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ABSTRACT: 

This paper applied the multi-level morphological active contour (MMAC) algorithm to the estimation of diameter at breast height 
(DBH), total height, and crown width of trees in mountainous forest based on rasterized airborne lidar data. The MMAC algorithm 
comprises three steps: a bottom up erosion (BUE) process to identify stand candidates, a top down dilation (TDD) process to 
estimate the crown periphery, and an active contour model (ACM) process to delineate crown contours. The total height (LH) and 
crown width (LCW) can be directly calculated by the MMAC method and then used as regressors in a multiple regression model for 
the estimation of diameter at breast height (LDBH). The results showed that the average estimation bias of LH, LCW, and LDBH is 
around 0.50 m, 2.54 m, and 8.7 cm respectively.  

                                                                
*  Corresponding author.   

1. INTRODUCTION 

Taiwan contains a diverse variety of forest habitats, including 
tropical rain forest, subtropical evergreen forest, temperate 
forest, and alpine cold forest. These forests are distributed 
vertically along the central region and can be categorized into 
broadleaved, mixed, and conifer forests. The central mountain 
range peaks at 3950m and suffers occasional landslides due to 
above average precipitation. Manual inspection of high altitude 
forests is both labor-intensive and time-consuming. Airborne 
lidar is an active remote sensing technique in which a laser 
pulse is emitted towards the ground from an aircraft. Lidar 
makes it possible to map individual tree crowns for the purposes 
of forest planning and management. For the purpose of 
estimation of tree parameters, it is necessary to delineate the 
individual trees. Several methods have been developed to 
delineate individual trees using lidar data processing techniques 
including the valley-following method (Gougeon, 1995), 
multiple scale segmentation (Brandtberg and Walter, 1998), 
template matching (Pollock, 1996; Pitkänen et al., 2004), 
watershed segmentation (Schardt et al., 2002), local maximum 
filtering (Dralle and Rudemo, 1996; Popescu et al., 2003; 
Popescu and Wynne, 2004; Lin et al., 2006; Reitberger et al., 
2007; Jang et al., 2008) and wavelet analysis (Falkowski et al., 
2006). A disadvantage of these techniques is that the tree crown 
must be visually recognizable as a discrete object and it is 
necessary to have prior knowledge of crown shape or window 
size in order to match the crown size to the template for local 
maximum filtering. 
In this paper, a multi-level morphological active contour 
(MMAC) algorithm (Lin et al, 2010) is applied to overcome 

these limitations. This algorithm automatically delineates tree 
crown area from a canopy height model (CHM) obtained from 
airborne lidar data. The algorithm incorporates a mathematical 
morphology to locate the position of each tree in the sample 
area and predict crown size. An active contour model method is 
applied to delineate a relatively precise crown shape. In this 
way, an estimation of total height and diameter at breast height 
(DBH) can be achieved.

2. STUDY SITE 

The study site is located in Alishan National Forest in southern 
Taiwan and is centered at 23° 30' N, and 120° 48' E. Ground 
elevation varies between 2000 meters and 2500 meters above 
sea-level. The ground survey area was 0.25 hectares. The 
sample plot is a sugi (Chryptomeria japonica) plantation 
originally planted in 1914. GPS was used in conjunction with a 
basemap to locate the position of the sample plot. Then the 
boundaries of the plot were marked out with wooden stakes. 
Lidar data were acquired on April 20, 2007 by EFS 
Technologies using a BN-2 Islander plane. Flight parameters for 
the lidar data collection mission in the Alishan area were an 
operating altitude of 10,000 ft, pulse rate 40.9 KHz, scan rate 
17 Hz, FOV 37 degree, and a total of 11 flight lines were taken 
for this area. Footprints were produced approximately 0.4 m in 
diameter with an average swath width of 473 m. Following 
boresight calibration, the lidar data sets had 0.15 cm and 2.2-20 
cm of xy- and z-accuracy. Lidar data sets with canopy pulse 
return densities of 5.21 returns per m2 were then used to 
produce rasterized surface and ground DEMs using a linear 
interpolation technique (0.40 m cell resolution). The Canopy 
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Height Model (CHM) was calculated by subtracting the Digital 
Surface Model (DSM) from the Digital Elevation Model (DEM). 
Lidar point clouds are linked to TINs and classified based on 
the method proposed by Axelsson (1999; 2000). Commercial 
software, TerraScan, was used to implement lidar data 
processing. In addition 29 individual trees were chosen from the 
study site to carry out further analysis of tree parameters.  

