6 months, from January
2008 to June 2008.

In the first validation, we evaluate the products at 3x3 km2 in
comparison with MODIS products at 10x10 km2 over land,
ocean, and both areas. Two parameters, correlation coefficient
and the number of retrieved pixels, are considered. To avoid
problems due to the different resolutions, all AOT maps are re-
sampled at 1x1 km2 resolution before any comparison. The
results show the high correlation coefficients of our AOT with
respect to MODIS AOT as plotted in Figure 6. The integrated
AOT, a combination of aerosol over both land and ocean, has
the correlation coefficient 0.88 in average with a deviation from
0.78 to 0.95. In more particular, the scattering plots of
correlation coefficients between PM MAPPER AOT and
corresponding MODIS AOT in the best and the worst cases are
shown in Figure 7(a)-(b) respectively.

The number of retrieval pixels is representative for the map
covering capacity. Figure 8(a) shows that the largest number of
retrieved pixels is achieved by our software rather than by the
original MODIS version (about 43.10% more pixels in
average). This result is due to a large increase over land in spite
of a small decrease over ocean (Figure 8 (b)-(c)). This

improvement comes from our approach in which we applied
AOT retrieval algorithm on smaller boxes and used SOIL
MAPPER instead of MODIS cloud mask module to identify
land, water, and cloudy pixels.
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Figure 6. Correlation Coefficient of PM MAPPER with respect
to MODIS version

Figure 7. The scattering plot of (a) the best and (b) the worst
correlation coefficient case, 0.95 and 0.78 respectively.
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Ocean, (b) only Land, and (c) only Ocean.

The second validation is carried out to consider more deeply
results at 3x3 km2 on a stratified basis using integrated surface
information detailed in up to 40 land classes (see Table 9). The
purpose of the stratified analysis is to verify where the
applicability of DDV algorithm is appropriate, that is, to
investigate the relationship between the MODIS AOT values
and PM MAPPER AOT values for different land cover classes.

For each land class, we calculated its darkness as the ratio of the
number of dark pixels to the total number of pixels. One pixel is
considered as a dark pixel when given conditions on the band
2.1 µm in DDV algorithm are satisfied. The darkness will
decide the quality of aerosol optical thickness derivation over
the class because aerosol derivation is affected by the
uncertainty in the scattering phase function, as explained in
Remer et al., 2004. The number of retrieved AOT pixels and the
AOT correlation coefficient with respect to MODIS product are
only computed over pixels having integrated information which
is AOT and corresponding land label.

The validation results are divided into 4 groups as presented on
Table 9. The first and second groups represent land classes
having poor statistics on dataset and low correlation
coefficients. In this case, more data need to be investigated.
Group 3 includes two large and bright classes (16.3% and
46.1% of dark pixels for Bright Barren Land 2 and Bright
Barren Land 4, respectively) where, in theory, the DDV
retrieval algorithm is expected to be ineffective. However, the
data analysis shows bad results only over Bright Barren Land 2
(correlation coefficient 0.627), whereas good results are
obtained over Bright Barren Land 4 (correlation coefficient
0.809). The accuracy of dark pixel scanning over these classes
can be considered as a reason for the noted differences. Even if
this scanning performs well, over a very bright surface such as
Bright Barren Land 2, the new improvements of aerosol
derivation should be investigated. Group 4 consists of the
residual classes that are dark and are characterized by a large
number of retrieved pixels. Most of them have good correlation
coefficients, but some can be candidates for improvements (i.e.,
Average Herbaceous Rangeland or Average Barren Land 2).

Labels D. N. C. G.

Bright Weak Vegetation 0 0 0.000 1
Bright Strong Shrub
Rangeland 0 0 0.000 1
Dark Strong Shrub
Rangeland 0 0 0.000 1
Strong Herbaceous
Rangeland 0 0 0.000 1
Dark Barren Land 2 0 0 0.000 1
Bright Barren Land 1 0.989 409 0.387 2
Average Barren Land 1 1 1,450 0.539 2
Dark Barren Land 1 1 102 0.557 2
Strong Barren Land 2 0.982 2,775 0.674 2
Dark Barren Land 4 1 191 0.708 2
Dark Peat Bogs 1 99 0.709 2
Strong Barren Land 1 1 485 0.736 2
Bright Strong Vegetation 1 76 0.755 2
Dark Weak Vegetation 0.989 110 0.835 2
Bright Barren Land 2 0.163 105,765 0.627 3
Bright Barren Land 4 0.431 345,917 0.809 3
Average Herbaceous
Rangeland 1 17,985 0.746 4
Average Barren Land 2 0.999 6,436 0.747 4
Dark Range Land 1 83,288 0.764 4
Dark Strong Vegetation 1 87,393 0.765 4
Bright Peat Bogs 0.998 3,806 0.782 4
Wet land 0.996 13,829 0.786 4
Shadow Barren Land 0.978 8,914 0.799 4
Dark Average Shrub
Rangeland 1 50,557 0.809 4
Strong Barren Land 3 1 52,505 0.814 4
Shadow Vegetation 0.921 76,124 0.816 4
Bright Average Shrub
Rangeland 0.999 697,678 0.816 4
Strong Barren Land 4 0.999 190,492 0.817 4
Dark Barren Land 3 1 129,072 0.828 4
Strong Barren Land 5 0.997 48,374 0.831 4
Bright Barren Land 3 0.908 41,569 0.833 4
Very Bright Average
Vegetation 2 0.998 976,442 0.838 4
Average Barren Land 4 1 206,557 0.839 4
Mid tone Peat Bogs 1 5,225 0.841 4

Bright Average Vegetation 1
1,133,1

62 0.855 4
Very Bright Average
Vegetation 1 1 392,399 0.856 4
Bright Rangeland 0.999 231,669 0.856 4
Dark Average Vegetation 0.999 308,450 0.863 4
Mid tone Rangeland 1 386,860 0.878 4
Average Barren Land 3 1 326,197 0.880 4

Table 9. The performance of PM MAPPER at 3x3 km2 over
difference land classes (D: Darkness, N: Number of retrieval

AOT pixels, C: Correlation Coefficient, G: Group)

In conclusion, the first validation results show that PM
MAPPER products have good quality in comparison with
MODIS standard aerosol products and higher capacity in
retrieving AOT information (larger number of retrieved pixels).
The second validation reinforces the previous result with the
high correlation coefficient over most of dense surface classes.
This validation also groups and points out some potential land

(b)

(c)
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classes where the aerosol retrieval algorithm needs to be
improved.

5. CONCLUSION AND FUTURE WORKS

In this article, we presented the PM MAPPER, a multispectral
data processing package for aerosol and air quality field
estimation. The software has derived from MODIS data a set of
information consisting of AOT, PM2.5, PM10, AOT, and surface
classes with increased spatial resolutions up to 3x3 km2. PM
MAPPER products are characterized by fine spatial resolution
and integrated background information, provided by the SOIL
MAPPER, in which a classification system derives
automatically, from MODIS data, cloud and land cover details
classified in up to 57 classes.

With the fine spatial resolution, our products are suitable for
global- to local-scale air monitoring applications. The 10x10
km2 resolution of the MODIS standard aerosol product has been
increased to 3x3 km2, providing more details of the emissions
sources as well as of the AOT distribution map. Furthermore,
the higher spatial resolution and the usage of the classification
system have increased the total number of retrieved pixels in the
whole scene, especially over land areas and along coastlines.

Moreover, integrated surface information is useful in analysis
and improvements of DDV algorithm that uses dark pixels to
derive AOT information over land. As shown in the second
validation results, the DDV algorithm has performed well on
most of dark classes but this approach has limitations on some
bright and special dark areas in which improvement is
necessary.

In future, we will continue to carry out the validation that
compares the results derived by satellite-based and by AErosol
RObotic NETwork (AERONET) ground-based measurements
in order to verify the consistency of satellite-based AOT
products. Besides, we will be aiming at increasing the spatial
resolution up to 1x1 km2 and improving the aerosol retrieval
algorithm over bright and dark surfaces.
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ABSTRACT: 
 
A fast detection and visualization of change in crisis areas is an important condition for planning and coordination of help. The 
availability of new satellites with high temporal resolution (e.g. RapidEye) and/or high spatial resolution (e.g. Quickbird) provides 
the basis for a better visualization of multitemporal change. For automated change detection, a large number of algorithms has been 
proposed and developed. This article describes the results of four texture based change detection approaches that were applied to 
satellite images of the Darfur crisis region. In our methodology we calculate firstly different texture characteristics (“energy”, 
“correlation”, “contrast” and “inverse distance moment”), for a whole image at two (or more) different times. The second step is to 
test the capability of known change detection methods (image-differencing, image-ratioing, regression analysis and principal 
component analysis) to visualize the change of settlement areas through these texture characteristics and texture images, 
respectively. The comparison of different texture characteristics with different change detection methods shows that best results can 
be obtained using a selective bitemporal principal component analysis with the texture feature “energy”. 
 
 

1. INTRODUCTION 

A fast detection and visualization of change in crisis areas is an 
important condition for planning and coordination of help 
(Kuenzel, 2007). Remote sensing images offer an excellent 
means for the rapid detection and analysis of change. 
Consequently, many algorithms for automated change detection 
have been proposed, developed, and tested. An overview and 
comparison of different techniques can be found, for example, 
in Singh (1989), Macleod and Congalton (1998), Mas (1999), 
Lu et al. (2003), Coppin et al. (2004), or Jianyaa et al. (2008). 
However, a “best algorithm” for the automated detection of 
changes for all applications has yet to be developed if this is at 
all possible (Niemeyer and Nussbaum, 2006). There exist a 
wide range of different methods with different grades of 
flexibility, robustness, practicability and significance 
(Niemeyer and Nussbaum, 2006). These methods can be 
divided into three categories (Mas, 1999): Image enhancement 
methods, multitemporal analysis and post classification 
comparison. Other approaches combine these methods with 
each other or have a completely novel methodology. 
The image enhancement methods are based on unclassified 
image data, which combine the data mathematically to enhance 
the image quality (Jensen, 1986). Examples are image-
differencing, image-ratioing, principal component analysis 
(pca), or regression analysis. 
Multitemporal analysis (Coppin et al., 2004) is based up on an 
isochronic analysis of multitemporal image data. This means 
that n bands of an image at time t1 and n bands of an image at 
time t2 of the same area are merged to form a new image with 
2n bands to extract the changed areas in this merged picture 
(Khorram et al., 1999). 

Post classification analysis is based on a comparison of two 
independent classification results for at least two point of times 
t1 und t2. This method allows the determination of the kind of 
change from one class to another class. 
The high number of published scientific results in the case of 
combined and novel change detection methods is a clear 
indication of the importance of this research topic. For example, 
Prakash and Gupta (1998) combine the image-differencing 
approach with vegetations indices. Lu et al. (2005) use the 
image-differencing method together with a principal component 
analysis. Dai and Khorram (1999) employ neuronal networks 
whereas Foody (2001) and Nemmour and Chibani (2006) make 
use of fuzzy-set theory for change detection. Other approaches 
are based on object-based image analysis (see, for example, Im 
et al. 2008 or Lohmann et al. 2008). 
In our approach, we use image-enhancement methods not for 
the spectral reflectance values but for different texture 
characteristics which produce a higher degree of robustness for 
the change detection and analysis. 
 
 

2. THEORETICAL BACKGROUND 

This section introduces the selected change detection methods 
for comparison and explains the calculation of the texture 
features. 
 
2.1 Change detection methods 

The first introduced method is image-differencing which is easy 
to understand and to implement (Singh, 1989). The method is 
based on calculating the grey value differences. For every pair 
of grey values at the same location in different points in time 
the difference is calculated. If the resulting values are 
unchanged after the algebraic subtraction or do not exceed a 
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pre-determined threshold no change has occurred. The degree 
of change, on the other hand, is determined by the grey value 
differences. Very similar is the image-ratio method. For every 
pair of grey values at the same location in different points in 
time the ratio of the two values is calculated. Both methods 
vary through different combinations of spectral bands, the 
choice of the correct thresholds or different available spectral 
resolutions. Especially the choice of a correct threshold level is 
a critical factor (Jensen, 1986), because of a time consuming 
manual interpretation and the integration of a priori knowledge 
in the analysis process.  
The regression analysis is a statistical method to determine the 
kind and grade of coherence of features (Mueller, 2000). The 
idea is to express the relation of a dependent feature to one or 
more independent variables. In our applied regression method 
of change detection, pixels from the first time are assumed to be 
a function of the time t2 pixel. This relation is expressed 
through a regression function. The type of regression function is 
based on the used data or a specific application. In our work we 
use a least squares method to calculate the regression function. 
After that, the predicted value (t2) from the regression line can 
be subtracted from the value in t1 to determine the change (for 
more details see Singh, 1989).   
The principal component analysis is a statistical method to 
calculate new synthetic data space. With this approach, it is 
possible to intensify wavelength dependent material specific 
differences. Detailed explanations of this method can be found 
in Bahrenberg et al. (1992) or Schowengerdt (2007). For change 
detection, the principal component analysis can be used in 
different ways (Nussbaum and Menz, 2008). In our study, we 
employ a selective bitemporal PCA. This means that in a 
twodimensional feature space two bitemporal spectral bands of 
the same location are analyzed (Figure 1). 
 
 

 
 

Figure 1. Change detection through bitemporal selective PCA 
 
As result all grey values are located in relation to the principal 
components. The unchanged pixels have a high correlation with 
the first principal component in contrast to the change pixels. 
As a consequence, the first principal component contains the 
unchanged information und the second component the change 
information (Macleod and Congalton, 1998). 
 
2.2 Calculation of texture features  

The calculation of the texture features is based on the grey-level 
co-occurrence matrix (GLCM) (Haralick et al., 1973; Haralick 

and Shapiro, 1992) which represents a second order (Sali and 
Wolfson, 1992).  
The main idea is that settlement areas have higher texture 
values as non-settlement areas. Many publications of settlement 
analysis through remote sensing techniques prove these fact 
(see, for example, Myint, 2007; Steinnocher, 1997; Ehlers and 
Tomowski, 2008). Here, the GLCM that examine the spectral as 
well as the spatial distribution of grey values in the image forms 
the basis for the texture calculation. A GLC matrix describes 
the likelihood of the transition of the grey value i to the grey 
value j of two neighbouring pixels (Tomowski et al., 2006). 
During a calculation of a GLCM, the frequency of all possible 
grey value combinations of two neighbouring grey values with 
a defined displacement vector (see figure 2) for both neighbours 
in both directions of a specific direction (00, 450, 900 or 1350) 
can be counted. 
 

 
 

Figure 2. Possible Directions for the displacement vector 
 
This step can be applied for four possible directions. The 
calculation of the average of these four matrices for every 
element leads to a direction independent symmetric matrix.  
Finally, to calculate the likelihood of a grey value transition, 
every value in this matrix is divided through the maximum 
number of all possible grey value transitions (eq. 1): 
 
 

 

∑
−

=

= 1

0,
,

,
, N

cr
cr

cr
ji

V

V
P

    (1) 

 
 where V   = value in the symmetric GLCM 
   r, c = row and column number  
   N  = number of rows or columns 
 
The calculation of the GLCM with high radiometric resolution 
is a very time consuming step. To reduce this effect, Haralick et 
al. (1973) suggest different texture features which represent the 
texture characteristic in a single value. Based on this features 
new texture images can be calculated over a sliding window 
technique (for more details see, for example, Lehmann et al., 
1997). We use the following texture features in our work:  
 

• Contrast (eq. 2) is able to detect the intensity 
differences between a grey value of a pixel and his 
neighbourhood.  

• Correlation (eq. 3) expresses the linear coherence 
between a grey value pixel in relation to the 
investigated picture and the texture feature 

• Energy (eq. 4) calculates the sum of the squared 
elements in the GLCM and describes the 
homogeneity of the investigated picture.  
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• Inverse distance moment (IDM) (eq. 5). With the 
application of the IDM, it is possible to distinguish 
between heterogeneous and partially homogeneous 
non-settlement areas. 

 

 
2

1

0,
, )( jiP

N

ji
ji −∑

−

=
      (2) 

 

 ∑
−

= ⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡ −−1

0,
22,
))((

))((N

ji ji

ji
ji

ji
P

σσ

μμ
    (3) 

 

 ∑
−

=

1

0,
,

2
N

ji
jiP       (4) 

 

 ∑
−

= −+

1

0,
2

,

)(1

N

ji

ji

ji
P

     (5) 

 

         where  ∑
−

=

=
1

0,
, )(

N

ji
jii Piμ  

     ∑
−

=

=
1

0,
, )(

N

ji
jij Pjμ  

     ∑
−

=

−=
1

0,

2
, )(

N

ji
ijii iP μσ  

     ∑
−

=

−=
1

0,

2
, )(

N

ji
jjij iP μσ  

      
      i , j = grey values 
      
 

3.  IMPLEMENTATION 

In this section we introduce our test area. After that, we explain 
our approach and show the results of our comparison. 
 
3.1 Test area und image data 

The study area is located in Sudan. The village Shangil Tobay 
is located in North Darfur, and was one of seventeen villages in 
this region, which was attacked and destroyed since 2004 in the 
Darfur conflict. The conflict in Darfur is a dispute between 
different ethnic groups, local militia (Janjawid) and the 
Sudanese government. As is usual the case in these conflicts, 
the main suffering is sustained by the civilian population. More 
than 200,000 people have already died; more than 2 Million 
people have been displaced. The region around Shangil, a 
sparsely populated area, is the home of several thousands of 
displaced civilians. The attacks on this village took place 
between 2005 and 2006. To document the dimension of the 
inhumanities, Amnesty International (2009) and AAAS (2009) 
maintain web sites that shows satellite images of the affected 
regions before and after an attack on several villages. With the 
permission of the satellite company Digital Globe, we were able 

to use preprocessed georeferenced Quickbird data before and 
after an attack for our change analysis. Figures 2 and 3 show 
the study area on 10 March 2003 and 18 December 2006, 
respectively. For our tests, we used a subset of 512 pixel * 512 
pixel with a 0,6 m ground pixel size and a radiometric 
resolution of 8 bit. A visual comparison and overlay of the 
existing man-made structures shows a high congruence between 
both images, so that a new co-georeferencing was not necessary 
and the problem of possible pseudo change was negligible. 
The selected subset is a village in the east of Shangil Tobay. It 
is visible, that the nearly the whole village was demolished; 
only a few buildings are not destroyed. Some of the structures 
were completely wiped out; some were burnt down and are still 
partly visible.  
 

 
 

Figure 3. Subset of the Shangil village before destruction 
(©Digital Globe 2003)  

 

 
 

Figure 4. Subset of the Shangil village after destruction 
(©Digital Globe 2006) 
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3.2   Change Detection Concept and Design 

Figure 5 shows the general steps that are the prerequisite for the 
change detection analysis. To apply our change detection 
methods, firstly all 3 bands (RGB) from the images taken at t1 
and t2 were averaged to obtain a single band. The different 
texture features are calculated from the averaged data and then 
submitted to the different change detection analysis methods 
(image-differencing, image-ratioing, regression analysis and 
PCA). Basis for the calculation of the texture features are the 
images at the specified time t1 und t2. After the texture 
calculation, we derived the GLCM (8 bit) for every image. 
Based on the GLCM we calculated the texture features contrast, 
correlation, IDM and energy for every point in time with 
differently sized windows (ranging from 3 x 3, to 13 x 13 
windows). Using these texture features, we then performed the 
four change detection methods explained above.  
Because of the different illumination conditions in the two 
images (see figure 2 and 3) we also included in a second 
processing step a histogram matching to both image data sets to 
improve the contrast and to harmonize the grey value 
distribution of the images (Yang and Lo, 2000).  
 

 
 

Figure 5. Steps for the derivation of texture image data for 
change detection 

 
Best results were obtained using a 13 x 13 window for the 
calculation of the texture features after the histogram matching. 
Again, we performed the change detection analysis four times 
(image-differencing, image-ratioing, regression analysis and 
PCA) with all derived texture images. 
 
3.3 Results and interpretation 

As result, we generated 16 change images (with 4 kinds of 
texture features and 4 change detection methods). In this paper, 
we will concentrate on best result and present only a short 
summary for the other findings. As our goal was the 
visualization of changes, we did not perform a quantitative 
accuracy analysis but concentrated on a qualitative visual 
interpretation (see table 8). 
The image-differencing method showed the worst results for all 
four texture images. Therefore we will not pursue this methods 
in further studies. 
The texture based image-ratio approach did not produce 
satisfying results in the case of the texture features contrast and 
correlation. Certainly, with the IDM and the energy feature a 
partial detection of change in the settlement areas is visible. 
The texture based regression analysis led to partly suitable 
results; problems were the imprecise location of building 
contours. It may have some usefulness, however, in object-
based image analysis.  

The results for the texture based PCA with the images derived 
from the features contrast, correlation und IDM were not 
satisfying. However, bitemporal PCA for the texture feature 
energy proved to be the best results as far as visual appearance 
is concerned.  
 

 
 

Figure 6. Results of texture based PCA with the texture feature 
energy 

 
It is possible to visualize changed (dark grey) unchanged 
settlement areas (bright grey) and unchanged non-settlement-
areas (medium grey) without determine thresholds (see figure 
6): 
 

 
 
Figure 7. Manual digitized unchanged man-made structures and 

the subset of the Shangil village after destruction 
 (©Digital Globe 2006) 

 
The comparison with a manual digitized classification (based 
on figure 4) of the unchanged man-made structures (buildings, 
fences) shows (see figure 7), that the algorithm visualizes 
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nearly all unchanged buildings, but also some small areas with 
high texture values, that have changed (ruins and stone 
formations). However, it is easy to distinguish between 
destroyed and not destroyed structures. 
Table 8 shows the overall results of the qualitative assessment 
respectively visual interpretation for the different methods and 
texture features. The table compares and assesses the change 
results of the different change detection methods (left column) 
in relation to the four texture images (upper row).  
 

 Con-

trast 

Correlation IDM Energy 

Image-

differencing 

- - - - 

Image-ratio - - 0 0 

Regression 0 0 0 0 

PCA - - - + 

Table 8. Assessment of the texture based change detection 
result: Evaluation: „+“ = good visualization, „0“ = partly 

visualization and  „-“ = bad visualization of changes 
 
 

4. CONCLUSIONS 
 
A comparison of four different texture characteristics contrast, 
correlation, inverse distance moment (IDM) and energy that 
were used for four different change detection methods (image-
differencing, image-ratioing, regression and PCA) shows that a 
combination of a bitemporal principal component analysis with 
the texture feature energy displays the best results for the 
visualization of change. Image of a village in the Darfur region 
before and after destruction were used for our study. However, 
the used test area was ideal to show the possibilities of texture-
change analysis, because most of the buildings were completely 
destroyed and no texture was present on the locations of the 
destroyed buildings.  
With the texture-based change detection approach, it is possible 
to visualize changed and unchanged settlement areas without 
the determination of thresholds. In our future work we will test 
this approach with other satellite images and airborne data and 
to show the transferability of this method. 
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ABSTRACT:

Urban sprawl, or the unplanned and uncontrolled spreading out of built-up areas, causes problems in the allocation of basic needs
and increases risk to life and property in the face of disasters. The integration of remote sensing and geographic information systems
is used in adopting Shannon’s entropy to measure urban sprawl. Shannon’s entropy is an index used here in quantifying the degree of
dispersion or concentration of built-up areas. This study in the mountainous city of Baguio in northern Philippines shows that
together with remote sensing, geographic information systems and photogrammetric techniques, built-up concentration can be
identified and quantified from time series of aerial photographs and satellite images; this facility can assist in monitoring the growth
of built-up areas and in drafting measures and policies to address urban sprawl’s imminent effects.

1. INTRODUCTION

1.1 The Problem with Urban Sprawl

Urbanization is needed for development (Bekele, 2005).
However, growth and spread of built-up areas that come with
urbanization can become uncontrolled and irregular over time,
such that isolated tracts of land are encroached upon. This is
known as “urban sprawl” (Yeh and Li, 2001 p.83; Mujtaba,
1994 p.2) and such is detrimental to the efficient functioning of
developed areas. Cities become congested due to
overpopulation, and resources become limited in catering to the
different needs of the people. Moreover, urban sprawl presents
greater risk and damage to life and property in the occurrence of
calamities and disasters. It endangers the living condition of
inhabitants and puts ecosystems in jeopardy by compromising
biodiversity (Yeh and Li, 2001). Thus, urban sprawl studies are
done to help monitor the spread of built-up areas and quantify
the sprawl in order to determine the trend, the extent, and avert
the associated complications (Yeh and Li, 2001; Sudhira et al.,
2004; Jat et al., 2007).

1.2 Urban Sprawl Studies

One of the measures commonly used due to its robustness in
urban sprawl measurement is Shannon’s entropy (Yeh and Li,
2001); it is an index that determines the distribution of built-up
as a function of the area of built-up within a defined spatial unit
(Jat et al., 2007). It characterizes the pattern – dispersed or
concentrated – of built-up over time that can help officials to
identify which area is being used inefficiently (Yeh and Li,
2001). Moreover, entropy values can be factored into the
analysis of risk as a component of vulnerability in the risk
equation: risk = hazard x vulnerability (Castellanos-Abella,
2008). Entropy gives the distribution of the loss to the built-up,
which signifies population and property.

Previous studies that use Shannon’s entropy take into account
the horizontal spread of built-up on a given area (Yeh and Li,
2001; Jat et al., 2007). However, as time progresses, people

begin to develop residences vertically, constructing structures of
several storeys high in order to maximize available habitable
space especially in mountainous regions (Reddy, 1996). This
makes the risk per unit of space more acute. Thus, both
horizontal distribution and vertical growth need to be measured
to determine the full scope of the implications of urban sprawl
in the affected area.

Entropy calculation is based on area computation; this is best
facilitated by the integration of spatial measurement facility
correspondingly offered by remote sensing (RS), geographic
information system (GIS) and photogrammetric techniques
(Sudhira et al., 2004; Ayhan et al., 2008). Satellite images and
aerial photographs provide data about the physical state of an
area at a given time. Remote sensing facilitates image
enhancement and classification; photogrammetric techniques,
particularly stereo-modelling, enable the determination of
heights and elevations. On the other hand, GIS enables proper
storage, retrieval, and display of spatial data, as well as provide
spatial analysis functions and area computation. The
combination of these tools provides the essential data in
computing for Shannon’s entropy in growth areas; thereby
check on emerging trends that may require immediate attention.

1.3 The Study Area

In this study, we apply the principle of Shannon’s entropy to
measure urban sprawl phenomenon in the highly urbanized
mountain city of Baguio, located in the Province of Benguet in
the northern Philippines (see Figure 1).

Figure 1. Location Map of Baguio City
(Philtravel Center; CLUP)

_________________________________________________________________________________________________________________________________________________________________________________________________________
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Baguio is a plateau at 1400m altitude whose limited land area
was originally designed for 30,000 people (MTDP 2005-2010);
but the 2007 census shows that it is now actually housing some
301,926 inhabitants (NSO 2007). Baguio City is the
Philippine’s “Summer Capital” as its temperature is generally 8-
10°C lower than those of the lowlands. Baguio City’s cool
climate attracts settlers such that whole mountainsides have
developed into housing projects. With its limited space, high-
rise structures are dominating Baguio City’s landscape. This
poses a big risk to its inhabitants due to its steep terrain, for
being traversed by the northern splay of the Philippine Fault
Zone, and for being in a wet region; Baguio City holds the
world record for a 24-hour rainfall at 1,200mm (Jennings,
1950). With such confluence of environmental characteristics,
Baguio City is highly prone to landslides (Orense, 2003).

