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ABSTRACT: 

Influenza is an acute viral respiratory disease that has significant mortality, morbidity and economic burden worldwide. It infects
approximately 5-15% of the world population, and causes 250,000 – 500,000 deaths each year. The role of environments on 
influenza is often drawn upon the latitude variability of influenza seasonality pattern. In regions with temperate climate, influenza 
epidemics exhibit clear seasonal pattern that peak during winter months, but it is not as evident in the tropics. Toward this end, we 
developed mathematical model and forecasting capabilities for influenza in regions characterized by warm climate – Hong Kong 
(China) and Maricopa County (Arizona, USA). The best model for Hong Kong uses Land Surface Temperature (LST), precipitation 
and relative humidity as its covariates. Whereas for Maricopa County, we found that weekly influenza cases can be best modelled
using mean air temperature as its covariates. Our forecasts can further guides public health organizations in targeting influenza 
prevention and control measures such as vaccination. 

                                                                
*  Corresponding author.   

1. INTRODUCTION 

Despite vaccination and other prevention and control efforts, 
influenza mortality, morbidity and economic burden remains 
significant. Worldwide and annually, influenza infection is 
between 5 – 15% of the population, and mortality can reach up 
to 500,000 (WHO, 2009). Whereas in the US, annual influenza 
epidemic causes up to 200,000 hospitalization and more than 
30,000 deaths (CDC, 2010), with estimated economic burden of 
US$87.1 billion (Molinari et al., 2007). In regions with 
temperate climate, influenza epidemics exhibit clear seasonal 
pattern that peak during winter months, but it is not as evident 
in the tropics (Finkelman et al., 2007; Viboud et al., 2006). This 
latitudinal variation often suggests the role of environmental 
factors in influenza transmission, though there is yet any 
definitive relationship or biological explanation underlying the 
seasonality pattern. Furthermore, studies that have assessed the 
contribution of environment to influenza seasonality and 
transmission – biologically and empirically – mostly arrived at 
region-specific results that frequently only explain the 
wintertime peak in temperate regions. Toward this end, we 
developed mathematical model and forecasting capabilities for 
influenza in regions characterized by warm climate. Our 
forecasts can further guides public health organizations in 
targeting influenza prevention and control measures such as 
vaccination.  

Influenza can be transmitted via direct contact, indirect contact 
through contaminated objects, as well as droplets and aerosols 
resulting from coughs or sneezes. Any of these transmission 
pathways can be modulated by environmental factors. In 
additions, environments also plays role in the virus survivorship 
and the hosts susceptibility. Factors frequently associated with 
influenza process – transmission efficiency, virus survival and 

host susceptibility – are summarized in Table 1. The table also 
indicates whether the relationship was revealed through 
biological experiments or empirical study. 

Several studies have revealed that cold and dry condition, as 
characterized by low and temperature and humidity, provides 
the most effective condition for influenza virus survival and 
transmission (Chan et al., 2009; Lowen et al., 2007; 
NIH/National Institute of Child Health, 2008; Polozov et al., 
2008; Shaman and Kohn, 2009; Shaman et al., 2009; Urashima 
et al., 2003). This supports the high influenza incidences in the 
winter for temperate regions.  

The tropics, on the other hand, are characterized by less 
variability in both temperature and humidity, and hence these 
factors seem to have no critical role on influenza transmission 
in the region. An in vivo experiment indeed has established 
evidence showing that high temperature (30�C) blocks aerosol-
borne transmission, but not contact transmission (Lowen et al., 
2008). The latter implies that direct contact transmission is the 
prevailing pathway for influenza spread in the tropics. A 
meteorological factor that is frequently associated with high 
influenza incidences in the tropics is rainfall. Though the 
biological relationship with influenza transmission and virus 
survival remains to be elucidated, it increasingly becomes a 
common thread in the tropical countries such as Brazil (Moura 
et al., 2009), Singapore (Chew et al., 1998) and Thailand 
(Chumkiew et al., 2007). It is thought that rainfall promotes 
crowding tendency – as people tend to stay indoor on rainy 
days – that in turn increases the risk for contact transmission. 