3. MATERIALS AND METHODS 

3.1 Multi-level morphological active contour algorithm

The MMAC algorithm combines a multi-level morphological 
approach with the active contour model described previously. 
3.1.1 MM: Mathematical morphology (MM) was proposed by 
Matheron (1975) and Serra (1982) as a novel geometry-based 
technique for image processing and analysis. Erosion and 
dilation are two basic operations in MM. The erosion operation 
can shrink or reduce the number of objects in an image. It 
utilizes multiple gray levels in the rasterized image moving 
from the bottom-up to find candidate tree blobs. The dilation 
operation can grow or enlarge objects in an image. It is utilizes 
multiple gray levels in the rasterized image moving from 
downward from the tree top to estimate the crown size. 
3.1.2 Bottom up erosion (BUE): A step by step example of the 
BUE algorithm is as follows: 
Suppose the image I  with the minimum gray level 

1L  and 

maximum gray level 
nL . 

Step 1, applying a threshold 
1L=τ  to the whole image I  gives 

the first blob set 
1S  which contains one connected blob which 

covers the whole image. 
Step 2, applying a threshold 

kL=τ , where  nk ,...,2=  erodes 

the blobs set 
1−kS  into a new blobs set 

kS  . Many blobs are 

eroded to smaller blobs or separated into several smaller blobs. 
Step 3, the blobs which contain a limited area α  with a 
rounded shape are considered as possible stand candidates and 
the erosion process ends. To measure the roundness of a blob 
shape the following equations are used: Eq. 1 and Eq. 2. Eq. 1 
and 2 are applied by calculating the minimum radius 

minγ   and 

the maximum radius 
maxγ   from the center  

blobc  of the blob shape. 

The difference 
rd  between  

maxγ  and 
minγ  is used to measure 

the circularity of the blob. When the difference  
rd  shows a low 

variance, this indicates that the blob has a high degree of 
circularity. When 

rd  is zero, the shape is a perfect circle. It is 

assumed that the circularity of a blob is potentially a good 
indicator for a tree candidate within a forested area. 
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where ),( jib  is the boundary pixel of the blob,  is the center of 

the shape of the blob and   is the difference between 
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where ),( yxdist   is the distance between x   and y . 

3.1.3 Top down dilation (TDD): After forest stand candidates 
have been identified by BUE, each candidate becomes a seed 
for a tree crown (called a seed blob). A TDD image processing 
technique is applied to each of the seed blobs to estimate the 
tree crown area around each of the candidates. Starting at the 
top level and moving gradually down through the image data to 
the bottom level, the seed blob is expanded. During the dilation 
process, the pixels surrounding the seed blob are grown 
outwards. The dilation process stops if one of the following 
conditions is satisfied. The first condition occurs when the 
circularity of the dilated shape 

γd  (as calculated in Eq. 1) 

exceeds a certain threshold value. The second condition occurs 
when the value of adjacent pixels show a sudden variation in 
height. This sudden change is generally due to one of two 
reasons. Either the outside periphery of a tree crown has been 
located or the point where two connected crowns with a 
significant height difference has been located. In the first case 
pixel values will drop off suddenly, while in the second case 
pixel values may rise suddenly. By enforcing these restrictions 
the dilation process is guided towards producing a circular 
shape similar to the natural shape of a tree when viewed from 
above.  
3.1.4 Active contour model (ACM) algorithm: In a densely 
packed forest, TDD produces an area smaller than the actual 
tree crown. The reason is that when trees are competing for the 
same space, tree crowns often overlap or merge together. ACM 
can extend the boundary to find the real crown radius with a 
round boundary similar to that of a visible tree crown. The 
ACM was developed by Kass et al. (1988). The contours of the 
tree crown obtained using the TDD technique are used as initial 
control points for the ACM process. ACM defines internal 
energy and external energy. Internal energy is generated from 
the attraction between control points. It makes the contours 
more rounded and removes sharp edges. External energy is 
generated from the attraction of high gradient crown edges. 
Through the repeated interaction of these two energies, the 
crown contours become rounded and eventually fit the crown 
edges. 
3.1.5 MMAC: The MMAC algorithm is comprised of three 
steps. The first step uses bottom up erosion (BUE) to process 
CHM data and locate the stand candidates within a forested area. 
The second step uses a top down dilation (TDD) technique to 
estimate tree crown periphery points by growing outwards from 
stand candidate center points. The third step uses ACM to 
modify the periphery points and delineate the contours of the 
tree crown boundary. 

3.2 Crown diameter and total height measurements 

The studies made by Popescu et al. (2003) and Popescu (2007), 
show that tree height and crown diameter (crown width) have a 
linear relationship with DBH. Popescu (2007) showed through 
linear regression that an RMSE (estimation bias) of 4.9cm is 
approximately 18% of the average DBH for all measured trees, 
with an R2 value of 0.87. In this study, 30 trees were selected in 
a mountainous forest. Crown width (CW) was obtained by 
averaging the horizontal diameter (East-West length) and 
vertical diameter (North-South length). Total heights (H) of 
trees were measured using a laser ranging device, MDL. After 
MMAC processing, the lidar-derived tree height (LH) was 
estimated using the crown tip height. Lidar-derived tree crown 
width (LCW) was calculated by doubling the average distance 
from the center of the tree crown to the 4-directional (East, 
South, West, and North) crown boundary. MMAC estimates of 
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TH, CW, and DBH from lidar data were then evaluated against 
ground survey data. 