Figure 2. Urban Sprawl along the Slopes of Baguio City
(LCVerzosa, 2009)

To capture both the horizontal and vertical configurations of
urban sprawl in Baguio City’s mountainous landscape, this
paper reports about the integration of remote sensing, GIS and
photogrammetric techniques in conjunction with Shannon’s
Entropy to quantify the developed areas over time. We hope
that this combination of technologies and procedures can
realistically illustrate the spread of development in Baguio City
and help its local government to effectively monitor and plan to
mitigate the possible effects and implications of urban sprawl to
its community.

2. METHODOLOGY

2.1 Shannon’s Entropy: Horizontal and Vertical Entropy

Shannon’s entropy originated from information theory as a
measure of uncertainty of conveyed information over a noisy
channel (Jat et al., 2007; Bailey, 2009). The larger the value of
Shannon’s entropy, the higher is the uncertainty of information
conveyed (Bailey, 2009). High entropy is the most probable yet
least predictable state that leads to disorder. The same is true for
urban sprawl. Thus, Shannon’s entropy is convenient in
measuring urban sprawl (Yeh and Li, 2001).

In urban sprawl, Shannon’s entropy is the measure of the degree
of dispersion or concentration of a random geographical
variable, i.e. the built-up. It is given by (Yeh and Li, 2001):

)log( 1
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i
in pH  (1)

where pi is the probability or proportion of occurrence of a
phenomenon in the ith spatial unit out of n units, and thus, is
given by:


n

i
iii xxp / (2)

where Xi is the area of built-up at the ith unit.

Entropy values range from a minimum of 0 – representing a
concentrated pattern, to a maximum of log n – denoting a
dispersed distribution. The value of log n is significant as it can
be treated as a critical limit or threshold to the expansion of an
area. Log n can be computed for any region; and every year, the
entropy value can be monitored and compared to the previous in
order to avoid reaching the threshold. Thus, planners and local
officials would be able to have a scientific and quantifiable
description of the urban situation for drafting policies that take
into account threshold value.

When entropy values for succeeding years are investigated, the
progression of a random geographic variable – the sprawl of
built-up can be monitored. Increasing entropy values would
indicate continuous dispersion with built-up highly occurring.
Decreasing values would signify that an area is becoming less
fragmented and homogenously covered, thus, further occurrence
of built-up is less likely to happen.

Equations (1) and (2) above are used to calculate both
horizontal and vertical entropies. The difference lies in
determining the area of built-up, xi, to be considered. Horizontal
entropy describes the horizontal spread of the built-up area;
thus, it accounts for the plane area of the built-up. On the other
hand, vertical entropy evaluates the vertical development or the
rise of building structures; thus, the aggregated floor area of the
built-up is computed. In this case, xi is given by:

xi = (number of floors) x (area of the building footprint) (3)

where the number of floors is a function of the building height
and the standard floor height.

Table 3 shows the three possible levels at which the Entropies
can be computed in this study.

LEVEL SPATIAL UNIT
City Barangay (village)
Barangay (village) Purok (neighbourhood)
Purok (neighbourhood) Building

Table 3. Levels of Entropy Computation

For this study, horizontal entropy is computed for: (1) the entire
city of Baguio using a series of available Landsat images from
1979, 1989, 1992, and 2002 in order to investigate and illustrate
the trend and extent of horizontal development with population
increase; (2) the barangay (village) level, and, (3) the purok
(neighbourhood) level of Barangay Cresencia Village, one of
the severely affected barangays during a recent typhoon,
Typhoon Parma of October 2, 2009.

Computation of vertical entropy at purok level of Barangay
Cresencia Village is also done in order to investigate the
increase in high-rise buildings and analyze its relationship with
the horizontal spread. Aerial photographs from 2003 are used to
determine building heights.
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2.2 Data and Software Used

Table 4 shows the available data which are utilized for this
study. The Landsat images provide a time series analysis on the
spread of built-up areas, while the aerial photographs are
interpreted to yield the extent and to determine building heights
in the developed areas. Identification of these built-up areas is
essential in locating those where the population is concentrated.
Kawamura (1971) similarly showed how changes in urban
growth are monitored using a series of aerial photographs.

DATA SOURCE
Landsat Images
(1979, 1989, 1992, 2002) USGS GLOVIS

Aerial Photographs (2003) F.F. Cruz and Co.
Barangay Boundary Map Reclaim II Project

Topographic Map
National Mapping and
Resource Information
Agency

Table 4. The Gathered Data

Satellite image enhancement and classification are done with
ENVI 4.3®, while ERDAS-Imagine® is used for stereo-
modeling of the aerial photographs. Spatial analysis and area
computation are done using GIS software ArcGIS 9.3®.

2.3 Flowchart of the Methodology

Figure 5 illustrates the methodology we developed that
combines photogrammetric and digital image processing
techniques to delineate and estimate the extent of urban growth
areas. GIS is also used in visualizing the spatial spread and
distribution of developed areas. In turn, the quantified built-up
areas from the aerial photographs and satellite images are used
to compute Shannon’s entropy.

Figure 5. Methodology in the Measurement of Urban Sprawl
in a Mountainous Environment

3. RESULTS AND DISCUSSION

3.1 Horizontal Entropy: Baguio City

From the temporal horizontal entropy values, all of which are
near log N, and the corresponding barangay-built-up images of
each year (see Fig. 6), it can be seen that the pattern of built-up
area manifest a dispersed distribution from the city center
(Barangay Kisad-Legarda). The high values of HE also indicate
that the city is approaching log N (7.01), which is the critical
level of expansion of built-up. However, from 1992 to 2002,
there is a significant drop in entropy (from 6.04 – 5.79); this
indicates that due to the rapid growth, the area has become
homogenously covered by built-up, the space has become very
limited and built-up areas have become concentrated within the
city limits. However, in Figure 7, a population census from
1995-2000 (NSO, 2007), shows yet an increase from 226,883 to
252,386 (10% growth). This yields a higher population density
that, without a corresponding built-up spread, is a sign of
vertical development; the people are building high-rise
residences. Such a trend necessitates the investigation of
vertical entropy.

Figure 6. Series of Satellite Imagery and Corresponding
Entropy Depicting the Spread of Urban Growth in Baguio City

from 1979 to 2002

Figure 7. Baguio City Population from 1909-2007 (NSO, 2007)

(b) 1989
Entropy: 6.10

(a) 1979
Entropy: 6.07

(c) 1992
Entropy: 6.04

(d) 2002
Entropy: 5.79

Legend: - Vegetation - Built-up
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3.2 Horizontal and Vertical Entropy: Barangay Cresencia
Village

From the horizontal entropy value (HE) of the whole Cresencia
Village in Table 8, it can be seen that this barangay has high
entropy indicative of sprawl and availability of space where
built-up areas may further establish. In the same way, the high
vertical entropy value (VE) of this barangay signifies that built-
up, in reality, is more than what is being shown in the horizontal
dimension. It reflects a larger dwelling area, as well as
population concentration. Thus, the two values would indicate
the magnitude of the risk in the event of a disaster or calamity.
This analysis is further established in the purok level (see Table
9), whose entropy values are near the threshold value.

With the computed purok entropy values, an entropy map can
be generated using an entropy matrix for a given hazard. As an
example, consider the entropy matrix for landslide risk in Figure
10. Entropy values are classified as high or low depending on
their nearness to log N (Jat et al., 2007). An entropy value is
high when it is nearer to log N, and vice versa. From this
matrix, the HE and VE of the puroks of Brgy. Cresencia Village
are classified and the resulting entropy map is generated in
Figure 11. Entropy maps are useful in visualizing the risk
corresponding to the horizontal distribution and vertical growth
of built-up.

HE VE N
(puroks)

LOG
(N)

Cresencia
Village

1.73 1.68 4 2

Table 8. Horizontal and Vertical Entropies of Barangay
Cresencia Village

PUROK HE VE N
(building)

LOG (N)

1 4.24 3.96 22 4.46
2 5.64 5.43 58 5.86
3 4.05 4.00 21 4.39
4 3.93 3.76 18 4.09

Table 9. Horizontal and Vertical Entropies of the Puroks in
Barangay Cresencia Village

High
HIGH RISK

(Concentrated,
High Rise)

RISKY
(Dispersed,
High Rise)VE

Low
RISKY

(Concentrated,
Low Rise)

LOW RISK
(Dispersed,
Low Rise)

Low High
HE

Figure 10. Entropy Matrix for Landslide Risk

The entropy map in Figure 11 shows that for a landslide risk,
the puroks of Brgy. Cresencia Village are classified as risky
areas composed of dispersed high-rise buildings.

Figure 11. Entropy Map of Barangay Cresencia Village

3.3 The Aftermath of Typhoon Parma

Baguio City experienced severe casualties when the tropical
storm Parma hit the city in October 2, 2009. Major landslides
and high flooding were experienced in conjunction with the
heavy rainfall that reached an average of 927.8 mm on that day
(Gonzales, 2009). At the height of the typhoon three major
roads going to and from Baguio were closed because they were
impassable due to landslides in the area (Mananghaya, 2009).
Figure 12 shows snapshots of some of the affected barangays.

Figure 12. Top: Flooding at the City Camp
(L – Noel Godinez, R – Brenda Dacpano; www.nordis.net);

Bottom: Landslide at Cresencia Village
(L – www.daylife.com, R – Danny Durante)

Tables 13 and 14 show the effects of the Typhoon Parma from
October 2 – 13, 2009. The reported incidents occurred in
different areas of Baguio City such as Brgy. Cresencia Village,
Kennon Road and Bokawkan Road.

Legend: - High HE, High VE (dispersed, high rise)
- Built-up

In: Wagner, W., Székely, B. (eds.): ISPRS TC VII Symposium – 100 Years ISPRS, Vienna, Austria, July 5–7, 2010, IAPRS, Vol. XXXVIII, Part 7A
Contents Author Index Keyword Index

272



REPORTED INCIDENTS NUMBER
Eroded Riprap 25
Soil Erosion 39
Flood 41
Landslide 58
Vehicular Accidents 1

TOTAL INCIDENTS 164

Table 13. Summary of Incidents (Pepeng Report, 2009)

Id BARANGAY/ROADS

Ev
ac

ua
te

d
In

ha
bi

ta
nt

s

M
is

si
ng

D
ea

th
s

In
ju

re
d

1 Irisan 196 1 15 10
2 Pinsao_Proper 50 2
3 Pinsao_Pilot 50
4 Fairview 80
5 San_Luis_Village 7
6 Dominican_Hill_Mirador 12
7 Sto._Rosario 47
8 Quirino_Magsaysay_Upper 22
9 Rock_Quarry_Upper 2

10 Rock_Quarry_Middle 2
11 Quirino_Magsaysay_Lower 557
12 City_Camp_Proper 125
13 Rock_Quarry_Lower 152
14 City_Camp_Central 256
15 Queen_Of_Peace 144 1
16 Camp_Allen 90
17 Cresencia_Village 23 5
18 Gen._Luna_Upper 20
19 Kias 26
20 Atok_Trail 2
21 Loakan_Apugan 1
22 Mines_View 6
23 Brookspoint 1
24 Bayan_Park_East 1
25 Aurora_Hill_South_Central 1
26 Bayan_Park_Village 1
27 Aurora_Hill_North_Central 1
28 Bayan_Park_West 1
29 Aurora_Hill_Proper 1
30 Lourdes_Subd_Extension 100
31 Marcos Highway 4 1
32 Kennon Road 2
33 Kitma 8

Table 14. Summary of Casualties (Pepeng Report, 2009)

Table 14 shows that Barangay Cresencia Village registered the
most number of casualties during the recent typhoon. This
reflects the high entropy values in Table 8, which was computed
based on a set of 2003 aerial photographs. Therefore, these 2003
estimates, and whenever data is available to compute for the
entropy of the succeeding years, would have served as signs that
point to the high risk barangays in the city; the local
government can then focus on high risk puroks in each
barangay. In essence, a more strategic disaster preparedness
plan could have been drafted.

The growth of built-up in Baguio City has become uncontrolled
over the years, even with its policies that aimed at preventing
congestion (CLUP, 2002-2008). The consecutive entropy values
over a given period would suggest both the horizontal and
vertical patterns of growth of the built-up; thus, better
estimations of further growth could be seen and properly
addressed in future policies.

In the light of the recent typhoon casualties and damages, the
city council of Baguio City saw the need to draft resolutions and
ordinances that would answer the city’s lack of proper housing
policies, disaster preparedness plans and rehabilitation
measures. An ordinance is now being proposed for the creation
of the City Housing and Resettlement Office to facilitate the
“proper formulation, implementation and monitoring of housing
and resettlement programs and projects in the city” (Refuerzo,
2009a). This study on the integration of remote sensing and
geographic information systems in adopting Shannon’s entropy
to measure urban could help in giving a quantitative and
scientific approach to site selection for housing and relocation
projects.

The flooding that occurred at the City Camp Lagoon has been
attributed to trash that clogged the sinkholes in the underground
water channel (Refuerzo, 2009b). In this case, entropy values,
which also reflect population concentration in the area, could
have served as estimates of the number of people that will be
affected during a flooding incident. The values can also suggest
the amount of solid waste that are produced; and which
potentially clog the drains when typhoons occur.

The death toll and infrastructure damage brought by Typhoon
Parma prompted the Baguio city government to focus on areas
found to be geologically hazardous, and to create a wholistic
disaster management plan (Refuerzo, 2009c). The horizontal
and vertical estimates of Shannon’s entropy reflect the built-up
area and population situation of the city; thereby, providing a
comprehensive approach to prevent further casualties in the face
of natural calamities.

4. CONCLUSION

Integration of photogrammetric, remote sensing, and GIS
techniques facilitates delineation, tracking down and monitoring
of urban development. RS provides pattern recognition
techniques to classify land cover based on their spectral
characteristics on satellite images. GIS enables the proper
handling of databases necessary for the integration of data from
different sources. Photogrammetric techniques for measuring
building heights in estimating the vertical population
concentration is also sufficient in providing the necessary data
for computing Shannon’s entropy equation. Entropy values are
obtained and this demonstrates how it can be implemented
within a GIS to facilitate the measurement and visualize the
extent of urban sprawl.

This study shows that entropy is a good indicator in identifying
and monitoring land development—that is, dispersion and
concentration of built-up areas. Compactness of development
(indicated by low entropy) is a sign of vertically built
development in the light of continuing increase in population.
This imply that high population concentration is being exposed
to Baguio City’s geologic hazards such as earthquakes and
landslides, and more recently, flooding hazards. Moreover, the
high values of Shannon’s entropy indicate that the city is
precariously approaching its critical level. Such a situation is
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important to keep track by the city government; in this way, safe
urban development can be planned.
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ABSTRACT:

In this article we present a method that extracts plantations from satellite imagery by finding and exploiting appropriate feature space
projections. Segmentation is done using an automatic two-region segmentation based on the level set method. The behaviour of this
algorithm is defined by a statistical region model that describes the similarity of regions using distances in arbitrary feature spaces.
Subsequently different feature spaces will be evaluated regarding their plantation classification quality in an automatic fashion. The
segmentation quality of our method is assessed by testing several orthophotos depicting a wide range of landscape types and comparing
them with a manual segmentation. We show that a combination of simple texture based features like the structure tensor and the Hessian
matrix are sufficient to facilitate an effective plantation segmentation scheme.

1. INTRODUCTION

When looking at land cover analysis, digital imagery is not only
used for interpretation, but also for the verification and updating
of tagged regions stored in GIS databases. Thus, the efficiency
of today’s workflow can be greatly improved by using automatic
classification algorithms. In our knowledge-based interpretation
and verification system GeoAIDA (Becker et al., 2008), several
operators are used to hierarchically analyse image data. Area pro-
cessing is done using a classification system which incorporates
a Markov/Gibbs random field model, as proposed by Gimel’farb
(Gimel’farb, 1996). Using this model, plantations (as seen in
Figure 1) are particularly difficult to separate from general vege-
tation areas, since they may not notably differ in their statistical
properties. To tackle this challenging task we propose a segmen-
tation on a region model that works with a general feature space
representation. We analyse several potential feature spaces, each
constructed from the local region of a pixel. By analysing dis-
tances in these feature spaces, we can calculate the likelihood that
the pixel belongs to a certain region of the current segmentation.
For region detection we decided to use a state-of-the-art level set
based segmentation framework that allows us to test our region
model in a straightforward manner. The insights from the semi-
automatic feature space comparison are then incorporated into the
segmentation framework and finally tested on real orthophotos.

2. LEVEL SET SEGMENTATION

The variational approach for image segmentation used in our frame-
work is based on the works of (Chan and Vese, 2001, Malladi et
al., 1995, Paragios and Deriche, 1999, Rosenhahn et al., 2007).
Using the level set formulation for the general problem of im-
age segmentation has several advantages. To allow a convenient
and sound interaction between constraints that are imposed on
the contour itself and constraints that act on the two regions sep-
arated by the contour, the 1-D curve is embedded into a 2-D,
image-like structure. Another important advantage of the level
set representation is the natural given possibility to handle topo-
logical changes of the 1-D curve. This makes it particularly use-
ful for plantation segmentation, where no reliable constraints for
the region shapes can be formulated.

∗ Corresponding author.

In the case of a two-region segmentation, the level set function
ϕ : Ω → R splits the image domain Ω into the two regions
Ω1, Ω2 ⊆ Ω with

ϕ(x) =

{
≥ 0, if x ∈ Ω1

< 0, if x ∈ Ω2

. (1)

The boundary between the object that is to be extracted and the
background is represented by the zero-level line of the function
ϕ. Like most of the works on level set segmentation, we will
focus on this special segmentation case with two regions. In our
work these will represent the object classes plantations and non-
plantations. As shown in (Chan and Vese, 2001), we will require
an optimal contour to minimise the so called Chan-Vese energy
functional that is:

E(ϕ) = −
∫

Ω

(
H(ϕ) log p1 + (1−H(ϕ)) log p2

)
dΩ

+ ν

∫

Ω

|∇H(ϕ)| dΩ (2)

where ν ≥ 0 is a weighting parameter between the two given
constraints, pi are probabilities and H(s) is a regularised Heav-
iside function. The regularised Heaviside function is needed to
build the Euler-Lagrange equation and to make it possible to in-
dicate which region a pixel belongs to at each iteration step. Min-
imising the first term maximises the total a-posteriori probability
given the the two probabilities p1 and p2 of Ω1 and Ω2, i.e., pixels
are assigned to the most probable region according to the Bayes
rule. The second term minimises the length of the contour and
acts as a smoothing term.

Minimisation of the Chan-Vese energy functional (2) can be per-
formed by solving the corresponding Euler-Lagrange equation to
ϕ

∂ϕ

∂t
= δ(ϕ)

(
log

p1

p2
+ ν div

( ∇ϕ
|∇ϕ|

))
, (3)
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Figure 1: Plantation samples from different locations

where δ(s) is the derivative ofH(s), with respect to its argument.
Starting with some initial contour ϕ0 and given the probabilities
p1 and p2 one has to solve the following initial value problem:




ϕ(x, 0) = ϕ0 for x ∈ Ω
∂ϕ

∂t
= δ(ϕ)

(
log

p1

p2
+ ν div

( ∇ϕ
|∇ϕ|

))
. (4)

Figure 2 shows the workflow of our segmentation algorithm. The
way the two probabilities p1 and p2 are modelled is a very impor-
tant factor for the quality of the segmentation process. The next
section will, therefore, introduce a statistical region model capa-
ble of estimating probability densities in arbitrary feature spaces.

initial contour φ0

update region model
recalculate p1 and p2

adjust contour φ
minimize the Chan-Vese energy functional

image data

Figure 2: Workflow of the segmentation algorithm

3. STATISTICAL REGION MODEL

The purpose of the region model is to provide a model of the
statistical properties underlying the region that is to be extracted
by our segmentation algorithm. The interface between the re-
gion model and segmentation algorithm is defined by a function
p(x, y), mapping each pixel position to the probability that this
pixel belongs to the modelled region of the current segmenta-
tion. Since p(x, y) depends on the current contour of the region,
which will change during the progression of the segmentation,
a good presegmentation is vital in order to achieve high quality
results. To estimate p(x, y), we use the function f(x, y), which
defines a projection from image to feature space. We can now
easily calculate the mean distance between each position and the
modelled region in an arbitrary feature space. The probability
function p(x, y) is now defined by scaling the resulting distances
to the range [0; 1], while considering that larger distances will
map to a lower probability and vice versa.

In case that several functions fc(x, y) are available, each will
provide one independent feature channel c. The function p(x, y)
can then be calculated by multiplying the individual probability
functions pc(x, y).

3.1 Distance Function

When incorporating several feature channels, a consistent scaling
of the feature distances might become quite complex. We will,
therefore, present a distance function based on the normalised
cross correlation (NCC). The feature vectors i, j ∈ Rn will be
interpreted as discrete signals of length n. The NCC is then de-
fined as

%ij =
1

n− 1

n−1∑

t=0

(i(t)− ī) (j(t)− j̄)
σiσj

, (5)

whereby ī and j̄ represent the mean component values of i and
j. Since the range of the NCC is known, scaling the distances is
quite trivial. Handling of anti-correlations depends on the appli-
cation so that %ij may either be mirrored around or clamped at 0,
keeping all values positive.

dNCC1 (i, j) = 1− |%ij | (6)
dNCC2 (i, j) = 1− [%ij ]

+ , (7)

with [x]+ =

{
0 , x < 0
x , else

3.2 Presegmentation

In most cases, a good presegmentation can be derived from ex-
isting geodata. If the data is not available or too outdated, there
is an easy method for generating one by analysing the frequency
spectrum of image blocks from the source image. Typical images
of plantations show a peak in a certain frequency range. After an
appropriate range was learned from existing image data (see sec-
tion 3.3.1), each image block is tested for the occurrence of such
a peak and assigned to either the inner or outer region of the pre-
segmentation. Figure 3 shows the result of the presegmentation
step for one test case.

3.3 Feature Selection

Finding appropriate feature spaces is no easy task and is often
done manually. Instead of designing one that is optimised for
plantation segmentation, our strategy is to generate a wide array
of generic feature spaces and compare them in a systematic man-
ner. This selection process is guided by a list of training sets and
can also be used to find feature spaces for other object classes.
The general workflow shown in figure 4 is further explained in
the following sections.

In: Wagner, W., Székely, B. (eds.): ISPRS TC VII Symposium – 100 Years ISPRS, Vienna, Austria, July 5–7, 2010, IAPRS, Vol. XXXVIII, Part 7A
Contents Author Index Keyword Index

276



Figure 3: The presegmentation mask for a sample scene

compute distance table for each feature space

generate training set
image blocks are either labeled as plantation or non-plantation

estimate F1-score for each feature space
assume the distances to be normally distributed

select feature spaces with high F1-scores

Figure 4: Workflow of the feature selection

3.3.1 Training Sets. In total, eight training sets were produced,
each of them chosen to represent a different type of geographical
location. Together, the training sets cover an area of approxi-
mately 75km2 subdivided into 4400 image blocks. These image
blocks are then manually classified as being either of the planta-
tion or non-plantation type.

For each training set, a distance table can be generated. A dis-
tance table contains the distances between all image blocks for a
given feature space. It is convenient to sort the entries so that all
plantation and non-plantation blocks are grouped together. The
table can now be subdivided into four quadrants:

• Intra-distances between non-plantations

• 2× Inter-distances

• Intra-distances between plantations

A distance table from a small training set is shown in Figure 5.

3.3.2 Classification Model. Our goal is to find feature-spaces
that produce small intra-distances and large inter-distances. Of
course, small and large are entirely subjective terms. It is suffi-
cient that intra- and inter-distances are separable. To that end, we
will treat that task as a classical binary classification problem.

Using the distance tables we can find normal distributions de-
scribing the intra- and inter-distances. As shown in Figure 6, by
analysing the overlap of the normal distributions, we can compute
the true positive (TP), false positive (FP), true negative (TN) and
false negative (FN) rates. It is obvious that features with minimal
overlaps will generate better classification results. To get a bet-
ter understanding of the classification capacity of a given feature
space, we will also calculate precision, recall and the correspond-
ing F1-score (Van Rijsbergen, 1979):

Figure 5: The distance table of a feature contains the distances
between all image blocks in the training set. Dark entries signify
a small distance in a given feature space and therefore a high
similarity.

Precision =
TP

TP + FP
(8)

Recall =
TP

TP + FN
(9)

F1 = 2 · Precision ·Recall
Precision+Recall

(10)

Figure 6: Intra-distances (green) and inter-distances (blue) are
approximated by normal distributions. The numbered areas
represent: 1. True Positive 2. True Negative 3. False Negative
4. False Positive

3.3.3 Tested Features. Features are generated in a two-step
process. First, the image blocks are transformed during a prepro-
cessing step. The resulting image blocks are then projected into a
feature space of arbitrary dimension. The following lists present
the image and feature space transformations that were tested:

Image transformations: Fourier transformation, structure tensor,
Hessian matrix, local entropy, local fractal dimension, normalised
difference vegetation index (NDVI)

Feature transformations: Histogram, co-occurrence matrix, auto-
correlation, frequency spectrum

Some of our features were from the literature (Pratt, 2001), (Brox
et al., 2006), (Soille and Rivest, 1996) and (Rouse et al., 1974).

Table 7 contains the results of the different transformation combi-
nations in terms of their F1-scores. Higher scores indicate better
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Histogram Co-occurrence matrix Autocorrelation Frequency spectrum
Identity 0.78 0.76 0.61 0.75

Fourier transformation 0.83 0.79 0.78 0.73
Local entropy 0.68 0.67 0.52 0.71
Local fractal dimension 0.54 0.53 0.51 0.57
NDVI 0.76 0.53 0.59 0.75

Structure tensor 0.83 0.72 0.61 0.78

Hessian matrix 0.89 0.89 0.58 0.82

Table 7: Median of the F1-scores across the training sets. Best results are emphasised.

classification results, whereby a 1.0 would imply a perfect clas-
sification. Overall, there is a significant variability between each
training set, but texture based features generally generate better
results. Surprisingly, the NDVI feature only works well on half
the training sets, while autocorrelation results tend to be situated
at the bottom of the rankings, despite the strikingly regular struc-
ture usually displayed by plantations.

4. RESULTS

Input scenes for the training sets and the plantation extraction
tests were selected from IKONOS satellite images with a 1m res-
olution in panchromatic mode. Great care was exercised to select
scenes that feature a wide variety of landscape types, and espe-
cially most plantation subtypes.