Another factor that has been associated with influenza is 
sunlight’s ultraviolet radiation, as it possibly increases the 
inactivation of viruses in the environment (Sagripanti and Lytle, 
2007). Furthermore, sunlight is linked to host’s susceptibility to 
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influenza. Human susceptibility to influenza depends on the 
protective capability of the immune system against the virus. 
The functioning of immune system, in turn, requires melatonin 
and Vitamin D that is determined by photoperiod (Lofgren et 
al., 2007).  According to Dowell (2001), light-dark cycles 
regulate the hormone melatonin, and the amount of sunlight 
directly regulates Vitamin D level. The role of sunlight is 
further assessed through a mathematical model which evidently 
showed that the epidemic timing of influenza-related pediatric 
hospitalization in 35 cities of the US is significantly associated 
with solar radiation (Charland et al., 2009).  

Impact on influenza 
process as revealed by  

Influenza 
process 
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Factors
(Increase in 
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�
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Previous 
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Table 1 Factors influencing influenza.  Biological and 
Empirical in the last two columns refer to whether 
the relationship was revealed through biological 
experiments or empirically. Down arrow indicates 
reduced influenza process affected as a result of an 
increase in the corresponding factor.   

Studies that model influenza using environmental factors 
primarily utilize empirical methods – such as regression – since 
the underlying environmental-influenza relationships remains 
elusive (Chew et al., 1998; Liao et al., 2009; Moura et al., 2009; 
Tang et al., 2010; Urashima et al., 2003; Youthao et al., 2007). 
Among the very few biological-based influenza model that uses 
environmental parameters is the compartmental Susceptible-
Exposed-Infected-Recovered model where absolute humidity is 
included in the transmission rate (Shaman et al., 2009). In this 
study we employ classical time series regression technique, 
Autoregressive Integrated Moving Average (ARIMA) to model 
and forecast seasonal influenza in Hong Kong and Maricopa 
County (Arizona). Details on the modelling approach as well as 
the data are given in the next section.  

2. MATERIALS AND METHODS 

Hong Kong (China) lies in the tropics with centre latitude of 
22�N, whereas Maricopa County (Arizona, USA) is in the 
subtropics and centre latitude of 34�N. Both regions are 
characterized by warm climate where average winter 

temperature rarely goes below 0�C. In the summer, hot and 
humid condition prevails in Hong Kong with temperature that 
can go beyond 30�C during the day. Maricopa County is much 
less humid compared to Hong Kong, and the average summer 
high is about 41�C.  

2.1 Influenza Data 

Influenza surveillance data was obtained from the respective 
public health department report available publicly (Hong Kong 
Department of Health, 2009; Maricopa Department of Public 
Health, 2009). Specifically, we retrieved weekly count of lab-
confirmed influenza positive for each region. The weekly data 
spans January 2005 – September 2008 for Hong Kong, and 
October 2004 – March 2009 for Maricopa County. 
Observations from the latest year were reserved to validate our 
forecast, while the remaining was used in the fitting process 
during which the parameters were estimated. Since Maricopa 
County influenza data is available only during flu season that 
typically starts at week 40 and ends on week 17 of the 
following year, we assume that the weekly flu count is zero 
outside the season.  

2.2 Environmental Data 

Meteorological and environmental parameters used in this study 
were obtained from two sources: satellite-derived measurements 
and ground stations. For satellite-derived data, we obtained 
daily Land Surface Temperature (LST) at 0.05� spatial 
resolutions from MODerate resolution Imaging 
Spectroradiometer (MODIS) (NASA, 2009). Both of NASA’s 
Terra and Aqua missions carry this instrument. We also 
retrieved precipitation measurements from Tropical Rain 
Measuring Mission (TRMM) using NASA’s Goddard Earth 
Sciences – Data Information Service Center (GES-DISC) 
Interactive Online Visualization And aNalysis Infrastructure 
(GIOVANNI) (Acker and Leptoukh, 2007). The TRMM data 
has daily temporal resolution and 0.25� spatial resolutions. 

Ground station data was retrieved from Hong Kong 
Observatory (2009) and The Flood Control District of Maricopa 
County (2009). The data for Hong Kong includes air 
temperature (maximum, mean, minimum), mean dew point, 
mean relative humidity, global solar radiation and total 
evaporation. While for Maricopa County it includes daily mean 
air temperature, dew point (minimum, mean and maximum), 
relative humidity (minimum and maximum), maximum wind 
speed, air pressure (minimum and maximum) and maximum 
solar radiation.  