4. EXPERIMENTAL RESULTS AND DISCUSSION  

4.1 Tree height estimate evaluation 

Figure 1 shows the CHM data of the 30 trees in the sample. In 
this figure, the irregular polygon shows the crown boundary 
delineated by the MMAC method.  The lidar-detected height 
(LH) of a tree was determined by the largest pixel value within 
the MMAC delineated crown boundary. Figure 2 demonstrates 
the closeness of fit between the lidar detected height (LH) and 
ground measured total height (H) of the sample trees. It can be 
observed that the bias of height estimates ranges from -0.88m to 
0.99m, and the average and standard deviation of the absolute 
bias are 0.49m and 0.29m. Obviously, the lidar derived LH 
height is representative of the ground measured total height H in 
this sample. 

Figure 1. Sample 30 trees with MMAC delineated crown 
boundary.  
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Figure 2. Relationship between the lidar detected height (LH) 
and observed total height (H) of the sample trees. A linear 

regression model with a R2 value of 0.99 indicating a good fit 
between LH and H.  

4.2 Crown width estimate evaluation 

Figure 3 shows the scatter plot of lidar delineated crown width 
(LCW) vs. ground measured crown width (CW). In this figure, 
a linear model is fitted with a R2 value of 0.17 which indicates a 
poor estimation of lidar data. In this study, the LCW had a bias 
ranging from -4.2m to 5.3m. The average and standard 
deviation of LCW estimation bias was 2.54m and 1.60m 
respectively. 
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Figure 3. A scatter plot of LCW vs. CW of the tree samples.  

4.3 DBH estimation model and its deviation 

We used ground measured crown width and total height as 
predictors to estimate the diameter at breast height of trees. 
Equation (3) shows the multiple regression model of DBH 
estimates based on the ground measurements of tree crown and 
total height. The fitness of this model (R2=0.80) can be 
examined from the figure 4.  

85.1711.208.4 −⋅+⋅= HCWDBH                     (3) 
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Figure 4. Relationship of the field-measured DBH vs. the 
predicted DBH.  

19.452.291.1L 1 −⋅+⋅= LHLCWDBH                    (4) 

93.150.216.0L 2 +⋅+⋅= LHLCADBH                     (5) 

We used lidar CHM crown width (LCW), crown area (LCA), 
and tree height (LH) as regressors in a multiple linear regression 
analysis. Estimates of DBH (LDBH) can be calculated by Eq. (4) 
or Eq. (5). Figure 5 shows the scatter plot of DBH vs. LDBH1

from which a linear pattern is obtained. About 68% of the 
variation in DBH could be determined by LCW and LH 
(R2=0.68). The predictive capability of LCW and LH is very 
close to LCA and LH because the R2 of the LDBH2 model 
(Figure 6) is almost equal to LDBH1 model.  
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Ground measured DBH of a tree estimated by ground 
measured crown width and total height has a bias of 6.3cm. The 
estimation bias is evaluated as approximately 11% of the 
average value of all DBH measurements. When we use the 
crown width estimates and the total height estimates from lidar 
data as predictors, the diameter estimates LDBH has a bias of 
8.7cm, which is approximately 15% of the average value of all 
DBH measurements.  
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Figure 5. Relationship of field-measured DBH vs. lidar 
predicted diameter estimates (LDBH1) using LCW and LH as 
predictors.  
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Figure 6. Relationship of field-measured DBH vs. lidar 
predicted diameter estimates (LDBH2) using LCA and LH as 
predictors. 

5. CONCLUSIONS 

This paper applied an automatic method of crown mapping, the 
Multi-level Morphological Active Contour (MMAC) algorithm, 
to identify and delineate tree crowns in mountainous forest. A 
sample of 30 trees (sugi and red cypress) in a conifer forest on 
Alishan Mountain was selected. The MMAC method was 
evaluated for its ability to detect parameters of trees, such as 
tree height, crown width, and diameter at breast height. 
Comparing the parameters derived from rasterized airborne 
lidar data to ground survey data, we found that tree height 
estimates were much more acceptable than the crown width 
estimates. Using the multiple linear regression technique, we 
found that estimates of both tree parameters were able to predict 
the diameter of trees at breast height. Briefly stated, the 
coefficient of determination (R2) for the DBH regression model 
using lidar-based parameters was 0.68 which is 0.12 less than 
the R2 of the DBH estimation model using ground surveyed 
parameters. 
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