Table 8 shows the segmentation results for five test scenes, using
different feature space combinations. The feature spaces used
for the segmentations in Figure 9 - 11 were selected according
to the results of the feature selection step in table 7. As such, a
combination of three feature spaces was used:

• Histogram from Hessian matrix

• Histogram from structure tensor

• Histogram from Fourier transformation

The left image shows a manually generated reference mask, while
the right image shows the result from our segmentation algo-
rithm. Overall, our algorithm produces excellent recall, but only
mediocre sensitivity results, which were due to plantation regions
heavily expanding into background regions. This effect is empha-
sised if the background region contains object classes that do not
appear homogeneous in the chosen feature space.

5. CONCLUSIONS AND FUTURE WORK

Our results have shown that feature spaces well suited for the ex-
traction of specific object classes can be selected in an automatic
manner. For some scenes, a segmentation quality of up to 0.94
(F1-score) was reached. Still, the choice of a two-region segmen-
tation scheme proved to be too restricting, since non-plantation
object classes do not appear homogeneous in any single feature
space that was tested. Our plan is, therefore, to update our frame-
work to support a multi-region segmentation algorithm, allowing
us to define and extract multiple object classes from a scene at the
same time. Simultaneously, the catalogue of evaluated feature
spaces will be expanded to get a better understanding of which
feature space encapsulates the statistical properties of each object
class best.
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Table 8: Segmentation results for five test scenes using different feature space combinations. Best results for each scene are emphasised.
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Figure 9: Manual reference segmentation (left) and our fully automatic segmentation (right)

Figure 10: Manual reference segmentation (left) and our fully automatic segmentation (right)

Figure 11: Manual reference segmentation (left) and our fully automatic segmentation (right)

In: Wagner, W., Székely, B. (eds.): ISPRS TC VII Symposium – 100 Years ISPRS, Vienna, Austria, July 5–7, 2010, IAPRS, Vol. XXXVIII, Part 7A
Contents Author Index Keyword Index

280
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ABSTRACT:

The accurate estimation of canopy biophysical variables at sufficiently high spatial and temporal resolutions is a key requirement for
operational applications in the agricultural sector. In this study, recently available multispectral RapidEye sensor data were tested for
their operational suitability to estimate canopy biophysical variables in the Italian Campania region. For this purpose, two model
inversion methods and two commonly used vegetation indices were applied to estimate leaf area index (LAI), canopy chlorophyll
content (CCC) and leaf chlorophyll content (LCC) from a range of crops. The physically based approaches outperformed the
empirical methods, with a slightly higher retrieval accuracy of the look-up table (LUT) than of the neural network (NN) approach.
However, the NN method performs much faster, rendering it potentially more appropriate for application in large areas. The
empirical models showed dependencies of sensor and crops, but still performed reasonable in the estimation of LAI and CCC.
Results demonstrated the suitability of RapidEye sensor data to retrieve canopy biophysical variables of agricultural areas.

1. INTRODUCTION

1.1 Crop monitoring

The regular and accurate mapping of crop status is an important
requirement for a sustainable agricultural management. It
enables, for instance, the early detection of crop water stress or
nitrogen deficiencies, thus helping farmers to mitigate potential
crop damages while reducing environmental impacts. For this
purpose, frequent information of crop status at sufficiently high
spatial resolutions is required, being of particular importance
for heterogeneous agricultural regions, characteristic for
Southern Italy. Remotely sensed data from air- or space-borne
platforms offer an interesting alternative to cost and labour
intensive ground measurements. Earth observation (EO) data
with improved spatial and temporal resolutions, such as those
from the RapidEye constellation (http://www.rapideye.de/),
offer new opportunities for a sustainable agricultural
management.

1.2 Biophysical variables and retrieval techniques

In the present study, three of the key biophysical variables of
interest for precision farming applications were examined: leaf
area index (LAI) (e.g., Moran et al., 1995), leaf chlorophyll
content (LCC) and canopy chlorophyll content (CCC) (e.g.,
Baret et al., 2007). LAI, a key variable of vegetation,
characterizes the leaf surface available for energy and mass
exchange between surface and atmosphere (Moran et al., 1995).
Different definitions of LAI have been used in the literature
depending on vegetation type and measurements (Jonckheere et
al., 2004), such as green LAI (‘GLAI’, e.g. Migdall et al.,
2009), effective LAI (‘Le’, Chen and Black, 1992) or plant area
index (‘PAI’, Neumann et al., 1989).

Chlorophyll content was found to be directly related to nitrogen
(N) availability of the leaves (e.g. Evans, 1989). Therefore, the
sensitivity of the solar reflective domain to chlorophyll content
is usually used to quantify the plant nitrogen status. Baret et al.
(2007) demonstrated that the relationship between canopy
chlorophyll content and N is more robust over years and
development stages than the correlation at leaf level. Thus,
canopy chlorophyll content presents greater potential than leaf
chlorophyll content to detect vegetation stress and should be the
privileged variable to be retrieved.

A variety of methods have been proposed to estimate these
biophysical variables from remotely sensed data (Baret and
Buis, 2008). The majority of the studies have used (semi-)
empirical relationships between the biophysical variables of
interest and a combination of spectral bands, namely vegetation
indices (VI). These methods, successfully applied to a number
of applications (Glenn et al., 2008), are fast and easily
implementable at large data sets and thus suitable for
operational purposes. The Weighted Difference Vegetation
Index (WDVI) (Clevers, 1989), for instance, is being used for
operational retrievals of LAI in the context of Irrigation
Advisory Services in Southern Italy (De Michele et al., 2009).
Moreover, information on canopy chlorophyll content is being
routinely distributed to users through the MERIS Terrestrial
Chlorophyll Index (MTCI) (Dash and Curran, 2007). Currently,
MTCI is operationally available only at medium spatial
resolution, but it will be supplied by future ESA’s Sentinel-2
optical system at finer spatial resolution.
Despite the wide use of these approaches, VIs are limited in
their global estimation performance since calibration is mostly
required to account for changing conditions. This includes for
instance differences in sensor types and crop canopy
architecture, changing illumination and viewing geometries or

_________________________________________________________________________________________________________________________________________________________________________________________________________
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varying soil backgrounds (Colombo et al., 2003). With the
advancement in developing radiative transfer models (RTM),
these aspects can be considered by means of physical principles.
Therefore, new perspectives have opened up for reliable and
accurate estimations of biophysical products in the context of
operational applications (Bacour et al., 2006).
However, these models have also limitations, such as the need
for parameterization and high computational demand.
Furthermore, the ill-posed inverse problem must be considered:
different parameter combinations may produce almost identical
spectra, resulting in significant uncertainties in the estimation of
biophysical vegetation variables (Atzberger, 2004). Even
though this problem affects as well empirical approaches, it is
often only discussed in the context of RTM model inversion.

The objective of this study is to evaluate the performance of
RapidEye sensor data to estimate LAI, leaf chlorophyll content
and canopy chlorophyll content. Two model inversion
techniques, i.e. look-up tables (LUT) and neural networks (NN),
are applied for this purpose. In order to evaluate the
performance of current operational VIs, the analysis is extended
to the estimations of LAI and canopy chlorophyll content by
using pre-calibrated equations based on WDVI and MTCI. The
suitability of the data and the retrieval techniques are discussed.

2. MATERIAL AND METHODS

2.1 Field Campaign

The data used in this study are based on satellite acquisitions
and a ground measurement campaign at the “Piana del Sele”
study site (Lat. 40.52 N, Long. 15.00 E), which is one of the
largest agricultural areas of the Italian Campania region,
Southern Italy. The area is characterized by irrigated agriculture
(mainly forages and fruit trees) with an average field size of
about 2 hectares (De Michele et al., 2009).
A total number of 36 LAI and leaf chlorophyll measurements
were acquired simultaneously at different sites and for a range
of crops, including fruit trees (such as peach and apricot),
maize, cereals and different vegetables. LAI measurements were
carried out by means of the Plant Canopy Analyzer LAI-2000
instrument (LICOR Inc., Lincoln, NE, USA). Due to its
measurement principle, the sensor does not distinguish
photosynthetically active leaf tissue from other plant elements,
such as stems, flowers or senescent leaves. Moreover, the
clumping effect, i.e. non-random positioning of canopy
elements, is neglected. Thus, the here used term ‘LAI’ stands
for effective PAI (‘PAIe’) (Darvishzadeh et al., 2008).
Measurements were performed in order to cover an Elementary
Surface Unit (ESU) of approximately 400 m2 geolocated by
means of a GPS device (accuracy 3-5 m). The average value of
LAI, resulting from a set of 20 above and below canopy
readings, was considered to be representative for the respective
ESU. The standard deviations of the measurements were kept as
a measure of uncertainty.
Leaf chlorophyll content was measured by using a SPAD-502
Leaf Chlorophyll Meter (MINOLTA, Inc.). At each ESU, 30
measurements of leaves in different layers were randomly
performed and averaged to a final representative value. Crop
specific calibration functions (peach tree: Marchi et al., 2005;
maize: Haboudane et al., 2001; other crops: SPARC, 2004)
were applied to convert the SPAD values into leaf chlorophyll
content [m cm-2]. The total canopy chlorophyll content [g m-2]
was finally obtained by multiplying leaf chlorophyll content
with the corresponding LAI of each ESU.

2.2 Remote Sensing data

Multispectral remote sensing data from RapidEye sensor were
acquired on 17th August 2009 (at 10:35 UTC). This recently
launched constellation (August 2008) of five identical EO
satellites records radiance in five broad bands corresponding to
blue, green, red, red-edge and near-infrared (NIR) part of the
electromagnetic spectrum. The sensors provide a spatial
resolution of 5 m and are therefore potentially very suitable for
agricultural applications.
Four images, acquired within a few seconds, with a maximum
across-track incident angle of 5° were adequate to cover the
study site (about 560 km2). Radiometrically calibrated Level 3A
data were provided with a geometric accuracy of 13.95 m (root
mean square error, RMSE = 6.50 m). Further geometric
correction was performed using Ground Control Points (GCPs),
resulting in a final geolocation accuracy of about 3 m.
The first image tile was atmospherically corrected by using
ATCOR-2/3 (Richter, 1998). The spectral reflectance of known
reference targets (i.e., asphalt, sea water, concrete and sand) was
used for the retrieval of atmospheric properties. Subsequently,
an empirical line method was applied to correct the other three
images. For this purpose, uniform areas in the overlapping
regions between adjacent images were considered: twenty zones
of about 200 m2 representing dark and bright surfaces were
selected for each image and correction functions were derived
for each spectral band.
To account for the accuracy of geometric correction and ground
biophysical variable measurements, the final mosaicked image
was resampled to a spatial resolution of 15 m.

2.3 Radiative Transfer Modelling

The well-known and widely used coupled PROSPECT+SAILH
model (‘PROSAIL’, Jacquemoud et al., 2009) was chosen for
the study. PROSAIL is a combination of the leaf model
PROSPECT–4 (Feret et al., 2008) and the canopy model
SAILH (Verhoef 1984, 1985; Kuusk 1991). It calculates the bi-
directional reflectance of homogeneous canopies as a function
of several structural and biophysical variables (see Table 1), soil
reflectance, illumination and viewing geometry.

2.3.1 Model inversion with look-up tables (LUT)

Even though it is a relatively simple method, the look-up table
(LUT) approach is one of the most robust and accurate model
inversion strategies. It has been applied in combination with the
PROSAIL model by a number of studies (e.g. Darvishzadeh et
al., 2008; Richter et al., 2009; Weiss et al., 2000), successfully
retrieving biophysical variables of different crop types and at
different sites.
To set up the inversion, a synthetic data base was established
with the PROSAIL model simulating RapidEye spectral band
configuration using the specific band sensitivity functions. A
LUT size of 100000 different combinations of variables was
chosen according to Weiss et al. (2000). The variables and
model parameters were randomly sampled using uniform
distribution laws and according to typical ranges found in the
literature for agricultural land use (Table 1). Model inversion
was performed using a simple cost function calculating the
RMSE between measured and simulated spectra. The solution
was regarded as the average of the variable combinations found
within less than 20 % of the lowest RMSE value (e.g. Richter et
al., 2009).
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2.3.2. Model inversion with neural networks (NN)

Neural networks were included in this study as an alternative
mean to (rapidly) invert RTM over large areas. The synthetic
data base generated for the LUT approach was used to train the
network. Training permits a net to learn the intrinsic relation
between some input variables (here the canopy reflectance
spectra) and one or more output variables (here the sought
biophysical variables). Setting up the network structure and
network training may be a time consuming process. However,
once trained, the sought biophysical variables can be retrieved
immediately.
To prevent overfitting and overspecialisation several measures
were taken. First, the network was kept compact using a single
hidden layer with only five neurons. Second, three variables
were modelled at the same time to avoid over-specialisation:
LAI, leaf chlorophyll content and soil reflectance scaling factor
(αsoil). Finally, the early stopping technique was applied to
further improve network generalization. For this purpose, the
patterns generated with PROSAIL were divided into two
subsets. The first subset (75 % of the pattern) was used for
updating the weights and biases of the network (training
dataset). The error on the test dataset (the remaining 25 %) was
monitored during the training process. The training was stopped
automatically when the error in the test dataset started to rise as
this indicates network overfitting.

Model Variables Units Range
PROSPECT

N Leaf structure index unitless 1.3-2.0
Cab Leaf chlorophyll

content
[µg cm-²] 10-70

Cm Leaf dry matter
content

[g cm-²] 0.004-
0.007

SAILH:
LAI Leaf area index [m² m-2] 0-6
ALA Average leaf angle [degree] 35-70
HotS Hot spot parameter [m m-1] 0.01-1
soil Soil reflectance

scaling factor
unitless 0.6-1.4

s Sun zenith angle [degree] 28
v View zenith angle [degree] 5
 Sun – sensor

azimuth angle
[degree] 71

Table 1. Range of model input variables used to establish the
synthetic canopy reflectance data base for NN and LUT based

model inversions.

2.3.3. Empirical model: vegetation indices (VI)

The WDVI is based on the reflectance in the NIR and red
wavelength ranges. Calculation of WDVI requires information
of the soil line slope, which can be directly derived from the
imagery. A logarithmic relationship was used to estimate LAI
from WDVI, which was calibrated during several field
campaigns in the study site in the last years (R2=0.64) (D’Urso
and Belmonte, 2006).
The MTCI (Dash and Curran, 2007) was calculated from NIR,
red edge and red spectral bands. A linear equation calibrated
using ground data (R2=0.80) (Dash at al., 2010) was adopted in
this study to estimate the canopy chlorophyll content. Detailed
description of the indices can be found in D’Urso and Belmonte
(2006) and Dash and Curran (2007), respectively.

3. RESULTS AND DISCUSSION

3.1 Retrieval of leaf and canopy variables

Estimations of LAI using the two inversion methods performed
well with a slightly higher accuracy from the LUT
(RMSE=0.64; R2=0.76) than from the NN method
(RMSE=0.72; R2=0.71). With the WDVI, a lower estimation
accuracy was achieved (RMSE=1.14; R2=0.57). Measured
against simulated LAI values are presented in Fig.1a-c.
For canopy chlorophyll content, a high retrieval accuracy was
obtained from the LUT (RMSE=0.39 g m-2 and R2= 0.78) and a
slightly lower from the NN (RMSE=0.43 g m-2 and R2=0.74).
Application of the MTCI achieved a lower accuracy than the
physically based approaches (RMSE=0.86 g m-2 and R2=0.73).
Correlations between estimated and measured canopy
chlorophyll content values are shown in Fig.1d-f.
In case of leaf chlorophyll content, all approaches failed to give
reliable estimates: by the LUT a RMSE of 15.1 g cm-2 and by
the NN a RMSE of 11.3 g cm-2 was achieved (not shown).
Regarding crop specific differences in retrieval accuracy (Table
3), LAI values were generally estimated best for fruit trees.
Estimation uncertainties may be explained by the non-linear
relationship between reflectance and LAI, leading to saturation
at higher LAI values, as visible in Fig. 1 for all approaches.
Moreover, a possible presence of clumped leaves may
strengthen the underestimation of higher LAI values (i.e., LAI >
3), especially in case of maize.
Canopy chlorophyll content was obtained with a reasonable
accuracy for maize and partly fruit trees using the model
inversion techniques.
The overall poor retrieval accuracy of leaf chlorophyll content
is also reflected in the crop specific RMSE. Only for maize, the
LUT achieved reasonable results with RMSE of 5.9 µg m-2.
The retrieval accuracy of leaf characteristics from canopy
spectra depends on the strength of the signal transmitted from
leaf to canopy level, which is mainly controlled by structural
variables such as LAI or leaf angle (Asner, 1998). Thus,
compensations between LAI and leaf chlorophyll content may
occur, leading to the well-known ill-posed inverse problem
(Combal et al., 2002). Strong improvements in the estimation
accuracy were also observed in other studies when using the
product between these two variables (Baret et al., 2007).
A further explanation for the poor estimation of leaf chlorophyll
content may be the presence of heterogeneous canopies (such as
fruit trees and maize), not corresponding to the turbid medium
assumption of the used model. The application of more complex
models, such as GeoSAIL proposed by Huemmrich (2001),
might improve the retrieval performance (Richter et al., 2009).
A further improvement may result from object-based inversion
strategies (Atzberger, 2004).
The lower retrieval accuracy of the VI confirms the need of
sensor-specific calibration, in particular for the MTCI, which
was specifically designed for narrow visible/NIR wavebands.
The red edge band originally used to calculate the MTCI is
based on MERIS spectral band characteristics with a spectral
bandwidth of about 10 nm (703.75 - 713.75 nm). RapidEye red
edge band is instead sampled in a spectral bandwidth of 40 nm
(690 - 730 nm). Therefore, adaptation of the equation to broad
band spectral characteristics, as for RapidEye sensors, might be
required. Further investigation is needed for this issue.
Results obtained with WDVI confirm that a sensor and crop
specific calibration is required.
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A map of spatially distributed canopy chlorophyll content
(using the NN) is depicted in Fig. 4, representing the area of

“Piana del Sele” in the Italian Campania region. Such maps are
possible inputs in the context of precision farming applications.

Figure 2. Estimated versus measured biophysical variables of different crops (Piana del Sele, Italian Campania region). 1a: LAI with
LUT approach, 1b: LAI with NN approach, 1c: LAI from WDVI, 1d: canopy chlorophyll content (CCC) from LUT, 1e: CCC

estimated with NN, 1f: CCC from MTCI. Symbols correspond to: ‘·’ fruit trees, ‘o’ maize and ‘*’ other crops.
Error bars in 1a-c indicate standard deviations of the LAI measurement.

Crop
type

LAI
[m2 m-2]

CCC
[g m-2]

LCC
[µg m-2]

LUT NN VI LUT NN VI LUT NN

Fruit
trees(1) 0.35 0.61 0.95 0.34 0.25 0.7 18.3 8.7

Maize 0.89 0.91 0.82 0.50 0.70 1.18 5.9 10.4

Others (2) 0.93 0.72 2.03 0.31 0.28 0.7 13.1 19.4

Combined 0.64 0.72 1.14 0.39 0.43 0.86 15.1 11.3
(1) includes peach, apricot, kiwi and plum trees
(2) includes aubergines, alfalfa, pepper, artichokes and cereal

Table 3. Crop specific (and combined) RMSE between
measured and estimated biophysical variables using LUT,

NN and the two VI approaches (MTCI for CCC and WDVI
for LAI estimation).

3.2 Operational suitability

An important issue for the use of physically based retrieval
techniques in the context of operational applications is the

time required for inverting RTM over large areas. Both
inversion methods perform rather fast in comparison to
traditional approaches, such as iterative optimisation
techniques. However, the NN method outperforms clearly the
LUT in this regard.
In pixel-based inversions, redundant LUT searches are being
performed since many signatures are similar. Therefore, in
order to render the LUT inversion procedure more effective
and faster, an unsupervised classification was applied to the
imagery before further processing, grouping the reflectance
spectra into a certain number of classes. This number
depends on the heterogeneity of the region and sensitivity
analyses must be carried out to obtain the optimal number of
classes, reducing redundancy without losing important
spectral information. For the study area, 2000 classes were
chosen, reducing the computational load almost 850 times
(original number of pixel 1.7 mil.). The ISODATA clustering
method of the Erdas Imagine software, which uses minimum
spectral distance formula, was applied. Maximum number of
iterations was set to ‘6’ and the convergence threshold to
‘0.95’.
Each of the 2000 input spectra was calculated as the average
of all spectra contained in one class. Processing of the LUT
inversion was then performed as described in sect. 2.3.1.
In this way, the speed of the LUT based inversion was
comparable with the NN based approach. However, the
resulting estimation accuracy decreased significantly (LAI:
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RMSE=0.8, LCC: RMSE=17.4 g cm-2 and CCC:
RMSE=0.46 g m-2) despite this high number of classes. This
lower estimation accuracy in comparison to the pixel based
approach may be due to the loss of spectral information,
especially affecting high values of LAI. Enhancing the
number of classes may increase the accuracy, but also the
computation time.
Although the neural nets may be more suitable for such fast
operations, a drawback relates to their reduced availability.
For the current work, the networking was performed under
the Matlab processing environment (The Mathworks, 2007).
Unfortunately, standard image processing software does not
yet include this mapping technique. To foster the use of
physically based approaches, providers of image processing
software should add modules for direct and inverse
modelling.

Figure 4. Spatial distribution of canopy chlorophyll content
in the “Piana del Sele”, Italian Campania region, derived

from the neural network (white zones correspond to urban
areas or greenhouses).

4. CONCLUSIONS

Recently available multispectral RapidEye data were tested
for their operational suitability to estimate canopy
biophysical variables in an agricultural area of Southern Italy.
The physically based retrieval approaches outperformed the
empirical methods, whereas the retrieval accuracy of the LUT
was slightly better than the neural networks approach.
However, the latter, already used in operational applications
for coarse resolution data (Bacour et al., 2006), is much
faster rendering it more suitable in this context. An
unsupervised classification of the imagery prior to the RTM
inversion was applied to reduce calculation time, as proposed
by Baret and Buis (2008), but results were less accurate than
pixel based procedures.
Generally, the canopy based variables (LAI and canopy
chlorophyll content) could be estimated with much higher
accuracy than variables on leaf level (leaf chlorophyll
content), confirming previous findings of the literature (Baret
et al., 2007). This might be a drawback for certain
applications, where properties of the leaves are required. For
general precision farming applications, however, information

at the canopy level can be sufficient or even of advantage
over the leaf level (Baret et al., 2007).
Conclusively, RapidEye sensor provides useful data to derive
biophysical variables for operational applications in the
agricultural sector. Such applications may include, for
instance, the modelling of crop water requirements, needing
LAI as input, or the assessment of plant nitrogen status,
requiring the information of canopy chlorophyll content. The
use of physically based approaches to estimate these
variables is suggested. Further validation work is required to
test the applicability of these techniques for different areas
and crops.
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ABSTRACT:

Since the advent of high-resolution satellite sensors the pansharpening of multispectral data using the higher spatial information of
the panchromatic channel became a prominent topic in the data fusion community. Besides the development of new algorithms also
the evaluation of approaches has been addressed in recent years leading e.g. to competitions as by IGARSS (Alparone et al., 2007)
using visual inspection and quantitative measures for quality assessment. (Zhang, 2008) questioned the significance of such quantitative
measures to evaluate the impact of pansharpening on subsequent processing like classification using an example based on linearly trans-
formed data. This was the motivation for our investigations addressing the question, if quantitative evaluation criteria for pansharpening
can reflect its impact on subsequent processing.

1. INTRODUCTION

The question addressed in this contribution is, if quantitative qual-
ity measures for pansharpening evaluation really indicate the qual-
ity of the data as input for subsequent processing like classifica-
tion and its impact on the quality of the results of this processing.
Fusion of multispectral data with data of higher geometric reso-
lution has been already addressed for a long time. Nonetheless
with the advent of high resolution satellite sensors like IKONOS
and QuickBird a variety of different approaches based also on
quite different techniques (c.f. (Zhang, 2004)) has been proposed
taking also sensor characteristics into account in order to improve
the results of pansharpening and thereby facing tightened require-
ments on the spectral consistency of the pansharpened multispec-
tral data. As a consequence of both developments quality assess-
ment has also been addressed since some years which led to the
proposal of a number of quality measures and competitions of
pansharpening approaches as e.g. by IGARSS (c.f. (Alparone et
al., 2007)) combining visual / qualitative and quantitative evalu-
ation. First the quantitative measures based on a comparison of
the original and pansharpened multispectral data took mainly the
spectral consistency into account. Recent developments consider
not only the spectral consistency, but also the information con-
tent transferred from the panchromatic to the pansharpened mul-
tispectral data (c.f. (Alparone et al., 2006)). (Zhang, 2008) ques-
tioned the significance of such quantitative measures – focussing
on the spectral consistency – with respect to the impact of the
pansharpening on the results of subsequent processing using as
example linearly transformed data and clustering: Although the
clustering leads to the same results, the quantity Q4 (Alparone et
al., 2004) used for quality assessment differs. In this case these
differences for Q4 are due to different signal means and variances
caused by the linear transformations, whereas the clustering is not
sensitive and thereby the results are not influenced by these trans-
formations. Nonetheless other subsequent processing and classi-
fication algorithms may be sensitive to distortions caused by the
pansharpening.

The discussion above is the motivation of our recent investiga-
tions. We used simple pansharpening approaches – simple with
respect to their concept and their implementation within tool-
boxes of image processing and remote sensing software packages
– shortly outlined in the following section. Quantitative measures

to evaluate the quality of the obtained pansharpened data are pre-
sented and discussed in Section 3. The pansharpened data sets
are then used for clustering and feature extraction. Based on the
results, the impact of pansharpening on clustering and feature ex-
traction is shown and evaluated in Section 4. followed by conclu-
sions and an outlook.

2. PANSHARPENING APPROACHES

Simple pansharpening approaches like Brovey or principal com-
ponent analysis (PCA)-based approaches suffer from the fact that
the following two conditions

Cpan ∝
n∑

j

wjCj (1)

withCpan denoting the panchromatic channel,Cj a multispectral
channel and wj its weight and

Cpan ∝ Csub (2)

with Csub the channel to be substituted and high correlation be-
tween the two channels is required, but not met. The first condi-
tion (1) is valid for sensor systems like QuickBird and is of impor-
tance for arithmetic combinations like Brovey on one hand and
frequency-based algorithms on the other. This condition is e.g.
used by used by (Kalpoma and Kudoh, 2007) and (Aiazzi et al.,
2007). From (1) also follows the existence of a linear transform
to map the panchromatic channel to the weighed sum. An exam-
ple for such a linear transformation is histogram matching based
on the means and the standard deviations of the signals. The sec-
ond condition (2) is required for approaches based on component
substitution by the high-resolution channel: the component to be
substituted and the panchromatic channel have to be similar.

In (Weidner and Centeno, 2009) we investigated four approaches
with respect to their capability to maintain spectral consistency.
The first approach is an adapted Brovey transformation (BROV)
taking into account the different spectral bandwidths of the chan-
nels to compute a weighed intensity channel as a lower resolution
approximation of the high resolution panchromatic channel and
performing a linear transformation based on histogram matching
between these before the arithmetic combination. The second
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approach investigated is a PCA-based approach based on substi-
tution. This approach was mainly included as a kind of reference
in order to show the limitations of PCA-based approaches and to
derive an approach based on an orthogonal transformation. The
idea of this third approach (ORTHO) is to define a linear combi-
nation of the multispectral channels according to the conditions
stated above for the channel to be substituted, thus defining the
first row of the transformation matrix. The other rows are con-
structed in such a way that the rows constitute an orthogonal ba-
sis. The fourth approach is based on linear filter, namely Laplace
and is thereby frequency-based (PANSHLPL). Details on the im-
plementations of these approaches can be found in (Weidner and
Centeno, 2009).