In order to synchronize the temporal and spatial resolutions of 
the environmental data with that of influenza data, we took the 
spatial and 7-day average of the environmental data to form the 
weekly composite.  

2.3 Modelling Approach 

As previously mentioned, we used classical time series 
regression, ARIMA, to model weekly influenza cases in the two 
regions. This choice is due to the technique’s capability to 
accommodate for two of the inherent influenza count data 
properties, namely, seasonality and autocorrelation. In ordinary 
linear regression, autocorrelation behaviour generally violates 
the underlying assumption of the model, and hence ARIMA is 
more appropriate. In this section we will briefly delineate the 
steps in Box-Jenkins based ARIMA employed in this study. A 
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more detailed description can be found in (Box et al., 2009; 
Chatfield, 2000). 

ARIMA model is based on the stationary time series 
assumption. That is the time series’ mean and variance are 
independent of time. Since our data do not meet this 
requirement, we stabilize them by taking the logarithmic 
transformation and taking the difference until they are 
stationary. There are basically 2 terms in ARIMA model: the 
autoregressive (AR) and the moving average (MA) terms. The 
order of AR and MA are initially determined through 
Autocorrelation Function (ACF) and Partial Autocorrelation 
Function (PACF). Based on the ACF and PACF, we fitted 
several MA and AR with different orders until the residuals no 
longer exhibit autocorrelation behaviour. If there are several 
models (with different MA and AR orders) meet these criteria, 
we select one with the lowest Akaike’s Information Criteria 
(AIC) or Root Mean Squared Errors (RMSE).  

Since we are incorporating environmental variables as 
covariates, before applying ARIMA to the influenza time series, 
we need to assess the cross-correlation function between 
environmental variables and influenza. This step systematically 
selects the initial environmental variables – and the lags – that 
should be included as covariates. However, since most of the 
environmental variables also exhibit autocorrelation behaviour, 
we first modelled them using ARIMA described above, so as to 
ensure that the autocorrelation property does not effect the 
cross-correlations between the time series. For each 
environmental variable, we then applied ARIMA model – a step 
called pre-whitening – and subsequently used the residuals to 
calculate the cross-correlation with influenza time series. 
Significance was determined using two standard error limits 
(significant at 0.05 level). Environmental variables with 
significant cross-correlations were further considered in as 
covariates.  

The next step was to apply ARIMA to influenza time series 
with environmental variables as the external covariates. We first 
included the environmental variables that express significant 
cross-correlations one at a time, followed by a combination of 
them and further selected based on the p-value (<0.05). Any 
models that result in residuals exhibiting autocorrelations were 
discarded. The models were then evaluated on the basis of their 
AIC and RMSE. The ARIMA model generally can be written 
as: 

, ,
1 1 1 1

QP I N

t p t p i n i t n q t q
p i n q

Z Z X� � � � 	
 
 

� � � �

� � � �  

Where, Zt is the influenza count at week t, Zt-p is the count at 
previous p week (AR term), u is the intercept, Xi,t-n is
environmental variable i with lag n and 	t-q is the process error 
at lag q (MA term). The parameters �p, �i,n, �q are estimated 
using least square method during fitting process.  

An ARIMA model is notated as ARIMA(p,d,q), where p
indicates the AR order, d the differencing order and q the MA 
order. An ARIMA model that incorporates seasonality is 
referred as SARIMA(p,d,q)(P,D,Q) where P,D,Q indicates the 
seasonal order of AR, differencing, and MA. Since the 
influenza time series is recorded as weekly observations, the 

seasonality period is 52. All ARIMA modelling and statistical 
tests were preformed using SAS software, Version 9.1.2 for the 
SAS System for Windows (SAS Institute, Inc., Cary, NC).  

3. RESULTS 

We first assessed the cross-correlation function of all 
environmental variables – both satellite-derived and ground 
stations measurements – with the influenza time series. We 
found significant correlations with LST (lag 5 wks), 
precipitation (lags 3, 5) and relative humidity (lags 0 to 3) for 
influenza in Hong Kong. Meanwhile influenza in Maricopa 
County was significantly correlated with LST (lag 3), mean 
temperature (lag 7), maximum relative humidity (lags 3, 6), 
minimum relative humidity (lag 6) and maximum pressure (lag 
6).