3. QUANTITATIVE EVALUATION APPROACHES

(Wang and Bovik, 2002) proposed the index defined by

ρWB =
4·σAB ·µA·µB

(σ2
A + σ2

B)(µ2
A + µ2

B)
(3)

ranging from 0 to 1 to measure the similarity between two one-
channel gray-valued images. µA and µB denote the means, σ2

A

and σ2
B the variances and σAB the covariance of the images. It

can be rewritten to

ρWB =
σAB

σA·σB
· 2·µA·µB

µ2
A + µ2

B

· 2·σA·σB

σ2
A + σ2

B

(4)

in order to clarify the parameters. Each criterion has been used in
a number of publications on pansharpening evaluation, but they
are now combined. A detailed discussion of terms and how (4)
can also be used within pansharpening is given in (Weidner and
Centeno, 2009). In a first step (Alparone et al., 2004) generalised
the index of (Wang and Bovik, 2002). This generalised index Q4
is applied in (Alparone et al., 2007) besides two other measures
- SAM and ERGAS. Their generalisation is based on the use of
quaternions and thereby restricted to evaluate results of images
with n = 4 channels. We therefore propose to generalise the
index of (Wang and Bovik, 2002) by

ρ∗WB =
4·tr(ΣAB)·|µ

A
|·|µ

B
|

(tr(ΣA) + tr(ΣB))(|µ
A
|2 + |µ

B
|2)

(5)

where tr denotes the trace of a matrix, µ
A

the vector of mean
values of data set A, |µ

A
| the length of the vector, ΣA the co-

variance matrix of A, and ΣAB the covariance matrix of the data
sets to be compared. Instead of the quantity Q4, (5) is not re-
stricted to four channels. In order to overcome the restriction of
dimension and to also include the information content of the pan-
sharpened multispectral channels in the quality assessment, (Al-
parone et al., 2006) proposed a new index QNR which consists of
two terms. The first term is based on the quality index of (Wang
and Bovik, 2002) comparing the multispectral original and pan-
sharpened data and added for all channels, the second is based on
similarity measure between multispectral and panchromatic data
in a high resolution and low resolution version. In our investiga-
tion we will use a different approach motivated by (Xydeas and
Petrovic, 2000) to measure the information content of the pan-
sharpened image, namely the correlation of gradient information.
For this purpose first a weighed mean of the multispectral data
according to (1) is computed followed by computing the gradient
absolute values of the weighed mean of the multispectral chan-
nels and the panchromatic channel and their correlation ρ∗∇ lead-
ing to the quantity

q∗T = q∗WB ·ρ∗∇ (6)

Figure 1: Subset URBAN - original data

Figure 2: Subset FOREST - original data

Figure 3: Subset RIVER - original data

as a combined quantity to evaluate spectral consistency and infor-
mation content. We prefer this quantity, because the gradient in-
formation forms the basis for point / feature extraction and should
therefore be closely related to results of these algorithms.

4. SETUP OF INVESTIGATIONS AND RESULTS

Our investigations relating quantitative quality measures for pan-
sharpening with the impact of pansharpening on subsequent pro-
cessing of remote sensing data is based on a number of subsets
from a QuickBird scene. Results for three subsets are discussed in
more detail. These subsets constitute of an urban area (URBAN,
Fig. 1), a mixed area with a sewage plant and forest (FOREST,
Fig. 2) and an area with a larger river bed (RIVER, Fig. 3).
The first subset provides a variety of different surface covers in-
cluding man-made structures. The other subsets are selected for
their simplicity on one hand, but also for their spectral properties
– namely the homogeneous forest and water areas – on the other
hand.
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Table 4: Evaluation by quantitative measure

Multispectral Panchromatic

BROV PCA

ORTHO PANSHLPL

Figure 5: Results for subset URBAN (section)

Multispectral Panchromatic

BROV PCA

ORTHO PANSHLPL

Figure 6: Results for subset RIVER (section)
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Table 7: Comparison of clustering results URBAN

Tab. 4 compiles the quantitative indicators discussed in the pre-
vious section in sequence of the three subsets and the algorithms
described in Section 2.. The results are given for the four sin-
gle multispectral layers (B, G, R, NIR) numbered from 1 to 4
according to (3), the mean value of these results and the combi-
nation of the four channels using (5). The next column compiles
the correlation of corresponding Soobel gradient images and the
last column the results for q∗T according to (6). In this contribu-
tion the quantities are computed for the entire subsets. A distinc-
tion between homogeneous and non-homogeneous areas (edges)
is made in (Weidner and Centeno, 2009). The ranking of algo-
rithms keeps the same, but results are worse within edge regions.

Fig. 5 displays the original data and the results for a smaller sec-
tion – using a clipping of 5 % of each channels histogram – of
the subset URBAN. The quantities involved in (6) show only mi-
nor differences except PCA. For all algorithms the result for the
first channel (B) is minor to the other channels. A closer analysis
further indicates that those algorithms mainting spectral proper-
ties are minor in transferring the gradient information to the pan-
sharpened multispectral channels. This trade-off is not surprising
especially for simple algorithms as used here. Furthermore, those
algorithms performing a linear transformation work slightly bet-
ter than others taking the correlation of gradient information into
account. Nonetheless, the quantities indicate problems with the
PCA-based algorithm, which also could be verified by visual in-
spection. In fact the PCA-based algorithm turns out to perform
worst (c.f. Fig. 6) also for the two other selected subsets due
to their special characteristics and the data dependence of PCA
determining the transformation matrix. The difficulties for sin-
gle channels are disguised by the criterion based on the set of all
channels. The SAM criterion indicates that the fourth algorithm
based on linear filtering has no impact on SAM independent from
the data.

In the following we address the impact of pansharpening on two
possible processing steps, namely classification and point extrac-
tion. We selected these two processing steps, because classifica-
tion depends on the spectral properties and point extraction on the
information content given by the gradient information.

For unsupervised classification we selected k-means clustering
and 8 clusters for all subsets although the complexity of the sub-
sets is different. The clustering results for the different pansharp-
ing results are not identical concerning their ID and therefore
clusters are automatically assigned using the overall accuracy as
criterion. Clustering adopts for linear changes in feature space
and therefore linear spectral transformations do not have an in-
fluence on its result. For the comparison of the clustering results
using the pansharpened data of the first data set URBAN Tab. 7
compiles the overall accuracies and the κ indices. The clustering
is performed on the entire data set, but for the analysis three cases
a discerned: entire data set, homogeneous and non-homogeneous
areas as in (Weidner and Centeno, 2009) for the quality mea-
sures applied therein. Within the homogeneous areas the results

Figure 8: Subset URBAN clustering - BROV homogeneous areas

Table 9: Comparison of clustering results FOREST / RIVER (ho-
mogeneous areas)

of clustering should not differ, for edge regions differences have
to be expected. As an example the result of clustering based on
the pansharpened data by BROV within the homogeneous areas
is shown in Fig. 8. Although the overall visual impression for the
clustering results is almost the same, smaller deviations can be
observed which also lead to a lower overall accuracy taking the
clustering result of the original multispectral data as reference.
The ranking is the same for all three cases mentioned above tak-
ing the significance of differences between the overall accuracies
into account. Again the result for the edge regions are minor to
those of the homogeneous regions.

The results for the first data set are confirmed by the results of
the subset FOREST (c.f. Tab. 9). In case of the subset RIVER
however the ranking according the overall accuracy differs sig-
nificantly. The visual comparison of the data (c.f. Fig. 6 and Fig.
10 for the results of clustering) is in accordance with the quality
evaluation taking the single channels as basis, but is not appar-
ent neither by ρ∗WB nor the overall accuracy. The value and / or
range of overall accuracies depend on the data and the class distri-
bution. The data set was selected to study homogeneous regions
(dominant cluster river) and their impact on the preprocessing for
pansharpening. Therefore not the absolute values but only the
rankings are of interest.

For the subset RIVER a test of the impact of pansharpening on
Maximum-Likelihood (ML) classification is accomplished. Com-
pared to the other data sets it comprises only few classes. Four
training areas for the river (Rhine), fields (bare soil), meadows
and forest – the most dominant classes – are defined in homo-
geneous areas. The first set of classifications used the spectral
signatures from the original multispectral data serving as spectral
library, the second set the spectral signatures from each data set.
Therefore the results of the first set are affected by linear changes,
but not those of the second set. All other parameter settings are
kept the same. Results are displayed in Fig. 11 showing only
a small section for better visualisation and statistics for the en-
tire subsets (homogeneous areas) are given Tab. 12. Except for
PCA the achieved overall accuracies are in the same range for
both settings. The deviations for PCA are caused by the spectral
distortions (c.f. Tab. 4) and are anticipated (c.f. Tab. 13 for the
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Multispectral

BROV PCA

ORTHO PANSHLPL

Figure 10: Clustering results for subset RIVER (section)

Bhattacharrya distances between the original spectral data and
those of the pansharpened for each training area).

In order to evaluate the impact of pansharpening algorithms on
point extraction the SIFT operator (Lowe, 2004) is selected in-
cluding also a matching of points across the data sets. The eval-
uation is based on the pansharpened multispectral data for which
a weighed mean according to (1) is computed. Point extraction
uses the panchromatic channel as reference and only those points
which are matched across all pansharpening results for a data set
are included in the analysis. The statistics in Tab. 14 are based on
about 260 points for the subset URBAN, 280 points for the subset
FOREST and 140 points for the subset RIVER. These points are
evenly distributed across the data sets except for the river which
also caused the lower number of matched points. Given are the

Table 12: Comparison ML-classification (homogeneous areas)

Table 13: Bhattacharrya distances

Multispectral

Spectral signatures from original MS data

BROV PCA

ORTHO PANSHLPL

Spectral signatures from each data set

BROV PCA

ORTHO PANSHLPL

Figure 11: ML-classification results for subset RIVER (section)
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Table 14: Results of point matching (SIFT) [pixel]

mean point distances, their standard deviation and their median
for comparison. A low mean and median of point distances indi-
cate that the matched point of the pansharpened data are close to
the original positions derived from the high resolution panchro-
matic channel. If furthermore the standard deviation of the point
distances is low, most point positions are in agreement. The cor-
relations of the Sobel gradients given in Tab. 4 are almost in the
same range for all algorithms and data sets. For comparison the
original multispectral data is also included in Tab. 14. The corre-
lations for these unsharpened data sets are about 0.4 and therefore
the high values for the point deviations for the unsharpened data
sets and those of BROV and ORTHO are in agreement, but not
those of PCA and PANSHLPL. For the PANSHLPL result the
reason may be found in effects due to the unsharp masking lead-
ing to visual sharp, but deteriorated edge information. The PCA
and ORTHO algorithms are similar in the sense that they both
perform a linear transformation, nevertheless the spectral distor-
tions produced by the PCA algorithms cause problems within
matching and finally in the point positions. These results with re-
spect to its ranking are confirmed by recent preliminary results of
point extraction based on manual measurement and least squares
matching for point transfer.

5. CONCLUSIONS

Pansharpening and its evaluation using quantitative measures are
addressed by a large number of publications. Motivated by (Zhang,
2008) this contribution investigates to which extend such qual-
ity measures reflect the impact of pansharpening on subsequent
processing steps in remote sensing. For this purpose simple pan-
sharpening approaches are applied to QuickBird data. As exam-
ples for processing classification and point extraction are inves-
tigated. The quality measures used here evaluate mostly linear
spectral distortion and the degree of information transformation
from the high resolution panchromatic channel to the multispec-
tral channels, namely the gradient. Partly subsequent processing
steps are insensitive to linear transformations like clustering at
least within homogeneous regions. Nevertheless, problems occur
at edges. Therefore homogeneous and non-homogeneous regions
should be evaluated separately (c.f. (Perko, 2004) and (Weidner
and Centeno, 2009)). In most cases it could be demonstrated that
the quality indices for pansharpening evaluation are in agreement
with the quality of the processing results based on the pansharp-
ened data, but also cases are discussed where the quality measures
for the pansharpening results do not significantly differ, but the
results of the processing. The reason for this is the fact that pro-
cessing steps are influenced by effects of pansharpening which
can not entirely evaluated by a single quantity – although a com-

bination of different criteria. Therefore, just one index seems to
be inappropriate. In addition specialised criteria with respect to
input data and processing steps should also be used like SAM for
hyperspectral data (Klonus and Ehlers, 2009). The results of our
investigations are based on a number of subsets. Therefore tests
will be performed on further data sets in order to form a wider
basis. Furthermore the impact on segmentation will be addressed
based on (Weidner, 2008).
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ABSTRACT:

Man-made linear features like dams, highways, airports, and so on are very important infrastructures in any society. However, due to
natural and human activities, ground deformation is threatening many linear features all over the world. Because of groundwater
over-exploration, land subsidence has taken place in Taiyuan, China for many years. The South Ring Expressway and Wushu
International Airport in the southern suburb of Taiyuan, is being threaten by severe ground subsidence. In this paper, 13 Envisat
Advanced Synthetic Aperture Radar (ASAR) images from 2006 to 2009 have been acquired to monitor the southern Taiyuan City
using small baseline differential interferometric SAR (DInSAR) technique. Along the South Ring Expressway, the maximum
deformation lies in the central section, with an average velocity about -50 ~ -90 mm/a. The eastern section has the minimum
deformation about -15 mm/a while the western section has a velocity about -10 ~ -50 mm/a. Over the Wushu International Airport,
the deformation velocity is around -42 mm/a in the southwest and -20 mm/a in the northeast. Precise levelling data in the study area
validate our results.

* Corresponding author.

1. INTRODUCTION

Man-made linear features include dams, highways, railways,
airports, oil or gas pipelines, and others. Most of them are vital
infrastructures and facilities to sustain normal operation of any
society. However, affected by natural and human activities,
deformation is threatening many linear features all over the
world. The deformation not only weakens the function of these
man-made features, but also threatens the human life. Therefore,
it is necessary to monitor the deformation timely and accurately
and take corresponding measures to control it. Traditional ways
of monitoring ground deformation utilize levelling and global
positioning system (GPS) measurement. They have the
advantage of high accuracy. However, they are very costly and
can not achieve enough spatial sampling density.

With the development of radar remote sensing technique,
differential interferometric SAR (DInSAR) is playing an
important role in monitoring ground deformation. However, for
long term deformation, conventional 2-pass or 3-pass DInSAR
can be easily affected by temporal or geometric de-correlation
which degrades the interferometric phase and makes it difficult
to extract useful information (Ferretti, 1999). To solve this
problem, some advances in this field have been introduced
based on point target analysis, including permanent scatterers
(PS) method (Ferretti, 2000, 2001; Vilardo, 2009), small
baseline subsets (SBAS) method (Berardino, 2002, 2003a,
2003b, 2004; Casu, 2008) and coherent points (CP) method
(Mora, 2003).

In this paper, the deformation in Taiyuan is investigated with
time-series DInSAR analysis. Taiyuan, the capital of Shanxi
Province, China, has been a city suffering water shortage
severely. Over exploring groundwater has taken place in this

city over 50 years, resulting in 4 significant subsidence centres
in the urban area, namely Xizhang, Xiayuan, Wanbolin and
Wujiapu (Sun, 2007). In recent years, with fast development of
economy in the southern suburb, particularly the exploitation of
Taiyuan Economic and Technological Development Zone, new
subsidence centre has been found in this area, where the South
Ring Expressway and Wushu International Airport are located.
Therefore, it is urgent to monitor the deformation of this area.
In this research, deformation maps around the South Ring
Expressway and Wushu International Airport in Taiyuan are
generated for the first time with small baseline DInSAR
technique by combining PS and CP methods.

2. STUDY AREA AND DATASETS

2.1 Study area

The study area, Taiyuan, is located in the middle reaches of the
Yellow River in North China. The Fenhe River, a key tributary
of the Yellow River, runs through the territory of Taiyuan City
over a distance of about 100 km. Taiyuan lies in a basin
bounded by the Taihang Mountain Ranges in east and the
Lvliang Mountain Ranges in west. The annual average
precipitation in Taiyuan is 479 mm. Taiyuan is one of the cities
lacking of water resources in China. The annual average
capacity of water resource is 5.7×108 m3 in this city. And the
annual amount of water resources per capita is 172 m3, which
accounts for 46% of that in the whole province, or 6.6% of that
in China. This is also the reason of over-exploring ground
water in Taiyuan for a long time.
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2.2 Datasets

13 ENVISAT advanced synthetic aperture radar (ASAR) single
look complex (SLC) images over the study area are acquired
from February 2006 to February 2009. The temporal baselines
and normal baselines are shown in Table 2. To remove the
topographic phase from interferograms, digital elevation model

(DEM) generated by Shuttle Radar Topography Mission
(SRTM) with 3 arc-second resolution (about 90m) is used. In
addition, 3 precise levelling measurements (Figure 1(b)) are
utilized to validate the DInSAR experimental results.

(a)

(b)
Figure 1. Study area: (a) location, (b) optical image provided by Google Earth with levelling points (red)

3. METHOD

There are two parts contained in the small baseline DInSAR
technique, including linear deformation retrieval and non-linear
deformation retrieval. Let us start our analysis by considering
N SAR images acquired at the ordered times 1( , , )Nt t . We
assume that each acquisition may interfere with at least another
image and the normal baselines are small enough (e.g., 400m is

chosen in this study) to reduce geometrical de-correlation.
Based on N SAR images, we can generate M interferograms.

After removing the flat phase and topographic phase, each
differential phase can be obtained, which can be expressed as

_ _ _ _ _dif i def i errortopo i atm i noise i        (1)

where i is the i th interferogram, def is the component due

to the displacement of the terrain in satellite’s look direction
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between two SAR acquisitions, including linear deformation
and non-linear deformation; errortopo is the phase component

# Date Temporal
Baseline /day

Normal
baseline /m

1 2006-2-12 0 0
2 2006-11-19 280 -175
3 2007-1-28 350 -55
4 2007-3-4 385 759
5 2007-5-13 455 275
6 2007-9-30 595 223
7 2007-11-4 630 643
8 2007-12-9 665 -52
9 2008-1-13 700 403

10 2008-2-17 735 -2
11 2008-8-10 910 675
12 2008-12-28 1050 395
13 2009-2-1 1085 128

Table 2. ASAR images used in this research

due to the height error; atm is the phase related with

atmospheric artefacts; noise is the noise phase including
thermal noise, temporal and spatial decorrelation. The terms

def and errortopo can be written as follows:

4
sinerrortopo

b
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4 4
def non linearr T v
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where  is the wavelength; r the range distance; b the
normal baseline;  the incidence angle;  and v are the height
error and linear velocity; T is the temporal baseline between
both SAR acquisitions.

Before linear deformation retrieval, high coherence point targets
are selected according to pixel’s coherence stability by setting a
suitable coherence threshold for the mean coherence image.
Based on these point targets, differential phase are connected
with Delaunay triangulation. Thus the phase slope between two
neighbouring points ( , ), ( , )m m n nx y x y on an edge can be
expressed as
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where ( , )m mx y and ( , )n nx y are pixel position coordinates;

iT

is the time baseline of the i th interferogram;  the nonlinear
component of velocity;  the atmospheric phase artefacts; and
n the decorrelation noise.

It is assumed that, within the atmospheric correlation range 1-
3km, the atmospheric phases are equal, thus the atmospheric
components can be neglected. For the linear deformation
velocity and height error are constants, thus the above phase
slope can be modelled as
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where v are  velocity and height error increments,
respectively. They can be retrieved by maximizing the
following Ensemble Phase Coherence (EPC) (Ferretti, 2000)

mod
0 mod

( ( , , , , )1( , , , ) exp
( , , , , ))

M
dif m m n n i

el m m n n
i el m m n n i

j x y x y T
x y x y

M x y x y T






 
   

 


(6)
where j is the imaginary unit, M is the number of
interferograms. When the maximum EPC is close to 1, the
velocity and height error increments are close to the real value.
Then, the linear velocity and height error on each point target is
obtained by integrating modelv and mod el with EPC over
0.7 from a starting reference point.

To retrieve non-linear deformation, it is necessary to calculate
the model phase contributed by linear deformation and height
errors. By subtracting the model phase from differential phase,
we get residual phases, which mainly include atmospheric phase,
non-linear deformation component and phase noises. Phase
noises can be reduced by spatial low pass filtering.
Atmospheric phase and non-linear deformation can be separated
according to their different frequency characteristics in temporal
and spatial domains (Ferretti, 2000; Mora, 2003).

4. RESULTS

4.1 Results

50 Interferograms with baselines of less than 400m are
generated. 3335 high coherent point targets are selected from
the average coherence. Using small baseline DInSAR
technique described above, average deformation velocity and
accumulated deformation over point targets are generated.
Deformation around the South Ring Expressway and the Wushu
International Airport from 2006 to 2009 are analyzed. Figure 3
shows the average subsidence velocity on sparse points and
Figure 4 shows the whole subsidence field by spatial
interpolation.

It can be found that, along the South Ring Expressway, 3
sections with different subsidence rates can be separated from
each other. The west section from A to B deforms with a
velocity of 10 ~ -50 mm/a The middle one from B to C has the
largest velocity ranging from -50 to -90 mm/a while the east
section from C to D has the smallest velocity of around -15
mm/a. The middle section of the expressway is close to the
Taiyuan Economic and Technological Development Zone in
Xiaodian District where a large amount of factories are located.
Over-exploration of ground water has led to the largest
subsidence in this area. The west and east sections contain
mainly rural areas where ground water demands are less, so the
subsidence rates are much less.
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As far as the Wushu International Airport is concerned,
deformation rates are also spatially varied. The average
deformation velocity in the southwest reaches to about -42
mm/a, while in the northeast it is -20 mm/a.

Figure 3. Average subsidence velocity in southern Taiyuan
(2006-2009)

Figure 4. Subsidence field around expressway and airport
(2006-2009)

4.2 Validation

To validate the DInSAR results, 3 levelling measurements, P1,
P2 and P3 in the study area (Figure 1(b)), are used. Table 5
shows the comparison of the average deformation velocity
between DInSAR results and levelling measurement. For the
initial P3 measurement began in the end of 2006, the average
deformation velocity at this point is not validated. From this
table, it can be seen that the accuracy of DInSAR results at P1
and P2 is around -1.2 ~1.4 mm/a, demonstrating small baseline
DInSAR technique can monitor ground deformation effectively.
Besides the validation for average deformation velocity, we also
compare the accumulative deformation on these 3 levelling
points (Figure 6). The agreement between DInSAR results and
levelling measurement is good.

Table 5. Comparison of average deformation velocity between
DInSAR and levelling measurement (mm/a)

Figure 6. Comparison of accumulated deformation between
DInSAR results (blue) and levelling measurements (red)

5. CONCLUSION AND DISCUSSION

Small baseline DInSAR technique combining the advantages of
PS and CP methods has a great potential in deformation
monitoring. Several characteristics of the technique can be
summarized as the following: 1) it doesn’t need as many SAR
images as PS method; 2) it allows the generation of many small-

Leveling
points

DInSAR
measurement

Leveling
measurement

Errors

P1 -62.48 -61.33 -1.15
P2 -67.29 -68.67 1.38
P3 -63.25 - -

(b) P2

(a) P1

(c) P3
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baseline multi-reference images to improve coherence; 3) it can
derive linear and non-linear deformation fields at high
coherence point targets.
We applied the technique to investigate ground deformation
around the South Ring Expressway and Wushu International
Airport in southern Taiyuan City. Along the South Ring
Expressway, the maximum subsidence lies in the central section.
The east section has the minimum subsidence and the west
section has a medium subsidence velocity. Over the Wushu
International Airport, the subsidence velocity is around -42
mm/a in the southwest and -20 mm/a in the northeast. The
results suggest that the exploitation of Taiyuan Economic and
Technological Development Zone in Xiaodian District has
significant influence on local ground subsidence. Thus it is
urgent to reduce ground water exploration in this area to control
the subsidence.
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ABSTRACT:

Satellite images with high spatial resolution raise many challenging issues in image understanding and pattern recognition. First, they
allow measurement of small objects maybe up to 0.5 m, and both texture and geometrical structures emerge simultaneously. Second,
objects in the same type of scenes might appear at different scales and orientations. Consequently, image indexing methods should
combine the structure and texture information of images and comply with some invariant properties. This paper contributes to the
indexing of high-resolution satellite images. We suggest a satellite image indexing method relying on topographic maps and a shape-
based image indexing scheme. The proposed approach contains both the textural and structural information of satellite images and is
also robust to changes in scale, orientation and contrast. Experimental analysis on a real satellite image database confirms the efficiency
of the approach.

1 INTRODUCTION

Remote sensed satellite imaging has been widely applied to agri-
culture, geology, forestry, regional planning, and many other ap-
plications for analyzing and managing natural resources and hu-
man activities. In the past few years, with the development of
imaging techniques, satellites with very high spatial resolution
imaging systems have been launched, e.g. IKONOS, QuickBird,
World-View-1, GeoEye-1, which enable satellite imagery to pro-
vide more accurate earth observation and measure small objects
on the surface up to 0.5 m.

However, satellite images of high spatial resolution present many
challenging problems in image understanding, information min-
ing, and pattern recognition. First, with the enhancement of spa-
tial resolution, more details on the earth surface emerge in satel-
lite imagery. Unlike the case of low-resolution satellite images,
where texture and intensity cues have been proved to be efficient
for recognition (Li and Castelli, 1997, Richards and Jia, 2005,
Ruiz et al., 2004), structures become more important for analyz-
ing high-resolution satellite images. It is of great interest to in-
vestigate new image indexes, which can describe both the struc-
ture and texture information for high-resolution satellite image
recognition. Second, in satellite images of high spatial resolu-
tion, objects contained in the same type of scenes might appear at
different scales and orientations. For instance, the buildings in ur-
ban areas or the bridges on the river always show at various sizes
and orientations. Moreover, if satellite images were taken under
different weather conditions, there might be lighting changes be-
tween images of the same type. For these reasons, image indexing
methods should comply with some invariant properties, such as
scale invariance, orientation invariance and contrast invariance.

In order to extract structural features from optical satellite im-
ages of high-resolution, (Ünsalan and Boyer, 2004) proposed to
use statistics of straight lines and their spatial arrangement over
relatively small neighborhoods. (Bhattacharya et al., 2007, Bhat-
tacharya et al., 2008) suggested to use geometrical information,
e.g. edge and Junction density, from the extracted road network
and segmented urban regions for structural satellite image index-
ing. As inspired by the works in computer vision, (Newsam

and Yang, 2007) investigated interest point descriptors, such as
Scale-invariant feature transform SIFT, for characterizing remote
sensed images. Other structural features are computed from the
pre-segmentation of images. One main disadvantage of this kind
of approaches is that they rely on some pre-analysis of images,
such as edge detection and segmentation, which are in them-
selves challenging problems. In addition, when these indexing
schemes focus on structure information, they ignore the use of
texture cues.

This paper contributes to structural indexing of high-resolution
optical satellite images. The proposed indexing scheme is based
on a complete morphological image representation, called Topo-
graphical Map (Caselles et al., 1999), which is made of all the
connected components of the level lines of images. More pre-
cisely, the indexing of satellite images follows the shape-based
indexing scheme, proposed by (Xia et al., 2009). First, satel-
lite images are decomposed into tree of shapes, by using a mor-
phological transformation, named Fast Level Set Transformation
(FLST) (Monasse and Guichard, 2000). Then, image features are
developed from those shape ensembles and their relationships.
The derived shape-based features describe the structure distribu-
tions of images. They also encode the texture information of im-
ages, if taking shapes as textons (Zhu et al., 2005). Furthermore,
the developed satellite images features are invariant to geometric
transformations involving scaling and rotating and are robust to
illumination changes.

The remainder of the paper is structured as follows. In Sec-
tion 2, we give a brief review on our shape-based image index-
ing scheme. We then detail the proposed approach for high-
resolution satellite images in Section 3. Section 4 provides the
experimental analysis and Section 5 concludes the paper.

2 SHAPE-BASED IMAGE INDEXING FRAMEWORK

This section sketches the basics of our work, i.e. the topographic
map and the shape-based image indexing framework.
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2.1 Topographic map

For a gray-scale image u, the upper and lower level sets are de-
fined respectively as χλ(u) = {x ∈ Ω; u(x) ≥ λ} and χλ(u) =
{x ∈ Ω; u(x) ≤ λ}, for λ ∈ R. The topographic map (Caselles
et al., 1999) of the image u is made of the connected compo-
nents of the topological boundaries of the upper level sets of the
image (they could be equivalently defined from the lower level
sets). Observe that the connected components of upper level sets
(respectively of the lower level sets) are naturally embedded in
a tree structure. Monasse and Guichard combined these two re-
dundant tree structures, by drawing on the notion of shape, and
developed an efficient way to compute a hierarchical representa-
tion of images (Monasse and Guichard, 2000), named FLST1 as
mentioned before. A shape is defined as the interior of a level
line (the boundary of a level set). Figure 1 shows an example of
the topographic map representation of a synthetic image.

It is shown that topographic map, the tree of shapes of an image
has many impressive properties. First, it inherits a hierarchical
structure from the nesting properties of level sets and it’s a scale
space without any geometrical degradation. Secondly, it’s a com-
plete image representation and can encode both the geometric and
radiometric information simultaneously. And it’s also invariant to
any contrast changes.

Figure 1: Representation of an image by its topographic map.
Left: an original digital image; Right: representation of the im-
age by its tree of shapes, where (A,B, . . . , I) denote the corre-
sponding shapes.

2.2 Shape-based image indexing framework

By relying on the topographic map representation, Xia et al. pro-
posed a shape-based invariant image indexing scheme in (Xia et
al., 2009). A flowchart of the scheme is provided in Figure 2.
The idea is to decompose images into shapes (by using FLST)
and then develop image features from the shape ensembles and
their relationships. It has been shown that the framework is very
efficient for achieving geometric invariant texture features and
obtain state-of-the-art performance on invariant texture recogni-
tion task.

Figure 2: Shape-based image indexing framework.

As the topographic map provides a complete representation of
images, the modeling of texture u is converted to the modeling
of the tree of shapes (S, T ), as p(u) = p(T, S). The invariant
texture features first rely on classical shape moments, then make
use of the hierarchical structure of the topographic map.

1The codes of FLST are included in the free software MegaWave, and
can be downloaded at http://megawave.cmla.ens-cachan.fr/.

The (p+ q)th order central moments of shape s is defined as

µpq =

∫ ∫

s

(x− x)p(y − y)q dxdy, (1)

where (x, y) are the center of mass of s. According to the frame-
work of (Xia et al., 2009), three different invariant features are
developed from the invariant moments of shape ensembles S:

• EH: histogram of elongation ε = λ2
λ1

;

• CH: histogram of compactness κ = 1

4π
√
λ1λ2

;

• CtH: histogram of contrast: γ(x) =
u(x)−means(x)(u)√

vars(x)(u)
.

where s(x) is the smallest shape containing pixel x, λ1 and λ2

are the two eigenvalues of the normalized inertia matrix of shape
s, with λ1 ≥ λ2.

To develop features from the tree structure T , the parent-children
relationships are used by defining an ancestor family of s, NM

s ,
as shapes containing the m-th (m ≤ M ) cascaded parents of s.
The feature is:

• SH: histogram of scale ratio α(s) = µ00(s)
〈µ00(s′)〉s′∈NM

;

where 〈·〉s′∈NM is the mean operator onNM .

Observe that EH is invariant to similarity (translation, scaling and
rotation) changes and CH, SH and CtH are invariant to affine
transformations. Furthermore, all the four features are invariant
to increasing contrast changes.

3 STRUCTURAL SATELLITE IMAGE INDEXING

This part devotes to the structural indexing of high-resolution
satellite images, under the shape-based image indexing frame-
work.

3.1 Structures of satellite imagery

Panchromatic images and multispectral images are the main types
of optical satellite images acquired by optical remote sensing sen-
sors. For satellite imagery in panchromatic format, all the struc-
ture information is, of course, contained in the gray scale image.
However, for a multispectral satellite imageU = {u1, u2, . . . , uL}
of L bands, an L-dimensional vector is stored for each pixel. In
this case, we suppose that the main structure information of U is
included by its p-energy channel L, defined as

L =

(∑

ui∈U
(ui)

p

) 1
p

, p ≥ 1. (2)

Actually, Caselles et al. have proved that the main geometric
information of natural color images are contained in their lumi-
nance channel (Caselles et al., 2002) (where p = 1). In the con-
text of this work, as we shall see, we will only deal with natural
color satellite images, so the analysis of structure information is
based on the luminance channel. The same scheme could be ap-
plied to multispectral images using the p-energy channel L.
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3.2 High-resolution satellite image indexing

High-resolution satellite images allow to accurately represent small
objects on the earth surface, such as cars, airplanes and buildings.
An important and discriminative measurement for the objects is
made of the shapes of their contour. For instance, bridges usu-
ally have elongated shapes, and the outlines of cars are usually
compact and not too elongated.

First, following the shape-based image indexing scheme presented
in Section 2, we also use the elongation histogram (EH), com-
pactness histogram (CH), scale ratio histogram (SH), and con-
trast histogram (CtH) mentioned in Section 2 as indexes of satel-
lite images.

Secondly, for the purpose of this paper, we propose to add sev-
eral features, all invariant to similarity, a necessary invariance for
satellite images. For instance, the orientation distribution of an
image is also an available structure feature.
Orientation distribution: For a shape s, its orientation θ is cal-
culated as

θ =
1

2
arctan

2µ11

µ20 − µ02
(3)

The resulted structure feature is the histogram of θ, named Orien-
tation Histogram (OH), on all the shapes contained by the image.

We can also develop more structural features from the tree struc-
ture T , by using the M -order ancestor familyNM :
Nested contrast: For a shape s, we define its nested contrast δ(s)
as,

δ(s) = 〈|u(s)− u(s′)|〉s′∈NM . (4)

Maximum axis ratio: It’s defined as ratio between the maxi-
mum eigenvalue of shape s and the average maximum eigenvalue
among its ancestor family, as

ρ(s) =
λ1(s)

〈λ1(s′)〉s′∈NM

. (5)

where 〈·〉NM is the mean operator on NM . We can similarly
define the axis ratio by replacing λ1 with λ2. However, observe
that µ00(s) ∝ λ1λ2, so the similar definition involving to λ2 will
be redundant with the scale ratio α(s).
The corresponding features are the histograms of δ and ρ of all
the shapes on the tree, called nested contrast histogram (NCH)
and maximum axis ratio histogram (MAH), respectively. They
are invariant to similar transformations.

input : Satellite image u
output: A set of indexes of u

Compute the luminance channel L(u) of the image;1
Decompose L(u) into a tree of shapes {S, T} ;2
for each si in S do3

Compute the shape attributes εi, κi, γi, θi;4
end5

for each si andNM
si on T do6

Compute αi, δi, and ρi;7
end8

for each attribute ξik in {εi, κi, γi, θi, αi δi, ρi} do9

compute histogram H(ξk) =
#{ξi

k
=ξk,1≤i≤N}

N
.10

end11

Algorithm 1: Structural satellite image indexing.

A given high-resolution satellite image u is then characterize by 7
1-D histograms as detailed above (EH, CH, SH, CtH, OH, NCH,
MAH). The pipeline of the indexing steps is given by Algorithm 1.

Remark that in order to compute the dissimilarity between two
satellite images, we use the Kullback-Leibler divergence to com-
pute distances between single descriptors and then add them to-
gether. Especially, for comparing two OH’s, one is circularly
shifted to compute the Kullback-Leibler divergence with the other
and the minimum divergence among them is taken as the dissim-
ilarity.

4 EXPERIMENTAL ANALYSIS AND DISCUSSION

In this part, we illustrate the proposed analysis scheme on high-
resolution satellite image recognition tasks. In order to evaluate
the efficiency of the proposed approach, we also compare it with
other features for satellite image indexing.

As the structural image indexing approach proposed by (Bhat-
tacharya et al., 2007) relies on edge or junction density in small
patches of images, it is not invariant to scale changes and of
course not comparable to our approach. The interest point based
features, such as SIFT descriptor, might have some potential for
the structural analysis of satellite images. For example, it has
been used by (Newsam and Yang, 2007) for satellite image re-
trieval. However, one main disadvantage of interest points based
approaches is that the detection of interest points depends on the
contrast of the images. For some images where no contrasted
structure presents, for instance, the meadow and forest displayed
in Figure 3, there will be few interest point detected, which makes
the indexing of those images difficult.

Figure 3: Two examples where few SIFT descriptors are detected.
Left: a forest image; Right: a meadow sample.

In this work, we simply compare the proposed structural indexes
with texture features based on Gabor filters with 6 scales and 8
orientations. In order to achieve rotation invariant, we average on
all the 8 orientations.

4.1 High-resolution Database

To test the proposed satellite image indexing method, we collect
a set of satellite images exported from Google Earth2, which pro-
vides high-resolution satellite images up to 0.5 m. Some samples
of the database are displayed in Figure 4.1. (The database can be
downloaded at (Xia, 2009).) It contains 12 classes of meaning-
ful scenes in high-resolution satellite imagery, including Airport,
Bridge, River, Forest, Meadow, Pond, Parking, Port, Viaduct, Res-
idential area, Industrial area, and Commercial area; For each
class, there are 50 samples. It’s worth noticing that the image
samples of the same class are collected from different regions in
satellite images of different resolutions and then might have dif-
ferent scales, orientations and illuminations.

2http://earth.google.com/
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Airport Bridge River

Forest Meadow Pond

Parking Port Viaduct

Residential area Industrial area Commercial area

Figure 4: Some samples of the testing high-resolution satellite image database. For each class, there are 50 samples, and 4 of which
are shown here.

4.2 Retrieval and classification

We apply the proposed analysis scheme to two common satel-
lite image recognition tasks: retrieval and classification. For re-
trieval, one sample is used as a query image (thus removed from
the database) and the Nr most similar samples are retrieved from
the database. One after the other, all samples in the database
are used as query images, and the average recall is computed in
function of the number Nr of retrievals for evaluating the perfor-
mance.

In the classification experiment, Nc samples from each class are
randomly chosen as a training set and the remaining samples are
classified thanks to a nearest-neighbor classifier. The rate of cor-
rect classifications is then computed as a function ofNc. In order
to consolidate the results, classification rates are averaged on a
sequence of 200 random training sets.

Figure 5(a) shows the average retrieval performance on the whole
database. It indicates that by using only one sample, averagely
52.84% samples of the same class can be correctly retrieved among
the first 49 matches. However, in the same context, if we use
the mean and standard deviation of Gabor filter responses, only
21.19% samples can be retrieved averagely. According to the
performance curve, when the number of matches is extended to
200, 90.50% samples can be retrieved by using the structural in-
dexes. But the same percentage to Gabor features is 54.13%.

Some illustrations of the retrieval results are displayed in Fig-
ure 6, 8(a), 8(b), where a query image is followed by its first 49
closest samples. The retrieval results for all samples can be found
at (Xia, 2009).

Figure 6 shows a retrieval result of bridge category, which is very
structured. Observe that even though there are large illumination
changes between samples and the query image, the method works
well, thanks to the contrast invariance of the indexing scheme.
It’s also interesting to inspect the false alarms and observe that
there often contains some structures similar to bridges, see the
parts framed in red inside Figure 7. Figure 8(a) and 8(b) illustrate
two retrieval examples respectively on river and viaduct class.
Even structures in this two classes are complicated, the proposed
approach works well.

Figure 5(b) shows the average classification performance by us-
ing nearest-neighbor classifier, when the number of training im-

ages ranges from 1 to 25. It indicates that the structural indexes
outperforms the Gabor features dramatically. Furthermore, Ta-
ble 1 shows the average classification rate for each class of the
database. We can see that Gabor features are efficient only on
some texture classes, e.g. forest and meadow. The proposed
structural indexes work well on classes with complicated struc-
tures such as viaduct and airport, and also on classes containing
more textures.

However, we found that the structural indexes can not distin-
guish industrial and residential classes well. This is because those
two categories share many similar structures, and some semantic
information of the scene might be helpful (Bordes and Maı̂tre,
2007).

Figure 7: Some false alarms of bridge retrievals. The parts
framed in red really contain some bridge-like structures.

Category
1 training sample 25 training sample

StructInd GaborF StructInd GaborF
Airport 53.39 12.72 82.31 39.93
Bridge 40.45 7.73 83.42 27.57

Commercial 48.74 23.17 82.02 43.06
Forest 80.94 42.54 94.62 74.45

Industrial 42.93 20.11 78.37 37.75
Meadow 75.06 35.08 95.45 55.01
Parking 68.74 10.58 81.92 24.89

Pond 63.96 29.91 82.95 48.09
Port 50.93 12.79 73.80 26.66

Residence 32.17 19.04 48.87 40.07
River 60.23 27.28 88.66 49.79

Viaduct 64.19 13.24 86.76 23.78

Table 1: Average classification rate (%) of Structural indexes (us-
ing StructInd for short) and Gabor Features (using GaborF for
short) on each category of the database, with the number of train-
ing samples as 1 and 25, respectively.
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(a) retrieval performance (b) classification performance

Figure 5: Average retrieval (a) and classification (b) performance.

Figure 6: A retrieval result of the bridge category obtained by using the proposed indexing scheme. The query image is in the first
position and the 49 most similar samples follow, ordered by their matching scores. The false samples are framed in red.

5 CONCLUSION

In this paper, we have developed some structural features for in-
dexing high-resolution satellite image, based on the topographic
map and under the shape-based image indexing framework. The
experimental analysis shows that the indexes can balance the struc-
tures and textures information in high-resolution satellite images
and provide impressive image recognition performances.

However, we should observe that we simply adopted the nearest-
neighbor classifier for classification. The recognition performance,
of course, benefits from some more powerful classification scheme,
e.g. SVM.
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ABSTRACT: 
 
A preliminary comparison between loss and lossless compression approaches for the remote sensing data processing was made. A 
three-stage lossless compression algorithm of multispectral remote sensing images based on wavelet transformations and intra-bands 
correlation is proposed and developed. It allows one to consider peculiarities of remote sensing data and to increase the compression 
ratio of the algorithm. The paper describes a modification of the compression algorithm aimed at considerable improvement of com-
putational performance and based on bands trimmed enumeration and data selective use. A research of the three-stage algorithm per-
formance was carried out in comparison with the universal compression algorithms such as WinRar, WinZip and JPEG2000 using 
data from various remote sensing systems showing to some extent a superiority in the compression ratio, as well as some insignifi-
cant lag of the computational performance was identified. 
 
 

1. INTRODUCTION 

Due to the constantly improving technical features of remote 
sensing (RS) systems and the extended use of RS data for solv-
ing various tasks, the data amount handled by RS modern sys-
tems is in terabytes and it continues to increase steadily. Hence, 
the resolution of RS data compression problems using different 
approaches, software and hardware aimed at increasing the ef-
fectiveness of data processing, storage and transmission along 
communication channels is becoming more relevant (Cagnazzo 
etc., 2006; Marcellin etc., 1995; Motta etc., 2006; Salmon, 
2007; Ziv & Lempel, 1977). In general, data compression ap-
proaches can be presented by loss and lossless ways. Let us 
consider first a possibility to use the lossless approach for RS 
data compression.  
Lossy algorithms are widely used for image compression tasks 
and are characterized by high possible compression ratio (Jac-
quin, 1993). For instance, the most popular algorithms are 
based on fractal approach and are used both for color and gray-
scale images without a sharp color change (for example, photo 
pictures). It allows one getting high compression rates over 200. 
The fractal algorithm might be implemented for each RS band 
of N×M size and it is based on the so called domain and rang 
regions (areas) processing (Fig. 1).  
 

k-th band of 
RS image 

fragmentation 
to rang regions 

Transformation 

fragmentation to 
domain regions

Domain shift – Dshift 

N 

M [M/SR] 
  Rij Dgh 

SR
  [N/SR]

SD

 
Figure 1. A general scheme of the fractal algorithm 

 
The fractal algorithm could bring a significant compression ra-
tio for the large images that are common for RS images. The 
rang regions are non-overlapping image fragments, the sum of 
which fully covers the image. Domain regions are similar to the 
rang regions. They are also formed by an image decomposition 
to some equivalent grid but differ in a bigger size and a shift. 
Detailed description of fractal algorithm for image compression 

can be found in (i.e. Jacquin, 1993), but briefly it could be 
generally presented in the following way:  
1. Decompose the image by equivalent grid to the same set of 
square rang regions Rij with SR number of elements (pixels)  
where i = 0, SR,..., ([M/SR] – 1)× SR; j = 0, SR,..., ([N/SR]-1) × 
SR. 
2. Form Dgh domain regions  with SD dimension, where g = 0, 
Dshift, 2 × Dshift, ..., [(M –SD)/Dshift] × Dshift; h = 0, Dshift, 2×Dshift, 
..., [(N - SD)/ Dshift] × Dshift. 
3. For every Rij element search through all Dgh elements and 
form Rij → Dgh affine transformation: 
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where k = 1, 2, …, kaf – the number of affine transformation, 
x,y – coordinates of image pixel, I(x,y) – pixel brightness with 
(x,y) coordinates, p – a coefficient that is called brightness (op-
erating with grayscale image p = 1), a, b, c, d – coefficients ori-
ented on performing the rotation and reflecting symmetry, u,v – 
shift of the point with (x,y) coordinates along the axes, q – coef-
ficient that is called the shift of brightness point with (x,y) co-
ordinates and is calculated as:  
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where m, l – pixel coordinates, rml – I(m, l) in Rij rang region, 
dml – I(m, l) in Dgh domain region. 
4. Choose from all transformations one with the least error, cal-
culated as: 

2
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])[(∑∑

= =
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l
mlml qdrd . 

5. Fix the number of kaf, coordinates of the top-left corner of Rij 
rang region, q shift of brightness in file. 
The described fractal algorithm consequently implements the 
compression for every band of a multispectral RS image. 
To evaluate the application outlook of the proposed lossy com-
pression algorithm it is implemented in a framework of the 
fractal approach, some test experiments were performed. They 
revealed that the loss compression algorithm could provide 
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rather high compression ratios. A visual evaluation comparison 
between the initial and the uncompressed RS images (example 
on Fig. 2a,b) demonstrated a possibility to use the uncom-
pressed RS images for the manual visual interpretation in some 
cases.  

  
a          b  

 
c 

Figure 2. Results of lossy compression: original multispectral 
RS (a), uncompressed RS image (b), histograms of a RS band 

(c)  
 
At the same time a comparison of the frequency brightness his-
tograms proves the significant changes in statistic brightness 
characteristics of the uncompressed RS image in comparison 
with the initial RS one (Fig. 2c). That implies possible difficul-
ties in further automatic processing and classification of these 
uncompressed RS data, though high compression rates could be 
provided. 
Thus, taking into account a possible demand in RS data pre-
liminary processing and automated classification it is more rea-
sonable to avoid distortion of statistical albedo characteristics 
of uncompressed RS images. It is possible to avoid with loss-
less compression algorithms which are considered most valu-
able for the RS data processing.  
There are two conceptually different approaches to the RS data 
lossless compression. One approach implies the use of the uni-
versal and well-known compression algorithms do not take into 
account the specific features of RS data and which is repre-
sented in such software as WinRar, WinZip or which uses the 
compression standard of black-and-white and colored images as 
JPEG2000 (Christopoulos, 2001; Taubman & Marcellin, 2002; 
Salmon, 2007;). Another approach is focused on new compres-
sion algorithms which take into account not only bands data as 
simple black-and-white images, but also relation between RS 
image bands. In spite of the fact that such approach is more 
complex from computational point of view its application al-
lows one to achieve considerable compression ratio due to spe-
cific features of RS data.  
In this respect the paper is aimed at the development and re-
search of multispectral algorithms of lossless RS images com-
pression based on both independent data processing in different 
bands and considering their intra-bands correlation to improve 

the compression ratio in comparison with well-known universal 
compression algorithms.  

2. THREE-STAGE COMPRESSION ALGORITHM 

The wavelet transformations allow one to obtain coefficients 
which can be compressed significantly better than initial image 
data. This approach to the lossless image compression is con-
sidered as the most efficient one (Salmon, 2007; Christopoulos, 
2001). Multispectral RS images represent albedo values ob-
tained in different spectral bands and which as a rule have con-
siderable intra-bands correlation. If such functional relation is 
known it is possible to considerably decrease data transforma-
tion range using deviation (difference) values between the func-
tional relation and the actual initial values. This will allow one 
to use significantly less number of bits to store such deviations 
than it is necessary to store the initial RS data. Eventually this 
allows one to increase the final compression ratio.   
The application of the abovementioned transformations in the 
compression allows one to use the advantages of the wavelet 
transformations and the existing relation between the bands of 
multispectral RS images. Taking this into account, the com-
pression algorithm can be carried out in three stages:  

• to carry out wavelet transformation of initial data and ob-
taining corresponding transformation coefficients;  

• to consider functional relation of albedo values between 
different image bands and to form a set of data devia-
tions;  

• to compress obtained data using one of the traditional 
compression algorithms.  

Let us consider the stages of the suggested three-stage compres-
sion algorithm of multispectral RS images in detail.  
The wavelet transformation is applied to an initial RS image  
according to rows and columns with given number of levels 
thus setting high-frequency and low-frequency components 
(Fig. 3). 

 
k-th  
band  H

LL  LL2 LH2 LH1 
HL2HH2 

Il I'l I"l Il+1 

LH 

HL HH HL1 HH1

L

 
Figure 3. High-frequency and low-frequency components in 

wavelet transformation from RS image k-band data 
 

To describe the first stage of compression algorithm step-by-
step it is necessary to identify the following notational conven-
tions: M – number of rows, N – number of columns, K – num-
ber of initial multispectral RS bands, l – an index of the current 
transforming level, L – number of transforming levels, sign 
“⎣ ⎦” – rounding up to the integer number. 
Step 1. Set m = 0, n = 0, k = 1, l = 1. 
Step 2. Obtain even Il[m, 2j, k] and uneven Il[m, 2j+1, k] com-
ponents at j = 0, 1, …, ⎣N/2l-1⎦ from the initial image Il[m, n, k]. 
Step 3. Calculate low-frequency Y[m, 2j] and high-frequency 
Y[m, 2j+1] components by using 5 and 3 summand components 
of the initial image Il, at j = 0, 1, …, ⎣N/2l-1⎦: 
Y[m, 2j] = (– Il[m, 2j-1, k] + 2⋅Il[m, 2j, k] + 6⋅Il[m, 2j+1, k] + 
2⋅Il[m, 2j+2, k] – Il[m, 2j+3, k])/8, 
Y[m, 2j+1] = (– Il[m, 2j, k] + 2⋅Il[m, 2j+1, k] – Il[m, 2j + 2, 
k])/2 or after approximation and rounding up operations  
Y[m, 2j] = Il[m, 2j, k] + ⎣(Y[m, 2j-1] + Y[m, 2j + 1]) + 2)/4⎦, 
Y[m, 2j + 1] = Il[m, 2j + 1, k] – ⎣(Il[m, 2j, k] + 
Il[m, 2j+2, k])/2⎦ 
Step 4. If m < M then m = m + 1, step 2, otherwise step 5. 
Step 5. Form the image I′l, containing high-frequency and low-
frequency areas (according to columns): 

In: Wagner, W., Székely, B. (eds.): ISPRS TC VII Symposium – 100 Years ISPRS, Vienna, Austria, July 5–7, 2010, IAPRS, Vol. XXXVIII, Part 7A
Contents Author Index Keyword Index

305



For p = 0, 1,…, ⎣M/2l-1⎦, q= 0, 1,…, ⎣N/2l⎦, I′l[p, q, k] = 
Y[m, 2j]; 
For p = 0, 1,…, ⎣M/2l-1⎦, q= ⎣ N/2l⎦ + 1, ⎣ N/2l⎦ + 2,…,⎣N/2l-1⎦, 
I′l[p, q, k] = Y[m, 2j+1]. 
Step 6. Calculate low-frequency Y[m, 2j] and high-frequency 
Y[m, 2j + 1] components on the basis of I′l: 
Y[2j, n] = I′l[2j, n, k] + ⎣(Y[2j-1, m] + Y[2j + 1, n]) + 2)/4⎦, 
Y[2j + 1, n] = I′l[2j+1, n, k] – ⎣(I′l[m, 2j, k] + I′l[m, 2j + 2, k])/ 
2⎦. 
Step 7. If n < N then n = n + 1, step 6, otherwise step 8. 
Step 8. Form the image containing high-frequency and low-
frequency areas (according to rows): 
I″l[p, q, k] = Y[2j, q] at p = 0, 1,…, ⎣M/2l-1⎦ for q = 0, 1,…, 
⎣N/2l-1⎦; 
I″l[p, q, k] = Y[2j+1, q] at p = ⎣M/2l-1⎦ + 1, ⎣M/2l-1⎦ + 2, …, 
⎣M/2l⎦ for q = 0, 1,…,⎣N/2l-1⎦. 
Step 9. For p = 0, 1,…,⎣M/2l-1⎦ and q = 0, 1,…,⎣N/2l-1⎦ form 

w
lI [p, q, k] = I″l[p, q, k], if l < L then l = l + 1, step 2, otherwise 

step 10. 
Step 10. If k < K then k = k + 1, step 2, otherwise step 11. 
Step 11. End. 
The result of this stage is the image w

lI [m, n, k] containing ob-
tained low-frequency and high-frequency components found on 
the basis of the initial image I[m, n, k] using wavelet transfor-
mation with L levels of depth. 
The main point of the second stage is to consider band-to-band 
correlation by defining the deviations between an obtained 
functional relation (of the 1st order in the given case) and the 
actual values in corresponding bands data obtained at the first 
stage by the wavelet transformation. Storage and further proc-
essing of deviations (not the initial data) is characterized by 
considerably low value change range, which requires the less 
number of bits and will allow one to compress such data with 
the higher ratio. The diagram of such transformation is shown 
in Fig. 4.  
Given that Il

Q[m, n, k] – matrix of w
lI [m, n, k] image quadrant 

values with index Q, Q = {LL, LH, HL, HH}, el[m, n, k] – de-
viation matrix, then step-by-step description of the compression 
algorithm second stage can be presented in the following way: 
Step 1. For m = 0,1,…,M, n= 0,1,…,N, Q = {LL,…, HH},  
eL

Q[m, n, 1] = IL
Q[m, n, 1],  

eL
LL[m, n, 2] = IL

LL[m, n, 2] – IL
LL[m, n, 1]. 