Using the identified environmental variables above, we further 
fitted ARIMA model. Table 2 summarizes several of the model 
performances. These models do not result in residuals 
exhibiting autocorrelation behaviour.  

RMSEARIMA Model Order Env. Vars AIC Fit Pred. 
Hong Kong     
ARIMA(1,0,0)(0,1,0) LST 134.7 0.47 0.51 
ARIMA(2,1,0) RF 168.6 0.42 0.40 
ARIMA(1,0,1)(0,1,0) RH 152.7 0.49 0.58 
ARIMA(0,1,2)(1,0,0) LST,RF,RH 137.5 0.36 0.54 
Maricopa County     
ARIMA(2,0,0)(0,1,0) Tmean 170.9 0.55 0.60 
ARIMA(1,0,0)(0,1,0) RHmax 207.6 0.62 0.61 
ARIMA(0,1,0)(1,0,0) Pmax 247.4 0.54 0.51 
ARIMA(1,0,1)(0,1,0) LST 196.9 0.61 0.61 
ARIMA(1,0,0) LST, RHmax 277.8 0.57 0.55 
Table 2 Model performances. See section 2.3 for ARIMA 

notation. Abbreviations: LST Land Surface 
Temperature; RF Rainfall (Precipitation); RH 
Relative Humidity; T Air temperature; P 
Atmospheric Pressure 

As we can see from the table, the model with LST as its 
covariate gives the best AIC value. However, the best RMSE 
for the fitted dataset results from the model with LST, 
precipitation and relative humidity as the covariates. Since there 
is not much difference in the AIC values between the two 
models, we prefer the one with better RMSE value. That is the 
ARIMA model with LST, precipitation and relative humidity 
altogether as covariates. Figure 1A show the 95% confidence 
interval of the predicted and fitted values from this selected 
model.  

For Maricopa County, the best AIC is given by ARIMA model 
with mean air temperature as its covariate, whereas the model 
with maximum pressure (Pmax) results in the best RMSE (Table 
2). However, the AIC for the model with Pmax (AIC=247.4) is 
much higher than that of with Tmean (AIC=170.9). Thus we 
prefer to use the one with Tmean as its covariate. Figure 1B 
shows the resulting 95% confidence interval of the fitted and 
forecasted values from this model. 
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Using the selected model, we forecasted influenza cases 1-week 
ahead for the entire season. As we can see in Figure 1, the 
model can predict influenza peak timing reasonably well for 
both Hong Kong and Maricopa County.  

Figure 1 95% interval of fitted and predicted values 

4. CONCLUSIONS 

We have demonstrated here the use of environmental data in 
modelling influenza incidences in regions with warm climate, 
Hong Kong (China) and Maricopa County (Arizona, USA). We 
utilized ARIMA modelling approach that resulted in forecasts 
that are in good agreement with the actual data.  

The best model for Hong Kong uses LST, precipitation and 
relative humidity as its covariates. These three environmental 
variables have been frequently implicated in influenza 
transmission as we previously described in section 1 and Table 
1. The use of precipitation as a measure for rainfall in the 
selected model corroborates the role of rainfall in the tropic that 
has been demonstrated by other countries in the region (Chew 
et al., 1998; Chumkiew et al., 2007; Moura et al., 2009). For 
Maricopa County, we found that weekly influenza cases can be 
best modelled using mean air temperature as its covariates. 
Again, temperature has been repeatedly shown to contribute to 
influenza transmission. Note that Maricopa County is 
characterized by much less humidity than Hong Kong. Thus it 
is expected that rainfall or humidity do not have as much 

contribution to the influenza dynamics, as reflected in the best 
resulting model here.  

In Figure 1 we showed the 95% interval of the forecasted 
influenza cases using the best model selected. This result can be 
used by the public health organization in planning for effective 
prevention and control efforts such as vaccination – when and 
where to distribute the vaccines. The forecasts can also be used 
to indicate whether outbreak has occurred or has it been 
expected. For example, surveillance data exceeding the upper 
limit of the forecasts could sign an outbreak. Hence, appropriate 
control measures can be implemented immediately.  
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