Step 2. For m = 0, 1,…, ⎣M/2l⎦, n= 0, 1,…, ⎣N/2l⎦, k = 
3,4,…,K, eL

LL[m,n,k] = IL
LL[m,n,k] – 2·IL

LL[m, n, k–1] + 
IL

LL[m, n, k –2]. 
Step 3. Calculate coefficients for L level:  
wL

LH[k] = (JL
LL[k]T×JL

LL[k])-1×JL
LL[k]T×J′LLL[k], JL – m by n 

matrix Z×(⎣M/2L-1⎦+1)×(⎣N/2L-1⎦+1), where Z = 2 at k<2, o-
therwise Z = 1.  
JL

LL[k] = [[IL
LL[0, 0, k-1], [IL

LL[0, 1, k-1], …, IL
LL[⎣M/2L-

1⎦, ⎣N/2L-1⎦, k-1], [IL
LL[0, 0, k-2], [IL

LL[0, 1, k-2], …, IL
LL[⎣M / 

2L-1⎦, ⎣N/2L-1⎦, k-2]], J′LLL[k] – vector with length 
(⎣M/2L⎦+1)×(⎣N/2L⎦ + 1), J′LLL[k] = [[IL

LL [0, 0, k], [IL
LL[0, 1, k], 

…, IL
LL[⎣M/2L-1⎦, ⎣N/2L-1⎦, k]], where “T” – matrix transforming 

character, “–1” – inverse matrix character. 
Step 4. For l = L,L-1,L-2,…,1 calculate other vectors of coeffi-
cients wl

LH and coefficients wl
HL, wl

HH: 
wl

LH[k] = [(Jl-1
HH[k]T×Jl-1

HH[k])-1×Jl-1
HH[k]T×J′l-1HH[k])], 

wl
HL[k] = [(Jl

LH[k]T×Jl
LH[k])-1×Jl

LH[k]T×J′lLH[k])], 
wl

HH [k] = [(Jl
HL [k]T×Jl

HL [k])-1×Jl
HL[k]T×J′lHL[k])]. 

Step 5. For l = 1,2,…,L and Q = {LH, HL, HH} find  
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Step 6. If k < K then k = k + 1, step 4, otherwise step 7. 
Step 7. End. 
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Figure 4. Generalized scheme of intra-bands correlation for 

transforming levels l = 1 and l = 2 
 
The result of the second stage is deviation matrix el[m,n,k], 
which can be compressed by some algorithm at the final stage. 
In this case it is suggested to use a well-known arithmetical al-
gorithm to compress the obtained data (Salmon, 2007; Witten 
etc., 1987).  
To form the uncompressed multispectral image I[m,n,k] out of 
el[m,n,k] it is necessary to carry out a number of transforma-
tions opposite the above mentioned ones.  
 
 

3. EXPERIMENTS 

To define the efficiency of the suggested three-stage algorithm 
from the point of view of compression ratio and computational 
performance, as well as its validity limits, numerous experi-
ments using multispectral RS images of different RS data sys-
tems (Table 5) in data format of raster geoinformation system 
Idrisi Kilimanjaro were carried out together with their compari-
son with experimental results obtained for well-known proto-
types – WinRar, WinZip and JPEG2000 of FastStone Image 
Viewer (Salamon, 2007; Kiely etc., 2006; Christopoulos etc., 
2001). The algorithm was implemented in Borland Developer 
Studio 2006 without special attention to the code optimization. 
That is why there are spaces for possible improvements. Ex-
periments were carried out on Intel Pentium IV PC, 2.8 GHz, 1 
Gb memory under Windows XP (SP 3). 
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No. RS data systems Number 
of bands 

Size of image, 
pixels 

Size of file, 
bytes 

1  SPOT 3 509 × 571  871917 
2  SPOT 3 615 × 558  1029510 
3  ADAR–5000 3 541 × 440  714120 
4  Airphoto 3 652 × 694  1357464 
5  Landsat–MSS 4 558 × 560  1249920 
6  Landsat–MSS 4 480 × 480  921600 
7  Landsat–TM 6 934 × 700  3922800 
8  Landsat–TM 7 500 × 500  1750000 
9  Landsat–TM 7 525 × 280  1029000 

10  Flightline C1 12 949 × 220  2505360 
 

Table 5. RS experimental data 
 

As was mentioned above, one of the key parameters of the 
wavelet transformation is its L depth which can be set over in a 
wide range. The increase of L value might lead to an increase of 
the compression ratio due to making greater high-frequency 
area. To define the most acceptable range of L parameter a 
number of experiments were carried out, the results of which 
are shown in Fig. 3.  
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Figure 6. Relation of compression ratio and time on wavelet 

transformation with depth L 
 

Experimental results presented in Fig. 6 show that although al-
gorithm computational performance for L∈[1;5] does not de-
pend much on the transformation depth the compression ratio R 
ceases to increase even at L≥3. Due to this it is advisable to ac-
cept here L = 3.  
It is obvious that at the result of the second stage of the algo-
rithm are the deviations el obtained with functional relation (set 
by coefficients wl

LH, wl
HL, wl

HH) from the values of a trans-
formed image band. Hence, data compression ratio may depend 
on the order of bands processing. Some experimental results 

confirming this point are shown in Fig. 7. As we can see, the 
compression ratio at the most “successful” (the “best”) order of 
bands processing is considerably (by 10-15%) higher than the 
compression ratio obtained for the same data at the “worst” or-
der of bands processing.   
One of the methods to define the most “successful” (suitable) 
combination of bands processing can be the enumeration of all 
possible combinations characterized by the need to carry out K! 
compression operations with initial image and hence, by con-
siderable computational expenses. To reduce computational ex-
penses while defining the most “successful” order of bands 
processing it is suggested to use a method of “trimmed” bands 
enumeration. The method includes sequential increase in the 
number of bands wherein combination of 2 elements taken K at 
a time, then combination of 3 elements taken K at a time, etc. is 
subject to maximum compression ratio.  
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Figure 7. Compression ratio of multispectral RS images vs. 
different orders of bands enumeration and processing: K≥3 (a), 

K≥7 (b). 
 
The algorithm of such trimmed enumeration given that vector 
with the length K, each element of which presents the number 
of a corresponding band processing in a corresponding position 
and can be shown in the following way:  
Step 1. Set initial length of sub vectors vi as S=2, i=1,2,…, K

SC , 
where K

SC – the number of combinations of K elements taken S 
at a time. 
Step 2. If S = 2 is formed from the initial vector V all possible 
sub vectors vi with numbers of S length bands processing order. 
Step 3. If S > 2 is formed from sub vector vi

max and every re-
maining bands of V vector all possible S length sub vectors vi. 
Step 4. For all i carry out compression using three-stage algo-
rithm taking into account bands processing order set in sub vec-
tors vi. 
Step 5. Out of all vi find sub vector vi

max with maximum com-
pression ratio.  
Step 6. If S < K–1, then S=S+1, step 3, otherwise step 7. 
Step 7. End. 
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K length sub vector vi containing obtained (the “best”) order of 
bands processing will be the result of the algorithm.  
It is evident that the “best” order of bands processing obtained 
by this method can be different from the one obtained via com-
plete enumeration of possibilities but at the same time it re-
quires the less number of operations. In order to prove this 
point of view and to assess the compression ratio R of different 
test RS images a number of experiments was carried out, the re-
sults of which are shown in Fig. 6.  
It is noteworthy that the RS image no.10 was excluded from the 
experiments due to practical impossibility to process 12 bands 
simultaneously. Obtained results demonstrate the advantage of 
trimmed enumeration in defining the processing order before 
any other method from the point of view of computational per-
formance and compression ratio (in some cases slightly yield-
ing to the maximum possible compression ratio obtained when 
using the completed enumeration of processing possibilities).  
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Figure 8. Relation of compression ratio and time on the way of 
bands processing order when identifying the “best” 

combination 
 
Besides, when the number of image bands K>4 the advantage 
of the suggested method of trimmed enumeration becomes mul-
tiple, particularly for RS images of larger geometrical size (im-
age no.6, Fig.b). The results presented in Fig. b show that even 
the use of trimmed enumeration might require dozens of sec-
onds during compression, which cannot be considered satisfac-
tory for practical purposes.  
In order to increase the computational performance of defining 
the “best” order of bands processing it is suggested to modify 
the above considered trimmed enumeration algorithm by the se-
lective data processing where step 4 should be applied not for 
the whole initial image but it is advisable to use randomly se-
lected data samples of a specified size.  
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Figure 9. Relation of compression ratio and computational 

performance vs. data set size at completed (a,b) and trimmed 
(c,d) enumeration of bands  

 
The results justify greater computational performance of the 
trimmed enumeration with the selective data use in compari 
Comparative investigation results of the prototypes and the 
modified algorithm based on methods of the trimmed enumera-
tion, processing of bands and selective data processing with dif-
ferent data sample size are shown in Fig. 9.  
son with the completed enumeration, as well as research allows 
one  to make a conclusion on the fact that in order to define the 
“best” bands order processing it is enough to use lossless com-
pression with a data sample size containing 8-10% of pixels of 
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initial data. In this case multiple increase of the computational 
efficiency (7÷40 times) is achieved. Thus, higher computational 
performance are typical for the images with more bands and 
greater geometrical size of scene. Based on experimental results 
and conclusions let us accept the use of selection equal 10% 
sufficient for the suggested modified algorithm. 
The peculiar feature of the suggested compression algorithm is 
a joint use of wavelet transformations taking into account intra-
bands correlation and some original modifications on search of 
the suitable order of the bands processing. The algorithm might 
increase possible compression ratio and improve computational 
performance. This allows one to advance universal WinRar, 
WinZip or JPEG2000, which do not consider peculiarities of 
multispectral RS images. However, the results of carried out 
comparative experiments presented in Fig. 10 show that sug-
gested modifications of the compression algorithm and the se-
lective data use with a various sample data size allow one to 
make the computational performance of the three-stage algo-
rithm slightly comparable with WinRar, WinZip and 
JPEG2000, but at the same time more competitive in terms of 
compression ratio.  
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Figure 10. Comparative efficiency of the different compression 

algorithms 
 
 

4. CONCLUSIONS 

The three-stage compression algorithm of multispectral RS im-
ages based on the use of wavelet transformations and intra-
bands correlation was developed. Data test set included 10 mul-
tispectral RS images of different RS systems was used for its 
research on a computational performance, compression ratio 
and validity. It allows one to define the ideal depth of wavelet 
transformation L=3, as well as to identify the relation of a com-
pression ratio and time with the different ways of bands proc-
essing order while looking for the “best” bands combination 
from a view point of a maximum possible compression ratio. In 
order to increase the computational performance the algorithm 
was modified by a trimmed enumeration of the bands process-
ing and data selective use, as well as the sufficient sample size 
equal 10% is identified. The overall computational performance 
increased in 7÷40 times, and compression ratio – on 15-20% in 
comparison with non-modified prototype.  

The comparative research of the three-stage compression algo-
rithm with universal WinRar, WinZip and JPEG2000 was car-
ried out taking into account all modifications and found pa-
rameters of the algorithm. Results allow one to make the 
conclusion on the considerable advantage of the suggested 
modified algorithm if compared it with its prototypes in terms 
of compression ratio but with some disadvantage in computa-
tional performance.  
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ABSTRACT:

Transformation from non-impervious surface to impervious surface changes the landscapes as well as the ecological and
environmental conditions. Detecting impervious surface growth is vital to monitoring urban development and supporting sustainable
city planning. The objective of this research is to conduct detection of impervious surface sprawl using tasseled cap transformation
within the conceptual framework of Vegetation-Impervious surface-Soil (V-I-S) model. Landsat-3 MSS images on August 4, 1979
and Gap-filled Landsat-7 ETM+ images on May 22, 2009, covering the Greater Shanghai Area, were used in the case study. The
results demonstrated that direct change detection using variables derived from tasseled cap transformation was effective for
monitoring impervious surface sprawl. The variables derived from tasseled cap transformation have the potential to link to the
components of the V-I-S model. The Greater Shanghai Area experienced high-speed impervious surface sprawl over the past 30
years at the average speed of 38.84km2/year.

* Corresponding author

1. INTRODUCTION

The unprecedented combination of economic and population
growth has led China into transition from a largely rural society
to a predominantly urban one. Monitoring urban dynamic is of
critical importance for urban planning and sustainable
development in China, especially in the high-speed urbanization
regions, such as the Greater Shanghai Area (GSA).

Remote sensing, as a “unique view” of the spatial and temporal
dynamics of the processes of urban growth and land use change,
has been widely used to monitor land cover changes. Many
change detection methods and their improved versions have
been investigated widely in the last two decades. Lu et al. (2004)
summarized the change detection techniques into seven
categories: algebra, transformation, classification, advanced
models, GIS-related, visual analysis and other seldom-used
techniques. Different approaches have their own advantages and
disadvantages. It is impossible to say which approach is
absolutely superior to the others, and sometimes different kinds
of methods are combined so that the detection result is
improved (Jensen, 2005; Seto et al., 2002).

Urban landscapes are a complex mix of buildings, roads,
cloverleaf junctions, greenbelts, gardens, exposed soil and water
body. In order to understand the heterogeneous landscapes
better, the standardized model that describes these component
surfaces should be defined. To date, the Vegetation-Impervious
surface-Soil (V-I-S) model (Ridd, 1995) is one of the most
commonly used conceptual models for remote sensing analysis
of urban landscapes. The V-I-S model assumes that land cover
in urban areas is a linear combination of three components:
vegetation, impervious surface and soil (Figure 1). The diverse
nature of these three substances has a significant impact on the
dynamics and distribution of energy and moisture flux, the most
important drivers in the ecosystem. It is a potentially powerful
tool, therefore, for environmental impact analysis of
urbanization such as urban heat island analysis (Weng & Lu,
2009). It is also serving as a global standard platform for

spatial-temporal analysis and comparison of urban morphology,
biophysical and human systems universally (Ridd, 1995).

Figure 1. Some urban and near-urban features in the ternary
V-I-S model (Ridd, 1995)

Many researchers have experimented with various methods to
match the classifications of urban areas with the V-I-S
conceptual model. Traditional unsupervised and supervised
classification methods, for example, iterative self-organizing
data analysis (ISODATA) and maximum likelihood
classification (Madhavan et al, 2001); spectral unmixing
analysis (Phinn et al., 2002; Weng & Lu, 2009); hierarchy
classification (Setiawan et al, 2006; Ward et al., 2000) are the
most frequently used methods. The original bands and the bands
after principle components analysis (PCA) or minimum noise
fraction (MNF) transformation of Landsat TM/ETM+ are the
most frequently used data.

Tasseled cap transformation (so called K-T transformation), on
other hand, highlights the characteristics of vegetation,and soil,
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thus may have the potential to be related to the V-I-S
components. According to Jensen (2005), urbanized areas are
particularly distinct in the brightness component. The greater
biomass covering, the brighter the pixel value in the greenness
image. The wetness layer provides subtle information about the
moisture status of the wetland environment. There has been
very little research investigating whether tasseled cap
transformation is effective for impervious surface sprawl
detection and what is the relationship between variables derived
from tasseled cap transformation and the components of the V-
I-S model. Thus, there is a need to evaluate whether tasseled
cap transformation is an appropriate tool for detecting
impervious surface in the conceptual framework of the V-I-S
model.

The objective of this research is to conduct detection of
impervious surface sprawl in Shanghai using tasseled cap
transformation within the conceptual framework of the V-I-S
model. The specific aims of this research were: (1) to detect the
impervious surface sprawl using tasseled cap transformation; (2)
to analyze the spatial-temporal dynamics of impervious surface
in GSA over the past 30 years; (3) to determine the relationship
between the variables derived from tasseled cap transformation
and the components of the V-I-S model.

2. STUDY AREA AND DATA DESCRIPTION

2.1 Study Area

GSA, located in the Yangtze River Delta, Eastern China, was
selected as the case study area. It covers approximately 6,430
km2 and owns the largest population (18.9 million persons in
2008) among all Chinese cities. Shanghai contributed 4.9%
(approximately $129.5 billion dollars) of national Gross
Domestic Product (GDP) in 2006, is one of the most affluent
regions in China. During the past 30 years, Shanghai
experienced a distinct urban sprawl owning to China’s Reform
and Open policy, as a result, major land cover transformations
took place in Shanghai, where non-impervious surface (for
example vegetation, water body, unused land) was replaced by
the intensive build-up areas.

2.2 Data Description

To investigate impervious surface sprawl of Shanghai in the
past 30 years, Landsat MSS images on August 4, 1979 and
ETM+ images on May 22, 2009 were used (Figure 2). Past
research has indicated that gap-filled Landsat-7 ETM+ SLC-off
data with the USGS EROS released method is an accurate and
acceptable data source and likely to produce acceptable
classification products and to perform change detection (Bédard,
et al., 2008).

Figure2. Landsat images of Greater Shanghai Area, China in
1979 (Left, RGB: 321) and 2009 (Right, RGB: 432)

3. METHODOLOGY

3.1 Image Pre-processing

Landsat-7 ETM+ SLC-off data was gap-filled using segment-
based method (USGS, 2004). Then the Landsat MSS and
ETM+ images were geocoded with a root mean square error
(RMSE) approximately 6 m. As a single scene could not cover
the whole study area, image mosaicking of two adjacent scenes
was carried out and color balance was performed in the overlap
region between the two scenes. Then the image was subsetted to
the boundary of the GSA.

3.2 Tasseled Cap Transformation (K-T Transformation)

Tasseled cap transformation was developed by Kauth and
Thomas in 1976 for Landsat MSS data (Kauth & Thomas,
1976) and was improved and extended to Landsat TM data in
the mid-1980s (Crist & Cicone, 1984a; Crist, 1985; Crist &
Kauth, 1986). It was widely used in monitoring agriculture,
vegetation changes (Collins & Woodcock, 1996; Han et al.,
2007; Price et al., 2002; Rogan et al., 2002) as well as urban
dynamics detection (Fung, 1990; Seto et al., 2002). Tasseled
cap transformation is a kind of orthogonal transformation, it
rotates the original data plane so that the vast majority of data
variability is concentrated in the features, i.e., the plane is
viewed “head-on” and it presents the most basic structures of
the data in the most direct way (Crist & Cicone, 1984b). The
original Landsat MSS data space was transformed to a new
four-dimensional feature space, that is, the soil brightness index
(B), greenness vegetation index (G), yellow stuff index (Y), and
non-such (N). In this study, we aimed to extract built-up areas
information and B, G and Y were derived.

4321 262.0675.0603.0332.0 MMMMBrightness  (1)

4321 388.0557.0660.0283.0 MMMMGreenness  (2)

4321 041.0076.0428.0899.0 MMMMYellowness  (3)

Where M1-4 represent digital numbers (DNs) of band 1 to 4.

For Landsat-7 ETM+ images, Brightness (B), Greenness (G),
Wetness (W) and the fourth, fifth, sixth variables were produced
and the first three variables were selected. Past research has
indicated that at-satellite reflectance-based K-T transformation
is needed because changing sun illumination geometry affects
DNs strongly, and thus affects the derived tasseled cap value.
Moreover, at-satellite reflectance-based K-T transformation can
differentiate water from land targets better than the DNs and
reflectance factor based transformation (Huang et al., 2005).
DNs should, therefore, be converted to at-satellite reflectance
firstly according to formulae 3 and 4 (Myeong et al., 2006).
After the two steps, the effects owing to different sun angles at
different dates were compensated. Correspondingly, the
coefficients (Huang et al., 2005) here varied from the DNs-
based transformation (formulae 5-7).

   biasgainDNL  ( 3 )

Where L is radiance;  is the spectral band; gain is he spectral
band gain; and bias is the spectral band offset.

 






 cos

2






sunE

dL

( 4 )
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Where  is the unitless in-band planetary reflectance;  is
the spectral band; L is radiance; d is the Earth-Sun distance;

Esun is the mean solar atmospheric irradiance; and  is solar
zenith angle in degrees.

754

321

1596.02286.06966.0
3904.03972.03561.0







Brightness (5)

754

321

2630.00242.06966.0
4556.03544.03344.0







Greeness (6)

754

321

5388.07629.00656.0
0926.02141.02626.0







Wetness (7)

3.3 Detection of Impervious Surface Sprawl

3.3.1 Direct Change Detection
Direct change detections were performed using Brightness and
Greenness variables from 1979 and 2009. As the transition from
non-impervious surface to impervious surface results in big
difference in both brightness and greenness, the sprawl area
should be concentrated in upper-right part of the 2D scatter plot

between  Brightness and  Greenness (Figure 3a). By
adjusting the data range (points in red region of figure 4a) in the
plot, the corresponding distribution of points can be highlighted
interactively in the image window (Figure 3b). The impervious
surface sprawl was then determined with the assistance of field
data and the Landsat images.

Figure 3(a) 2D scatter plot between Brightness (X-axis) and
Greenness (Y-axis) (b) Corresponding regions to red points

of 2D scatter plot of Figure 4a

3.3.2 Unsupervised Classification: ISODATA
Unsupervised classification was performed on the changes in
Brightness and Greenness using Interactive Self-Organizing
Data Analysis (ISODATA). The parameters for ISODATA
classification conclude: change threshold is 5%, maximum class
stdv is 1.00, minimum class distance is 5.00 and the number of
classes is from 5 to 10.

3.4 Accuracy Assessment

For validation of the change detection results, 2000 randomly
selected testing points were generated, among which 1000 were
for impervious surface sprawl (ISS) and the other 1000 for non-
impervious surface (NISS).

4. RESULTS AND DISCUSSION

4.1 Visualization of the Variables from K-T Tramsform

Figure 4 shows the colour composites of Brightness, Greenness,
and Wetness derived from the 2009 ETM+ images. Built-up

areas are highlighted in Red and vegetation is in Green while
water is in Blue.

Figure 4. Colour composites map of Brightness, Greenness,and
Wetness derived from 2009 ETM+ data

Figure 5 shows the colour composites of Brightness, Greenness,
and Yellowness derived from the 1979 MSS images. Built-up
areas are shown in blue and orange, vegetation is in Yellow
while water is in dark blue, purple and black.

Figure 5. Colour composites map of Brightness,Greenness,and
Yellowness derived from 1979 MSS data

Figure 6 is the colour composites of changes in Brightness (in
Red and Blue) and Greenness (Green) in 2009.  Brightness is
derived by brightness 2009 minus brightness 1979 while
Greenness is computed by greenness 1979 minus greenness
2009 in order to highlight the impervious surface sprawl. As a
result, Brightness above 0 means brightness increases while
 Greenness above 0 means greenness decreases. Increase in
brightness and decrease in greenness is highlighted in white in
Figure 6, and the single change in brightness or greenness is
highlighted in purple or green correspondingly.

From the observation of Figure 6 with the aid of field
investigations, most impervious surface sprawl is related to
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white regions except the coastal area. It indicated that, on one
side, the impervious surface sprawl can be highlighted well in
the color composites of increases in Brightness and decreases in
Greenness. Even though the images were acquired in late May
and early August respectively, seasonal effects were not
significant as both late May and Early August belong to the
summer season with the multi-year average temperature in May
at 22°C and in August at 28.7°C and vegetation in Shanghai in
both months is green. On the other hand, impervious surface
sprawl is not characterized in white in shoreline areas. This
maybe explained according to Jensen (2005), when conducting
change detection in the coastal zone, many influence factors
should be considered, such as the different tidal stage.

Figure 6. Color composites of  Brightness (R), Greenness
(G) and  Brightness (B)

4.2 Detection of Impervious Surface Sprawl

The direct change detection results using 2-D scatter plot of
Brightness and Greenness is shown in Figure 7, with the
increase in impervious surface in yellow, and the background
map is Figure 6. The accuracy assessment is listed in Table 8.
Greater than 90% of the producers’ and users’ accuracies were
achieved and the kappa is 0.84.

Figure 7. Detected result of impervious surface sprawl using 2D
scatter plot

Ref.
Res.

ISS NISS Total
Producers’

Accu.

Users’
Accu.

ISS 901 82 983 90.1% 91.7%

NISS 99 918 1017 91.8% 90.3%

Total 1000 1000 2000 91.0%

Kappa Coefficient= 0.84

Table 8. Accuracy of direct change detection

For the unsupervised classification, seven classes were
produced and the 7th class was determined as impervious
surface sprawl while the other six classes were recognized as
non-impervious surface. The impervious surface sprawl result is
presented in yellow in Figure 9. Figure 6 is taken as the
background map too. The accuracies were lower than that of the
direct change detection (Table 10).

Figure 9. Detected result of impervious surface sprawl using
ISODATA unsupervised classification

Ref.
Res.

ISS NISS Total
Producers’

Accu.

Users’
Accu.

ISS 851 85 936 85.1% 90.9%

NISS 149 915 1064 91.5% 86.0

Total 1000 1000 2000 88.3%

Kappa Coefficient= 0.80

Table 10. Accuracy of ISODATA unsupervised classification

Detected sprawl area of impervious surface

Detected sprawl area of impervious surface
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Figure 11. Comparison of diction method in shoreline area
(a) direct change detection (b) ISODATA classification

Figure 11 shows the comparisons of the two methods in the
shoreline regions. Detected impervious surface sprawl was
highlighted in yellow. The difference in the ellipse illustrated
that ISODATA classification was able to detect nearly all the
impervious surface sprawl while the large protion of the
impervious surface sprawl was not detected using direct change
detection. Visual inspection indicated that in this case
ISODATA is superior for detecting impervious surface in the
shoreline region even though direct change detection method
has the higher overall accuracy than ISODATA. Therefore, the
final map of the impervious surface sprawl was a composite of
both results with ISODATA result in the shoreline area and
direct change detection result in other regions.

The overall accuracy of combined detection method on both
ISS and NISS is 92.5%, and the Kappa coefficient is 0.8614.
The detected impervious surface sprawl result is shown in
Figure 13 and the detailed accuracy is listed in Table 12.

Ref.
Res.

ISS NISS Total
Producers’

Accu.

Users’
Accu.

ISS 913 63 976 91.3% 93.5%

NISS 87 937 1024 93.7% 91.5%

Total 1000 1000 2000 92.5%

Kappa Coefficient= 0.86

Table 12. Accuracy of hybrid detection method

4.3 The spatial-temporal dynamics of impervious surface in
Shanghai

Based on combined result, the temporal-spatial dynamics of
impervious surface in GSA over the past 30 years was analyzed.
The impervious surface encroached large area of agricultural
land and other vegetation (approximate 1165.1km2) over the
past 30 years with the extremely high annual expansion speed
(38.84 km2/year in average). In addition, Shanghai reclaimed
and is reclaiming land from the sea due to many pressures, such
as the high land price in the city, and agriculture compensation
policy for build-up encroached areas.

Figure 13. Detection of impervious surface sprawl between
1979 & 2009

4.4 The relationship between Tasseled Cap Variables and
the V-I-S Components

In the following 2D scatter plots (Figure 14 a, b), impervious
surface, soil and low coverage of vegetation, water body and
high coverage of vegetation is expressed in red, yellow, blue
and green respectively. The samples are selected using the
ground truth points from field work in October, 2009. From the
following figures, the different components of the V-I-S model
can be illustrated relatively separated in the feature space of
tasseled cap variables, for instance Brightness-Greenness space,
than the feature space of Landsat ETM+ original bands.

Figure 14 (a). Scatter plot between Brightness (X-axis) and
Greenness (Y-axis) in 2009; (b). Scatter plot between Band 3

(X-axis) and Band 4 (Y-axis) of Landsat ETM+, 2009

5. CONCLUSION

This study showed that tasseled cap transformation is an
effective method for detecting impervious surface sprawl in
GSA and the variables derived from tasseled cap transformation
has the potential to link with the components of the V-I-S
model. The results also demonstrated that the GSA experienced
high-speed impervious surface sprawl over the past 30 years at
the average speed of 38.84km2/year.

Detected sprawl area of impervious surface
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ABSTRACT:  
 
High-resolution satellite images (HRSI) at sub-5m footprint such as IKONOS, IRS-P5 (CartoSat-1) and SPOT-5 HRG/HRS images 
are the main data sources for the Project of West China Topographic Mapping (WChTM), which has been approved by the State 
Council of China in 2006 and will be completed at the end of 2010. Two procedures which are used for this project in practice, i.e. 
the block-adjustment procedure and automatic DTM generation procedure, are described in this paper. We firstly present an approach 
for block-adjustment based on Rational Function Model (RFM) with sparse GCPs by using satellite Images. Secondly, we present a 
matching approach for automatic DTM generation from HRSI.  
To test the proposed approaches, they have been applied to SPOT-5 images over 1 test-fields, which covers eastern part of Tibet 
Plateau, China with variable terrain geomorphologic type. In another test we use 23 scenes of IRS-P5 images, which cover Beijing 
test area of about 21,000 square kilometers. From these experiments, it’s shown that with the proposed block-adjustment and DTM 
generation approach, by using SPOT-5 HRS/HRG and IRS-P5 imagery with small number of GCPs, satisfactory image orientation 
results and DTM product (after necessary manual editing) can be achieved with a little bit better accuracy than those requirements 
from the Chinese Surveying and Mapping regulations for 1:50000 topographic maps.  
 

 
1.  INTRODUCTION 

 

A decade after early 1990s, remote sensing has stepped into a 
new stage which can supply various high-resolution observation 
data from space. At present, terrain information extraction, 
change detection, disaster monitoring, and topographic mapping 
by using the HRSI has become one of research hotspots. 
Meanwhile, HRSI has more and more applications in 
photogrammetry. The stereo remote sensing image with spatial 
resolution of meter-level or even sub-meter level has the 
capability to replace the aerial images which used for traditional 
topographic mapping or updating of geo-information at 1:50,000 
and 1:10,000 scale (Zhang, et. al., 2004). Among these, 
GeoEye-1, IKONOS, SPOT-5 HRS/HRG, IRS-P5 images are 
well-known examples. 
Due to the difficulties for aerial image acquisition, time limit of 
the project and other practical considerations, SPOT-5 
HRS/HRG, IRS-P5 and other HRSI images are the main data 
sources for the project of Western China Topographic Mapping 
(WChTP) at 1:50,000 scale. Before 2006, up to 2.02 million km2 
are not mapped at 1:50,000 scale in western part of China, it 
includes Sorthern-XinJiang desert area, Qing-Tibet Plateau area 
and Heng-duan mountain ranges. This unmapped area covers 
about 20% of all areas of China; includes total number of about 
5,032 sheets of 1:50,000 scale topographic maps. This situation 
greatly hiders the socio-economic development of this region, it 
also poses potential threat to national security. The project has 
been approved by the State Council of China in year 2006, and is 
dedicated to complete 1:50,000 scale topographic map and 
construct the national geo-spatial database for the region within 
next 5 years through year 2006 to 2010. The unmapped area  
covers most unmans area of China, the very harsh natural 
conditions (average terrain elevation is more than 4000m) and 

difficult transportation conditions provide a very difficult 
situation for GCP measurement and other field works. In many 
areas, it’s even impossible for accessing or collecting enough 
GCPs, therefore, the project of WChTP should utilize some 
innovative and well-developed techniques, such as DGPS/IMU 
assisted aerial photogrammetry, high resolution satellite imagery 
mapping technique and radar image mapping technique, design 
and use mapping procedure with small number of GCPs, to 
complete the project. However, on one hand, the radar image 
processing technique, especially those methods for precise DTM 
generation from InSAR data, has not been well-developed and 
regularly used in China; on the other hand, very high resolution 
aerial images cannot be acquired within reasonable time due to 
the very harsh natural conditions and variable climate conditions, 
Therefore, in the project of WChTP, more than 90% areas will 
be mapped with SPOT-5 HRS/HRG and IRS-P5 imagery 
(including IKONOS and QuickBird images over some important 
cities and towns), the rest of areas will be mapped with SAR and 
aerial images only after enough research works and experiments. 
The project of WChTP is a complicated project which first uses 
HRSI for topographic mapping in China  In this paper, we 
firstly present a block-adjustment procedure based on Rational 
Function Model (RFM) for HRSI satellite images (Chapter 2). 
Secondly, we present a matching approach for automatic DTM 
generation. It can provide dense, precise and reliable results 
(Chapter 3). These two procedures have been successfully 
applied for block-adjustment of large-area SPOT-5 and IRS-P5 
satellite imagery with small number of GCPs, and used in 
practice in production-line for the project of WChTP. The results 
show that with our approaches, by using SPOT-5 HRS/HRG and 
IRS-P5 imagery, with several GCPs, satisfactory image 
orientation results and DTM products (after necessary manual 
editing) can be completed with a little bit better accuracy than 
those requirements from Chinese Surveying and Mapping 
regulations for 1:50000 topographic maps (Chapter 4, 5).  
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2.  BLOCK-ADJUSTMENT WITH HRSI BASED ON 
RATIONAL FUNCTION MODEL (RFM) AND SPARSE 

NUMBER OF GCPS 

Sensor models are fundamental for the photogrammetric 
processing, such as the stereo measurements and the image 
ortho-rectification. They are typically classified into two 
categories: the physical and the generalized models. In a 
generalized sensor model, the transformation between the image 
and the object space is represented as some general function 
without modeling the physical imaging process. The Rational 
Function Models (RFMs) is one of the generalized sensor 
models and have recently drawn considerable interest in the 
remote sensing community. 
Almost all the high-resolution satellite cameras use Linear Array 
CCDs to acquire a single image line at an instant of time, each 
with its own positional and attitude data. The imaging geometry 
is characterized by nearly parallel projection in along-track 
direction and perspective projection in cross-track direction. The 
bundle adjustment approach, which has been well-developed in 
aerial photogrammetry, can also be applied for satellite images 
after appropriate alteration (Qian, et. al., 1990). Due to the 
dynamic nature of satellite image acquisition, this kind of model 
is more complicated than in the single frame case. Furthermore, 
due to very narrow field of view for HRSI images (e.g. SPOT-5 
HRS is 8.3°, IKONOS only is 0.7°), many parameters in the 
physical sensor models are completely or highly correlated with 
other parameters so that they cannot be safely estimated through 
the triangulation procedure (Grodecki and Dial, 2003). 
According to the researches made by Tao and Hu (2001), The 
RFM can achieve an approximation accuracy that is extremely 
high both for aerial frame data and SPOT linear array data. 
Therefore, in this paper, we try to develop a block-adjustment 
approach with HRSI based on RFM. The procedure includes the 
following 2 steps: 

2.1. Rational Function Model (RFM) parameter estimation 
 

A RFM is generally the ratio of two polynomials with its 
parameters derived from the physical sensor model and the 
corresponding terrain information. In RFM, image pixel 
coordinates (x, y) are expressed as the ratios of polynomials of 
object coordinates (ϕ, λ, h), which in the case of the IKONOS 
RPCs correspond to latitude, longitude and ellipsoidal height. 
For an image, where xn and yn are normalised pixel coordinates 
and ϕn,λn,hn are normalised latitude, longitude and ellipsoidal 
height, the ratios of polynomials have the following form:  
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In equation (1), the maximum power of each object coordinate 
and the total power of all object coordinates are limited to 3. 
Some commercial HRSI like IKONOS and IRS-P5, only supply 
RFM model coefficients to the user, however SPOT-5 
HRS/HRG supplies orientation parameters through the metadata 
file (DIMAP format file). 
 
 
 
 
 

Table 1: Accuracy test for SPOT-5 imagery RPC Estimation 
Image type Image size 

（Row×Column） 
Fitting RSME 
（pixel） 

HRS 5×10m Pan 50712×12000 0.00854 
HRS 5×10m Pan 116264×12000 0.01017 
HRS 5×10m Pan 114592×12000 0.01016 
HRS 5×10m Pan 81928×12000 0.00978 
HRS 5×10m Pan 116864×12000 0.01013 

HRG 5m Pan 40208×12000 0.02557 
HRG 5m Pan 51984×12000 0.02814 

HRG 2.5m Pan  24000×24000 0.05495 
HRG 2.5m Pan 24000×24000 0.05518 
HRG 10m MS  6000×6000 0.01099 
HRG 10m MS 6000×6000 0.01558 

Through these parameters, the physical sensor model (details 
please refer to SPOTIMAGING, 2002) of SPOT-5 imagery can 
be established. Usually, the RFM can be computed based on the 
SPOT-5 physical sensor model. Tao and Hu (2001) gave a 
detailed description of a least squares solution of RPCs based on 
the physical sensor models and suggested using a Tikhonov 
regularization for tackling possible oscillations. In our procedure, 
this method was applied also for SPOT-5 image RPC estimation. 
We applied comprehensive testing by using hundreds scene of 
SPOT-5 HRS/HRG images in order to evaluate the performance 
of RPC estimation method, part of the results are shown in Table 
1. The results show that: a) For SPOT-5 HRS stereo image, 
fitting RMSE for physical sensor model usually is about 1/100 
pixel, and it seems not related to the image size; for SPOT-5 
HRS 5m panchromatic images, fitting accuracy is about 1/40 
pixel, for SPOT-5 HRS 2.5m panchromatic images, fitting 
accuracy is about 1/20 pixel. b) The fitting RMSE for physical 
sensor model is roughly related to ground resolution of the 
images, which is roughly equal to 0.1m in ground. c) RFM can 
replace the physical sensor model in subsequent 
photogrammetric processing of SPOT-5 image, and the accuracy 
loss can be ignored in mapping at 1:50,000 scale. 
 
2.2. Block-adjustment based on RFM 
 
Actually, the RFM constitutes a re-parameterization of the 
physical sensor model. Errors in sensor interior and exterior 
orientation thus give rise to errors in the RPCs. Grodecki and 
Dial (2003) proposed a practical block-adjustment model for 
multi-strip blocks of the high-resolution satellite imagery 
described by RPC models and illustrated the method with an 
IKONOS example. With the supplied RPCs, the mathematical 
model used is: 
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where, ai,0, ai,1, ai,2 and bi,0, bi,1, bi,2 are the 6 adjusted parameters 
for image i, and (xk, yk) and (ϕk, λk, hk) are pixel and object 
coordinates of the points k.  
In our approach, we first used the RPCs to transform from object 
to image space and then using these values and the known pixel 
coordinates we estimated either two shifts ai,0, bi,0 (model 
M_RPC2) or all 6 parameters ai,0, ai,1, ai,2 and bi,0, bi,1, bi,2 
(model M_RPC6). The basic least squares observation equations 
for these 2 models are: 
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(3) 

Here, P is the weight matrix describing the image measurement 
precision. For a block of images, the image georeferencing can 
be performed with the solution of the least squares normal 
equations resulting from equation (3). From equations (2) and (3) 
it is apparent that model M_RPC2 requires at least a single 
well-defined GCP, whereas an estimation of all six parameters in 
model M_RPC6 would require a minimum of 3 appropriately 
located GCPs per image.  
 

3.  AUTOMATIC DTM GENERATION BY USING A 
MULTIPLE-PRIMITIVE MULTIPLE-IMAGE 

MATCHING APPROACH 

We have developed an advanced matching approach for 
automatic DTM generation from HRSI. The approach uses a 
coarse-to-fine hierarchical solution with a combination of 
several image matching algorithms and automatic quality control. 
The approach essentially consists of 3 mutually connected 
components: the image pre-processing, the multiple primitive 
multi-image (MPM) matching and the geomorphologic 
refinement matching procedure. The overall data flow is shown 
schematically in Fig. 1.  
The Multiple Primitive Multi-Image (MPM) matching procedure 
is the core of our approach for accurate and robust DTM 
reconstruction. In this procedure, we do not aim at pure 
image-to-image matching. Instead we directly seek for 
image-to-object correspondences. We have developed a new 
flexible and robust matching algorithm – Geometrically 
Constrained Cross-Correlation (GC3) method in order to take 
advantage of the multiple images. The algorithm is an extension 
of the standard Cross-Correlation technique and is based on the 
concept of multi-image matching guided from object space and 
allows reconstruction of 3D objects by matching all available 
images simultaneously, without having to match all individual 
stereo-pairs and merge the results. For more details of our 
matching procedure, please refer to Zhang, (2005); Baltsavias, et. 
al., (2006). 
It should mention that the results through matching two or more 
optical remote sensing images are actually the Digital Surface 
Models, i.e. DSMs. Post-processing of DSMs are necessary to 
generate DTMs through methods which can reduce the DSM 
points to bare earth in urban areas or heavily vegetated areas. 
Manual editing the DSMs through stereo checking is one of the 
options; however, it is a time-consuming job. In our procedure, a 
method which used for LIDAR data filtering was used. The 
filtering method is one of the so-called morphological filters, 
which use a small structure element, describing admissible 
height differences as a function of the horizontal distance. This 
method was modified, implemented and integrated into our 
matching procedure as a post-processing option. For details of 
this filtering method, please refer to Vosselman, G., (2000). 
 
4.  BLOCK-ADJUSTMENT TESTING AND ACCURACY 

ANALYSIS 

In order to evaluate the performance of block-adjustment 
approach presented in this paper. We selected several test areas 
to apply extensively accuracy test, the results show that only 
using small number of GCPs, we can meet the requirements of 

topographic mapping at 1:50,000 scale in China for large 
coverage of SPOT-5 HRS and IRS-P5 stereo images. 

 

Figure 2. Workflow of the proposed automated DTM 
generation approach. 

 
4.1 SPOT-5 HRS Imagery in Eastern Tibet Plateau and 
Eastern Talimu Basin 

 
The block-adjustment with SPOT-5 HRS images in areas of 
eastern Tibet Plateau and eastern Talimu basin have been 
completed in 2006 and 2007. The test area in eastern Tibet 
Plateau covers 1234 topographic maps at 1:50,000 scale with the 
area of about 530,000km2, where contains large-area of 
seasonally and perennially frozen soil, glacier and perennial 
snowfield and unman area; The test-field in eastern Talimu 
Basin and North Slope of Aerjin Mountain ranges covers 325 
topographic maps at 1:50,000 scale with the area of about 
130,000km2, where covers large-area of desert with fixed/fluid 
dunes, arid salt desert, gobi, badland and yardang landforms. 
Therefore it is quite difficult for surveying field-works with 
these kinds of harsh nature environment, meanwhile, 
poor-texture image areas caused by large areas of desert and 
gobi result in another difficulties for GCP collection and precise 
measurement in both image and object space. 
Field works such as GCPs surveying and image annotation have 
been completed in the test areas by over 500 surveyors and 120 
vehicles from 7 production units including Shanxi, Heilongjiang 
and Sichuan Surveying and Mapping Bureau, Chongqing 
Surveying and Mapping department, and Surveying and 
Mapping Bureau in Qinghai, Xinjiang and Gansu provinces 
since 2006. About 700 GCPs and checking points are measured 
by differential GPS. The measurement accuracy was better than 
1m in planimetry and 1.2m in height. The GCPs are 
well-distributed in the test area, their average ground distance is 
about 100-150km (in order to ensure reliable GCP at the 
in-home designed location, two- or three-point layout plan 
would be utilized at the designed location, and all of them would 
be recorded in the number of GCPs). According to the coverage 
of the SPOT-5 HRS satellite images and the distribution of 
GCPs, also considering the terrain type, block-adjustment of the 
whole test area will be divided into 4 sub-testfields (Fig. 3): (B1) 
Testfield in zone of headstream of Three rivers, Tibet Plateau, 
China: In this area, 13 SPOT-5 HPS stereo image strips which 
cover about 120,000km2 are involved. The GCP measurement 
was completed in 2006, there are large number of GCPs because 
this area is the first working area of the WChTM project. 

In: Wagner, W., Székely, B. (eds.): ISPRS TC VII Symposium – 100 Years ISPRS, Vienna, Austria, July 5–7, 2010, IAPRS, Vol. XXXVIII, Part 7A
Contents Author Index Keyword Index

318



 
Figure 3. Overview of test-fields in eastern part of Tibet 

Plateau and eastern Talimu Basin, China 
Finally, there are total 157 points were used in block-adjustment 
procedure except certain number of necessary tie points, in 
which contain 59 GCPs and 98 checking points. The 
block-adjustment results are shown in Table 4. 
(B2) Test-field of northeast in eastern Tibet Plateau, this area has 
26 SPOT-5 HPS stereo image strips which cover about 
200,000km2. There are 209 points were used in 
block-adjustment for this test-field, in which contain 81 GCPs 
and 128 checking points. The block-adjustment results are 
shown in Table 4. 
(B3) Test-field of southwest in eastern Tibet Plateau, this area 
has 26 SPOT-5 HPS stereo image strips with coverage of about 
300,000km2. Finally there are 273 points were used in 
block-adjustment, in which contain 115 GCPs and 158 checking 
points. The block-adjustment results are shown in Table 4. 

Table 4. Accuracy reports for block-adjustment in test-field 
of eastern part of Tibet Plateau and eastern part of Talimu 

Basin, China. The unit is in meters 
RMSE of 

GCPs 
RMS of  

CPs 
Max error 
of GCPs 

Max error 
of CPs  

 σ0 
(pixel) 

X Y Z X Y Z X-Y Z X-Y Z 
B1 0.79 4.9 5.2 1.4 8.9 6.9 2.1 13.4 4.3 23.2 4.3 
B2 0.68 5.3 4.6 2.1 7.8 6.7 2.5  16.2 5.9 17.4 6.1 
B3 0.62 5.2 5.6 1.6 8.4 7.2 2.4 15.8 4.1 18.2 5.0 
B4 0.54 4.4 4.5 1.2 5.2 6.3 2.1 11.6 2.2 11.7 3.6 

(B4) Test-field of eastern Talimu basin, this area has 5 SPOT-5 
HPS stereo image strips with coverage of about 60,000km2. 
There are 92 points were used in block-adjustment, in which 
contain 51 GCPs and 41 checking points. The block-adjustment 
results are shown in Table 4. 
As shown in Table 4, the block-adjustment accuracy of the test 
areas in eastern Tibet Plateau and eastern Talimu basin are quite 
good (in sub-pixel level) compared to the resolution of SPOT-5 
HRS images, and it can meet the block-adjustment accuracy 
requirements regulated in mapping standard at 1:50,000 scale 
with small number of GCPs. Comparing to block-adjustment 
with the traditional aerial photos, block-adjustment with SPOT-5 
HRS stereo image has some different features. For example, the 
resolution is quite different, the scale of aerial photos used for 
mapping at 1:50,000 scale normally is 1:35,000-1:50,000, the 
ground resolution of image usually is in sub-meter or meter level. 
According to experience of the tests made as above, for 
block-adjustment with SPOT-5 HRS stereo images, the 
following problems should be noted specially in GCPs/tie-point 
measurement, block- adjustment computation and accuracy 
checking: 

 
Figure 5. Example of radiometric difference between adjacent 

SPOT-5 HRS images caused by different acquisition time 
(1) For satellite images, the radiometric differences caused by 
different imaging time between adjacent stereo images must be 
considered while making the GCP layout plan and measurement. 
GCPs should be located and can be measured precisely in all (or 
as more as possible) satellite images. Take example in Fig. 4 for 
instance, the GCP in left image will be very hardly or even can 
not be measured/transferred to the adjacent right image if we do 
not take the temporal difference into account. 
(2) For SOPT-5 HRS stereo images, the image resolution of is 
5m in along-track and 10m in cross-track direction, this means 
that measurement accuracy is different in different direction of 
SPOT-5 HRS images, thus we have to pay much attention when 
we make the point measurement in cross-track direction. 
(3) The requirement of block-adjustment residual errors for 
GCPs and checking points in existing Chinese mapping standard 
of aerial image is regulated for tolerance. Sometimes, it might be 
very difficult to observe image points and carefully modify point 
location to reach the tolerance requirement. For example, 
assume the residual error of an image point is 3.2m or 3.5m, but 
if the tolerance is 3.0m, this means that the modification of this 
point is in 1/25 or 1/10 pixel level for SPOT-5 HRS image; 
Therefore it suggests that precise stereo observation must be 
applied for SPOT-5 HRS images to insure firstly, the residual 
error of this point in image space is less than 1.5 pixel, 
meanwhile, it suggests that the residual errors of 5%-10% GCPs 
or Check points are allowed over requirement of tolerance but 
they must be less than 1.5 times of the tolerance. 
 
4.2 IRS-P5 Stereo Images and Accuracy Analysis  

The test-field is an area around the city of Beijing, China. It 
consists of a steep mountainous region in the north-western part 
and flat regions in the middle and southern parts. The city of 
Beijing is located in the lower part of the study area. The whole 
area is about 70 × 210 km2. The site has an average terrain 
height of 300m and an elevation range of more than 1100 m.  
Over the test area, totally 23 scenes of IRS-P5 stereo images 
were collected. In order to precisely georeference these images, 
about 66 well-distributed GCPs were collected with differential 
GPS in 2006. The measurement accuracy was better than 0.5m 
in planimetry and 1m in height. The GCPs are well-distributed in 
the test area, their ground intervals are about 30km, and most of 
them are located at the center of road intersection which can be 
precisely measurement both in image and object space. 

According to works made by Lutes, J. (2006), most orientation 
errors in IRS-P5 stereo images are either biases or linear in 
line/sample direction. This suggests that at least 4-6 GCPs are 
required for orient an IRS-P5 stereo pair (with corresponding 
RPCs) to achieve good enough results. Other works which made 
by Jocobsen, et. Al (2008) also show that with model M_RPC2 
(RPCs plus biases correction) can achieve good enough 
orientation results. However, based on our own test with IRS-P5 
images in China, for each scene of stereo image, at least 4 GCPs 

B4 subarea 

B3 subarea 

B1 subarea B2 subarea 
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are necessary to remove all biases and linear trend errors. 

 

 

 
Figure 6. In Beijing test-field, there are 23 scenes of IRS-P5 

stereo images. In order to facilitate the subsequent 
processing, we use the re-mosaic procedure based on 

metadata to combine these 23 stereo images into 3 long 
stereo strips. 

  
Figure 7. Different distribution of GCPs for different 

block-adjustment test phase (with 5, 9, 13 GCPs respectively) 
with IRS-P5 imagery 

Normally, we could commercially get so-called IRS-P5 
“standard scene” of images, which have 12000 × 12000 pixels 
and cover 30 × 30km2. Basically the standard scenes could be 
sub-images of a long IRS-P5 strip. They are just subdivided 
from a long IRS-P5 strip for commercial reason and normally 
they have 5%-15% overlap between adjacent scenes. We 
develop a procedure to re-mosaic adjacent IRS-P5 standard 
scenes into a long stereo strip (Fig. 4) in condition that these 
scenes are sub-images of the original long IRS-P5 strip. After 
this re-mosaic procedure, 23 IRS-P5 scenes of the Beijing 
test-field are re-mosaic into only 3 IRS-P5 long stereo strips.   
We select different numbers and distribution layout of GCPs for 
accuracy test, which includes 4 GCP, 9 GCPs, 13 GCPs and all 
of control points (see Fig. 5), the results are shown in Table 8. 
Test results show that: (a) with the increase number of GCPs, 
there is certain degree of improvement for both planimetry and 
elevation accuracy, but the improvement is not so significant; (b) 
adjustment accuracy in teat area can meet the requirement of 
block-adjustment in surveying criterion at 1:50,000 scale even 
with only 5 GCPs located at corners of the test-field. According 
to this result, the proposed re-mosaic procedure is quite 
important for both reduce the number of GCPs and reduce the 
measurement error accumulation. For single long-strip IRS-P5 
images, only 4 GCPs at the image corners are enough to achieve 
good accuracy under the condition that the length of strip is 
below 150km; for multiply long-strip IRS-P5 stereo images even 
less GCPs are required to reach the requirement of topographic 
map surveying at 1:50,000 scale in China.  
 
 

Table 8. Accuracy test for block-adjustment in Beijing 
test-field, with IRS-P5 stereo images. The unit is in meters 
Test phase GCPs+CPs RMSE-X  RMSE-Y  RMSE-Z 

5 GCPs 5 + 61 1.70 1.96 2.49 
9 GCPs 9 + 57 1.64 1.93 2.50 

13 GCPs 13 + 43 1.61 1.86 2.37 
66 GCPs 66 + 0 1.43 1.68 1.98 

 
5. PERFORMANCE EVALUATION ON AUTOMATIC 

DTM GENERATION APPROACH 

In order to evaluate the performance of our approach for DTM 
generation it has been verified extensively with several HRSI 
datasets, such as IRS-P5 and SPOT-5 HRS/HRG images, over 
different terrain types, which include hilly and rugged 
mountainous areas, rural, suburban and urban areas. In the 
following, we will report in detail about 1 experiment over test 
area in Zone of headstream of Three rivers, Eastern Tibet Plateau, 
China. Other processing and evaluation results of IKONOS and 
SPOT5 HRS/HRG can be found in Poli et al., 2004; Baltsavias 
et al., 2006 and Poon et al., 2005. 
The test area in Zone of headstream of Three rivers, Eastern 
Tibet Plateau, China covers 250 topographic maps at 1:50,000 
scale with the area of about 12,000km2, where contains 
large-area of seasonally and perennially frozen soil, 
mountain/valley glacier and perennial snowfield and large area 
of unman area. The test-field is the headstream of Yangtze River, 
Yellow River and Lancangjiang River, and the QingZang 
railway and national road cross the region from north-east to 
south-west. The average elevation is 4000m in test-field. Main 
geological structures are in trend of nearly east-west direction. 
The various landforms in study area provides better environment 
for DTM automatic generation. 
Over the test area, totally 11 pairs of 10 × 5m SPOT-5 HRS and 
nearly twenty 5m HRG images were acquired. These images 
were used to generate DTM over the whole test area. In 
particular, for DTM accuracy analysis, 2 SPOT-5 HRS satellite 
image pairs imaged in Nov 2003 and 6 HRG images, which can 
form the SPOT-5 stereo triplets, have been selected. The images 
have the fine quality and have no cloud coverage, which provide 
good data sources for DTM automatic generation and accuracy 
analysis.  
After the block-adjustment, the proposed DTM generation 
approach was applied to 2 SPOT HRS stereo image strips and 6 
HRG images simultaneously. As a result, 25m grid-spacing 
DTM of the accuracy study area has been generated 
automatically after about 26 hour. As results, about 90 millions 
feature points and 5 millions feature lines have been matched 
which is equivalent to match a 4 × 4 density grid on the original 
image, and it is good enough for generation of DSM with 25m 
interval. Since our DSM generation approach not only generates 
a large number of mass points but also produces line features, 
which are necessary for the modeling the rugged mountainous 
terrain. Finally, post-processing of the DSM by using a slope 
based filtering method was applied and worked well, since the 
average height of the test area is above 4000m and it is unman 
area, man-made structures and vegetation don not pose big 
problems. Parts of DTM results are shown in Fig 6. It can be 
seen that the resulted DTM reproduced quite well not only the 
general features of the terrain relief but also small 
geomorphologic and other features visible in the SPOT-5 
images. 
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(a): Shaded DTM of arid/semi-arid mountainous terrain. 

(b): Shaded DTM of high-plateau mountain ranges 
Figure 9. The shaded terrain models of 25m over 2 

sub-areas in test area. The resulting DTM reproduced quite 
well not only the general features of the terrain relief but 

also small geomorphologic and other features visible in the 
images. 

 
Since the study area is within the WChTM project covered area, 
there are not good enough reference data, we apply the 
following three accuracy evaluation methods for DTM accuracy 
evaluation: 

 (1) Overlay the automated generated DTM onto the stereo 
image pairs to apply manual visual checking under stereoscopic 
display device. Checking results show a good enough match 
between DTM and stereo images expect some small blunders 
within shadow areas, which have to apply necessary manual 
editing. 
(2) Accuracy checking by using GCPs and check points 
measured by differential GPS. Upside of Table 10 give the DTM 
accuracy evaluation results by using this method. We computed 
the differences as GCPs minus the interpolated heights from our 
generated DTM. The accuracy of the DTM is between 1.7 – 6.7 
m depending on the terrain relief and land cover.  
(3) Accuracy checking by using 1489 manually measured 
checking points which were acquired on digital 
photogrammetric workstation. We computed the differences as 
these points minus the interpolated heights from our generated 
DTM. The accuracy of the DTM is between 3.6 – 4.5m 
depending on the terrain relief and landform. Since the DTM 
generation and point measurement procedure share the same 
image orientation results, the errors of the DTM would be from 
the stereo image matching, which is directly relate to the 
matching accuracy. Detailed accuracies are shown in Table 10 
downside. 
According to the experiment results, the following conclusions 
can be made: (a) DTM at 1:50,000 scale can be generated 
automatically from SPOT-5 HRS/HRG stereo/triplet-stereo 
images by using the automatic DTM generation approach 
proposed in this paper. The elevation accuracy can roughly be 
50% better than requirements of the Chinese national surveying 
regulation; (b) simultaneously matching SPOT-5 HRS/HRG 
triplet stereo strips and matching both feature points and 
feature-lines are quite necessary for deeply incensed 
mountainous area and rugged terrain, such as arid and semi-arid 
broken mountains in northern part and rugged mountain ranges 
in southern part of the study area; (c) the proposed automatic 
DTM generation approach can largely increase the working 
efficiency, however, necessary filtering of the DSM to generate 
DTMs, careful manually stereoscopic checking and editing are 
still necessary to remove some small matching blunders, which 
are in most cases within shadow and gully/rill/ steep-valley 
well-developed areas. 
 

Table 10: DTM accuracy evaluation results with SPOT-5 HRS/HRG imagery 
Reference 

data 
Map 

sheets 
Num. of 

check points 
Height accuracy 

(RMSE) 
Accuracy requirements of 

1:50,000 scale 1st/2nd level DTM 
Type of terrain 

3 99 6.7 m 14.0 m/19.0 m Mountainous area 
1 26 3.6 m  8.0 m/11.0 m Mountainous area 
2 64 1.7 m  5.0 m/ 7.0 m Hilly area 

 
GPS points 

3 127 2.8 m  3.0 m/ 4.0 m Flat/hilly area 
47 937 3.6 m  5.0 m/ 7.0 m Hilly area 
21 367 4.5 m  8.0 m/11.0 m Mountainous area 

Manually 
measured 

points 8 185 4.4 m 14.0 m/19.0 m Mountainous area 
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6. CONCLUSIONS 

In this paper, we firstly present an approach for 
block-adjustment based on Rational Function Model (RFM) 
with sparse GCPs by using satellite Images. To test the 
proposed approach, it has been applied to SPOT-5 images 
over test-fields, which covers eastern part of Tibet Plateau, 
China. The test-fields are with variable terrain 
geomorphologic type and several tens of GCPs and check  
points measured by DGPS. The block-adjustment results 
show that with SPOT-5 HRS images and a small number of 
GCPs we can achieve 5-9m in planimetric and 2-3m in height 
direction. In another test we use 23 scenes of IRS-P5 images, 
the test area covers Beijing area and about 21,000 square 
kilometers. In this test-field, the block-adjustment result 
shows that only with 5 GCPs we could achieve 2.0 m in 
planimetric and 2.5m in height direction. From these 
experiments, it’s shown that with the proposed 
block-adjustment approach, by using SPOT-5 HRS/HRG and 
IRS-P5 imagery with several GCPs, satisfactory image 
orientation results can be completed with a little bit better 
accuracy than those requirements from Chinese Surveying 
and Mapping regulations for 1:50000 topographic maps. 
Secondly, we have reported about an advanced matching 
approach for automatic DTM generation from high-resolution 
satellite images. The proposed approach has been applied to 
SPOT-5 HRS/HRG images over a test-field in Zone of 
headstream of Three rivers, Tibet Plateau, China with 
variable terrain geomorphologic type. The accuracy tests 
were based on the comparison between as many as 160 
accurate GPS check points, more than 1400 manually 
measured check points and the automatically extracted DTMs. 
The RMS errors for the whole area are 2-7 m, while for 
flat/hilly areas the accuracy is about 2-3 m or even better. 
From the experiment, it’s shown that with the proposed 
automatic DTM generation approach, by using SPOT-5 
HRS/HRG and IRS-P5 imagery, satisfactory 1:50000 DTMs 
can be completed with a better accuracy than those 
requirements from Chinese Surveying and Mapping 
regulations. 
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ABSTRACT: 
 
Synthetic Aperture Radar (SAR) is an effective earth observation sensor for the regions where frequent cloud and fog cover makes 
optical image acquisition extremely difficult. The State Bureau of Surveying and Mapping of China is conducting the western China 
mapping project, which aims to generate 1:50,000 scale topography and other thematic maps for the wild western china region 
covering around 2 million square kilometers and having not been mapped at this or finer scale before. A part of the western china 
region characterized by frequent cloud, fog and high mountains will be mapped by SAR. But, due to the inherent side-looking, SAR 
images suffer strong geometric distortions, such as layover, shadow and foreshortening, especially over mountainous regions. These 
geometric distortions greatly limited the interpretation of SAR images. To cope with this difficulty, a methodology of generating 
color SAR orthophotos over mountainous area has been proposed. The methodology consists of several important processes. A fully 
polarized SAR image is processed to form a color image, which generally has better interpretability than a gray-scale image from 
single polarized data. The color image is then ortho-rectified with high precision Digital Elevation Model (DEM). At the same time, 
the radiometric distortion induced by topography, e.g. the variation of effective illumination area within a pixel cell is corrected. 
Finally, two SAR images with opposite viewing angle, such as the ascending and descending acquisitions, are processed. A mask 
marking the layover and shadow area is generated based on the DEM. The ascending and descending SAR images are fused by 
replacing the pixels within the mask with those from the opposite viewing image. Through these processing, a colorful SAR 
orthophoto is generated, which can be used as a base map for image interpretation. The validity of the proposed methodology has 
been demonstrated with an experiment using RADARSAT-2 quad-polarization products in the Hengduan mountain area of Western 
China. A software module has been developed based on the methodology, and has been successfully applied to the Western China 
Mapping Project.  
 
 

1. INTRODUCTION 

SAR provides an efficient way of earth observation for areas 
covered by rain, haze/fog and cloud frequently through the year. 
However, SAR images have severe geometric distortions, such 
as layover and shadow, which are the consequences of side-
looking viewing geometry and underlying topography relief. 
Precise geometric correction is thus absolutely necessary when 
spatial information of terrain feature is needed or an integrated 
analysis of multi-temporal and multi-source information is to be 
performed (Chen 2004). Since the prevalence of layover and 
shadow in mountainous areas, scattering signals from these 
distortion regions hardly contain information about terrain 
cover types. The State Bureau of Surveying and Mapping 
(SBSM) of China is conducting the Western China Mapping 
Project, which aims to generate 1:50,000 scale topography and 
other thematic maps for the wild western china region covering 
around 2 million square kilometers and having not been mapped 
at this or finer scale before. A part of the western china region 
characterized by frequent cloud, fog and high mountains, for 
example the Hengduan mountain area, will be mapped by SAR. 
Obviously, using a single SAR acquisition can not meet the 
needs of interpreting land cover and other thematic information 
in these regions. In this paper, a methodology is proposed to 
generating color SAR orthophotos by fusion two SAR 
acquisitions with opposite viewing geometry, e.g. the ascending 
and descending configuration.  
 

2. METHODOLOGY OVERVIEW 

The proposed methodology consists of several main processing 
steps: color composition from polarized SAR, ortho-
rectification, terrain-induced radiometric correction, fusion of 
ascending and descending data. The overall flowchart of the 
methodology is shown in Fig.1. These processing steps are 
introduced as follows (Figure 1). 
 
2.1 Color Composition of Polarized SAR 

A polarimetric SAR measures the microwave reflectivity of a 
target using quad-polarizations HH, HV, VH, and VV to form a 
scattering matrix (Lee 1999). Based on the scattering matrix, 
many methods can be used to form a false color composite. In 
this work, the Pauli polarimetric decomposition method is used 
to generate the Red/Green/Blue channels as shown in Equation 
1. 

2
a →Blue  

2
b →Red                            (1) 

2
c →Green 

Where[ ] 1
( 2 )

2
HH VV HH VV HV

a b c S S S S S= + − ,and
HH

S , 

HV
S , 

VH
S , 

VV
S are the elements of scattering matrix.
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Figure 1. Flowchart of fusion of ascending and descending  
polarimetric SAR data for color orthophoto generation 

2.2 SAR Imagery Ortho-Rectification with Sparse 
Ground Control Points (GCPs) 

The Range-Doppler(R-D) equations (See equation 2) are the 
physical geometric model for SAR images. For spaceborne 
SAR, the R-D model can be calculated from the parameters 
provided in the header file of a SAR image. Based on the 
model, for every ground resolution cell represented by the 
3D geodetic coordinate ( , ,m m mX Y H ), the projected image 

coordinate ( ,c ci j ) can be calculated. 

                  

-

( - )2
-

-

s t

s t s
d

s t

R R R

R R V
f

R Rλ

 =

 =


                       (2) 

In Equation 2, 
sR and 

sV are the position vector of the 

sensor( , ,s s sX Y Z )and velocity vector ( , ,v v vX Y Z ) respectively, 

tR  is the position vector of the ground target ( , , )t t tX Y Z , R  is 

the distance between the target and the sensor, df  is the 

Doppler frequency of the center of the electromagnetic beam 

and λ  is the wavelength of the electromagnetic wave.   
 
But, due to the limited accuracy of the parameters provided 
in the header file, the calculated image coordinate ( ,

c c
i j ) 

may offset from the real image coordinate (,
r r

i j ), which 

corresponds to the ground target at (, ,m m mX Y H ). The 

relationship between the calculated image coordinate and the 
real image coordinate can be modeled with a second-order 
polynomial expressed by equation 3. By means of at least 4 
GCPs, these parameters (

ic ,
id ) can be estimated using a 

least-square method. After knowing these parameters, the 
SAR image can be ortho-rectified to a known DEM (Y. 
Zhang 2002). Please note, here sparse GCPs are considered, 
because it is very difficult to obtain many GCPs given the 
remoteness and inaccessibility of the Western China region. 

2
0 1 2

2
0 1 2

r c c

r c c

i c c i c i

j d d j d j

 = + × + ×


= + × + ×

                      (3) 

2.3 Terrain Induced Radiometric Correction 

It is assumed that the topography is flat in conventional SAR 
image radiometric calibration. In mountainous areas, the 
backscattering is distorted by topography relief (Y. Zhang 
2003). As for space-borne SAR imagery, the radiometric 
distortion caused by topography is mainly the variation of 
effective scattering area. Theoretically speaking, the 
radiometric distortion caused by the scattering area reach a 
maximum when the local incident angle is zero. The smaller 
the incident angle, the bigger the error caused by the 
topography (Chen 2002). Considering this, we adopt the 
method proposed by Y. Zhang (2003) to correct the 
radiometric distortions caused by topography. This method 
involves calculate a scattering area normalization factor 
based on DEM and SAR imaging geometry. 
 
The effective scattering area, namely A, is the area a SAR 
ground resolution cell in actual terrain projected to the 
normal plane of radar light. It can be calculated in Equation 4 
(Adrian 1998). 

sin( ) cos( )
ar

r a

A
δδ

η θ
=                       (4) 

Where, 
rδ  is the slant resolution in range direction; 

aδ  is the 

azimuth resolution; 
rη  is the local incident angle in range 

direction; 
aθ  is the slope angle in azimuth direction.  

 

As shown in Figure 2, 
r

η
 
can be calculated according to 

Equation 5: 

r rη γ θ= −                           (5) 

where γ  is the viewing angle of SAR, and 
r

θ
 
is the slope 

angle in range direction. 
 
Since the backscattering coefficient has a square relationship 
with the amplitude of SAR image, the amplitude value can be 
multiplied by a scattering area normalization factor σ  
expressed in equation 6 (Zhang Y 2002) to eliminate the 
radiometric distortion caused by the variation of effective 
scattering area of SAR ground cell. 

sin( )cosr aσ γ θ θ= −                         (6) 

γ
rη

H

rθ

R

Rrδ
rη

sin
r

R η

'
rδ

'
rη

 
Figure 2. Local incident angle in range direction 

2.4 Fusion of Ascending and Descending Images 

Based on the terrain slope and aspect angles, a mask image 
can be generated which marks the areas affected by shadow 
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and layover. Since the radar illumination rays of ascending 
and descending images are opposite to each other, the masks 
will be complement to each other. Therefore the ascending 
and descending images can be fused by setting a decision 
rule to exclude pixels in layover/shadow region. The result 
image will be full of information and can be used for further 
interpretation. The details of this processing are introduced in 
next section. 
 
 

3. FUSION OF ASCENDING AND DESCENDING 
SAR IMAGES 

3.1 Basic Principle 

Because of rough topography, there are severe layover and 
shadows in ortho-rectified SAR images. Figure 3 shows this 
phenomenon in ascending and descending SAR images in the 
Hengduan Mountain areas. Layover and shadow region has 
very limited useful information, which not only reduces the 
visual effect, but also results in the difficulty of image 
interpretation. However, since the lines of sight (LOS) of 
ascending and descending images are symmetry, the slopes 
facing the LOS of an ascending image are in the back slopes 
of corresponding descending image, vice versa. For example, 
figure 3(a) is a right side-looking SAR image in ascending 
direction and figure 3(b) is a descending one. The layover 
area surrounded by the red line in the facing slope in figure 
3(a) corresponds to the red area in the back slope in figure 
3(b). Therefore, the layover area in figure 3(a) can be 
substituted by the red area in figure 3(b), and similarly the 
layover area in figure 3(b) can also be replaced by the 
corresponding area in the back slope in figure 3(a). By 
compensating the layover/shadow region of 
ascending/descending data with the information from 
counterpart descending/ascending data, a SAR orthophoto 
with full information can be generated. 
 
Based on the above principle, in this paper a new data fusion 
method using ascending and descending side-looking SAR 
images is proposed, including two parts: 1) detection of 
layover and shadow from SAR images; and 2) data fusion for 
ascending and descending SAR images. 
 
         
 
 
 
 
 
 
 
 
 
 
 
 

 
(a)                                        (b) 

Figure 3.  (a) Ascending SAR images  (b) Descending SAR 
images 

 
3.2 Detection of layover and shadow 

Layover and shadow areas in SAR image need to be detected 
before fusing ascending and descending data. Based on the 

SAR geometric model and DEM, a method is developed to 
detect layover and shadow areas from SAR images. The 
method includes the following steps: 
 
1) The SAR image with larger incidence angle of the image 
center is selected as master image, and the other as the slave. 
 
2) Using DEM, the aspect angle in azimuth direction of a 
pixel in the ortho-rectified master image is calculated, by 
means of which to determine whether this pixel is located in 
the facing slope or the back slope. 
 
3) Based on the SAR geometric model, the original row and 
column coordinates of each pixel in the ortho-rectified 
master image are calculated. Accordingly, their satellite state 
vectors can also be obtained by utilizing orbit model. 
 

4) Calculating look angleγ  and slope angle
r

θ in range 

direction. If the pixel is located in back slope and satisfies the 

condition 
r

θ >γ , then it is within shadow area and marked 

as Flag =1. If the pixel is in the facing slope and meets the 

condition 
r

γ θ+ ≥ 90º, then it is determined to be within 

the layover area and marked as Flag=0. 
 
5) Generating mask images. The mask images for layover 
and shadow are generated by conducting the calculation of 
step 2) ~ 4) for each pixel. 
 
6) Editing the mask images. By means of morphological 
operations such as erosion, dilation and average filtering, the 
mask images are edited to eliminate the “islands” and 
“zigzags”, errors. 
 
The method of detecting for layover and shadow areas 
mainly involves the following aspects: the judge rules for the 
facing and back slope, the calculation of radar look angleγ , 

slope angle in azimuthaθ and slope anglerθ in range. 

1) Judge rules for the facing and back slope 
(1) Heading angle calculation of SAR orbit 

Heading angle 
s

Ω can be calculated with the first and 

last state vectors which are obtained from the leader file of 
master image.  

(2) Base on DEM, aspect angle
n

β of each pixel at 

ground resolution is calculated. 

(3) Calculating the aspect angle in azimuth
s

β for 

each pixel. 

 
Figure 4. Aspect angle in azimuth direction 

The aspect angle in azimuthsβ refers to the angle from flight 

direction of SAR sensorS to the aspect of ground resolution 
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pixel L . As shown in Figure 4, AB
uur

is parallel to the 

ascending orbit direction of SAR sensorS , N for the 

geographic north direction, n
β

 
for the aspect angle of 

ground resolution pixelL , s
Ω

 
for the heading angle of 

sensorS . Thus, the aspect angle in azimuth
s

β can be 

expressed as: 

a) If aspect angle nβ is greater than heading angle of 

sensorS , then 

s n sβ β= − Ω                                 (7) 

b) If aspect angle nβ is less than or equal to heading 

angle of sensorS , then 
360s s nβ β= − Ω +                            (8) 

(4) To determine whether sβ  is greater than 180°

for each pixel, if YES, the pixel is judged to be in the facing 
slope, otherwise the back slope. 
 
2) Calculation of radar look angle γ  

Based on SAR imaging geometry, radar look angleγ can be 

expressed as (Jia 2005) 

                    
2 2 2| | | |

90 arccos[ ]
2 | |

s T

s

R R R

R R
γ + −= −

× ×
o      (9) 

3) Calculation of slope angle aθ  in azimuth and slope 

angle rθ  in range   

 

aθ  and rθ  are calculated with slope angle, aspect, and 

heading angle of SAR sensor, which are extracted from DEM. 

rθ

aθ

sβ

θ

 
Figure 5. Slope angle aθ  in azimuth and slope angle rθ  in 

range 

As shown in Figure 5, S is the SAR sensor. In the cuboid 

ABCD EFGH− ,GF
uuur

is parallel to the descending azimuth 

direction, and FN
uuur

 is the aspect of the ground scattering unit 

EMKJ , 
sβ is the azimuth angle of FN

uuur
 referring to the 

sensor flight direction GF
uuur

, aθ  and rθ
 
are the slope angles 

in azimuth and range of the ground scattering unit EMKJ , 
respectively. According to geometric relationship (Adrian 
1998), we have 

sin sin sin sin
tan( )

cos cos
s s

r

MNMF

EF MN

θ β θ βθ
θ θ

⋅ ⋅ ⋅= = =
⋅

  (10) 

Thus, 

                           sin sin
arctan[ ]

cos
s

r

θ βθ
θ

⋅=               (11) 

By the same way, 

                           
sin cos

arctan[ ]
cos

s
a

θ βθ
θ

⋅=           (12) 

 
3.3 Data Fusion of Ascending and Descending SAR 
Images 

The decision-making rule is shown is figure 6, using mask 
images for layover and shadow, by which the gray value of 
the pixel in layover and shadow areas can be replaced with 
corresponding pixel for multi-side-looking SAR data fusion. 

Master
mask image

Orthograph

Both 
retaining 

and 
replacing 
are OK

Replace 
master gray 
values by 
slave’s

Keep master 
gray values 

Slave 
mask images

Keep master 
gray values 

0 = layover 
1 = shadow

0 = layover 1 = shadow
2

2

Figure 6. Fusion of ascending and descending SAR images 

 
 

4. EXPERIMENT ANALYSIS AND APPLICATION 

4.1 Test Area and Data 

Based on the methodology and algorithms discussed above, a 
specific module has been developed. An experiment has been 
conducted using two RadarSat-2 (ascending track and 
descending track respectively) fully polarized images with 
8m resolution in Hengduan Mountain area (see Fig. 7) to test 
the validity of the proposed methodology and the developed 
software. 
 
Hengduan mountain area as a whole shows an east-west to 
north-south direction. It is characterized with high mountains, 
deep valleys, and complex landform types. The test area has 
a elevation varying from 1658 meters to 6719 meters above 
see level and the average 3642 meters. This topography has 
led to the severe foreshortening, layover and shadows in both 
the ascending and descending SAR images. The test area has 
very long time cloudy/foggy weather during a year, and 
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some meteorological disasters (thunder, snow and hailstone) 
occurs very often. 
 
The complex topography and harsh natural conditions make 
traditional field work extremely hard. It is impossible to 
survey many GCPs in the field .Therefore, some points with 
clear visual feature at the Radarsat-2 images are seleted from 
SPOT-5 HRS panchromatic image (5 meters resolution) to be 
used as GCPs. Totally, 19 points are located with their 
planimetric coordinates measured from ortho-rectified SPOT 
5 image and height from existing 1:100,000 DEM. Out of 
them, 5 points are used as GCPs to rectify the Radarsat-2 
images with the method presented at section 2.2, and the rest 
14 points are used as check points. The planimetric 
positioning accuracy of the rectification in the X direction is 
about 8m, in the Y direction about 7.5m, and the RMS is 
around 11m, which fully meets the standards of 1:50000 
scale topography map regulated by SBSM. 

 
Figure 7.  Spatial coverage of the ascending and descending 

RadarSat-2 images 

4.2 Experiment Results and Analysis 

4.2.1 Shadow and layover area detection According to the 
method of shadow and layover detection introduced in 
section 3.2, the ascending RadarSAT-2 image is chosen as 
the master image, and the descending one as the slave image. 
With the existing 1:100,000 DEM of the measured area, the 
shadow and layover areas of the SAR images are extracted as 
the mask map (as shown in Figure 8). 
 

 
Figure 8. Mask map 

 
Due to the limited accuracy of sensor orbit and DEM, for 
example the DEM we have used is at 1:100,000 scale, which 
generally has a grid spacing of 50 meters, the extracted mask 

map will present some errors, such as holes and zigzag. In 
order to reduce the impact of these errors on the afterward 
fusion process, the morphological erosion and dilation 
operations is used to filter the mask image. The effect of the 
morphological filtering is shown in Fig. 9. 

 
 
 
 
 
 
 
 
 
 
 
 

    (a)                                         (b) 
Figure 9. (a)Original mask with hole and zigzag (b)After 

morphological filtering 
 

4.2.2  Fusion of ascending and descending SAR images 
With the mask map of shadow and layover, the ascending 
image as the master image, the descending one as the 
subordinate image, the fusion experiment is carried out under 
integrated decision-making rules. The result is shown in 
Figure 10. 
 
Figure 10(c) is the resulted SAR color orthophoto after image 
fusion. Figure 10(a) and Figure 10(b) are the ascending and 
descending rectified RadarSAT-2 image respectively. These 
figures show that after image fusion, the shadow and layover 
areas have been greatly mitigated and eventually a better 
color SAR orthophoto has been obtained. Moreover, this 
method is also applicable to the case of fusing moscaiced or 
subset images from different tracks, to cover a larger or only 
a portion of SAR frame. 
 
4.3 Application 

Based on the proposed methodology of color SAR 
orthophoto generation, the SAR color orthophotos covering 
700,000 square kilometers in the Hengduan Mountain areas 
have been produced. These orthophotos have been used as 
the base map of field work to investigate the land cover and 
thematic information in this mountainous region. 
 
 

5. DISCUSSION AND CONCLUSION 

In Fig10(c), there are still some residual layovers and 
shadows, which are mainly caused by the following reasons: 
 
1) The incidence angles of the ascending and descending 
images are not exactly opposite, e.g. they are 39.02° and 
40.53° respectively in the case of Figure 10, leading to that 
the range and location of layover and shadow areas in the 
ascending and descending images are not precisely 
complement to each other. Therefore, we need to carefully 
choose the ascending and descending images for fusion. 
 
2) The DEM used in this experiment has limited accuracy, 
which causes the errors in shadow and layover extraction.    
 
But we have to bear in mind that for spaceborne systems the 
incidence angle of SAR image can not be adjusted as we 
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want, therefore the first reason may always exist. A solution 
to this problem is to use more images rather than two with 
one in ascending track and another in descending track for 
data fusion. For example, we can use 4 images with each 2 in 
ascending/descending directions. This can be achieved with 
spaceborne or airborne SAR systems with the ability of 
adjustable viewing angles. In this case, it will be not a 
problem to get a totally layover/shadow free orthophoto 
using the proposed data fusion scheme. 
 
In response to the complex terrain and intrinsic features of 
SAR slant imaging in mountainous areas, this paper presents 

a set of methodology to generate color SAR orthophoto, 
where the images are acquired in both ascending and 
descending directions and fused together to exclude pixels 
within layover and shadow regions. The proposed 
methodology has been tested and validated and has been put 
into use in the Western China Mapping Project. However, the 
methodology can be improved further by using more images 
to get a totally layover/shaodow free fusion, and balancing 
the tone differences of the images during different side-
looking image fusion. 

 

 
(a)                                                                (b)                                                                     (c) 

Figure 10.  (a) Rectified ascending RADARSAT-2 image  (b) Rectified descending RADARSAT-2 image  (c) Ascending and 
descending RADARSAT-2 image fusion result 
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