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ABSTRACT:

Classified thematic maps based on remote sensing data are usually used to derive Landscape Pattern Index (LPI). However, the 
classification error can be propagated into the LPIs calculation, while it is usually ignored in the previous literatures. Correctly 
estimating the LPI error is vital for reliable landscape analysis; however, the widely accepted accuracy assessment method without
considering spatial information is not suitable for indicating LPI error. In this paper, we developed a new accuracy assessment index 
by giving a certain weight to each error pixel according to its isolated degree. The result shows that the new index is a good 
predictor for the error of Number of Patches (NP), Total Edge (TE) and Aggregation Index (AI). The effect of sample size was also
studied, showing that the correlation between new index and LPI error become higher and more stable when the sample size 
increases. The results suggest that the proposed new index is potential to be a practicable measure of classification error for
landscape analysis as supplement of overall accuracy and Kappa coefficient. 

                                                                
*  Corresponding author.  This is useful to know for communication with the appropriate person in cases with more than one author.

1. INTRODUCTION

The quantification of spatial heterogeneity is one of the most 
important topics in landscape ecology (Turner, 2005). Since 
O’Neill, et al. (1988) firstly proposed the landscape pattern 
index (LPI) to quantitatively describe the landscape pattern, a 
large number of LPIs have been developed for categorical data. 
Meanwhile, an excellent software package, Fragstats 
(McGarigal and Marks, 2002) is also available for calculating 
LPIs, which stimulates a broad application of LPI in various 
fields, e.g. habitat conservation, urban planning, etc. (Turner, et 
al, 2001).

As remote sensing is an ideal tool to investigate the wide range 
of the earth surface with low cost, classified thematic maps 
based on remote sensing data were usually used for deriving 
LPIs (Newton, et al, 2009). Unfortunately, inevitable error in 
the classified result can be propagated into the LPIs calculation, 
while it is usually ignored in the previous literatures (Shao & 
Wu, 2008). Although this problem has been pointed out early 
(Hess, 1994), few study examined the impacts of classification 
errors on the calculation of LPI (Shao & Wu, 2008). Difficulty 
may be caused by the unstable relationship between the LPI 
error and commonly used accuracy assessment index (Langford 
et al, 2006). Traditional classification accuracy assessment 
index focuses on the amount of error only without considering 
spatial information, consequently, can not be suitable for 
indicating LPI error as the spatial heterogeneity is the key 
meaning of LPI. 

Landscape analysis is hardly reliable without a correct 
estimation of LPI error. Therefore, there is a great need to 
propose a new measure of classification error, which can be a 

reliable predictor for LPI error. One possible solution is to 
develop the object-based assessment method (e.g. Dungan, 
2006; Zhan et al, 2009). Although spatial information is 
considered, this type of method is not practicable for remotely 
sensed image since it is too expensive and difficult to obtain the 
reference land cover classification for the entire region of 
interest (Stehman, 2009).

As problems mentioned above, an ideal classification error 
measure designed for LPI should satisfy two requirements: 1) 
highly correlated with LPI error; 2) convenient for sampling. 
Aiming for the objectives, we proposed a new accuracy 
assessment index, which is pixel based but integrating the 
spatial information through considering the adjacent pixels. A 
series of simulated images were used to test the performance of 
new index. 

2. MEASURE OF CLASSIFICATION ERROR 

2.1 Traditional accuracy assessment method

The error matrix or confusion matrix (shown in table 1) is the 
most popular method for assessing the classification error. A 
series of accuracy assessment indices, such as overall accuracy, 
user’s accuracy, producer’s accuracy and kappa coefficient can 
be derived from the confusion matrix. These indices reflect the 
classification error in different aspects. Among them, overall 
accuracy (Eq.1) and kappa coefficient (Eq.2) indicate the 
classification error in map level, and have been widely used for 
accuracy assessment of classification quality in remote sensing 
community. 
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Table 1 Confusion matrix for accuracy assessment of 
classification 
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These traditional accuracy indices measure the degree to which 
the derived thematic map agrees with reality on the amount of 
error, but do not consider the spatial distribution of 
misclassification pixels, hindering them to be reliable indicators 
for LPI error. 

2.2 New index to measure the classification error  

LPI error is determined not only the amount of error pixels, but 
also and the spatial configuration of error pixels because error 
pixels with different spatial distribution will affect LPIs in 
different degree. Compared with adjacent misclassification 
pixels, isolated misclassification pixels more seriously affect 
the LPI calculation because isolated misclassification pixels 
enhance the fragmentation of classified map and a large group 
of LPIs are sensitive to the degree of fragmentation. 
Considering the effect of isolated misclassification pixels, we 
proposed a new index through giving different weights to 
different misclassification pixels:

1New Index 100%

m

i
i

w

N
�� �
�

  (3) 

where m  is the number of misclassification pixels,  N is number 
of all the sampling pixels, wi is weight of misclassification pixel 
i, calculated as the fraction of the 8 neighbourhood pixels 
belonging to the different classes with the central pixel i. It is 
noticed that the weight is calculated based on the classification 
map instead of reference map, indicating that only point 
reference data is necessary for assessment. As an example 
shown in Fig.1, the misclassification pixel with red border in 
case (a) has 4 neighbour pixels belonging to the different 
classes with the central pixel, while the misclassification pixel 
in case (b) has 7 neighbor pixels belonging to the different 
classes with the central pixel. Therefore, the weight of the 
misclassification pixel in case (a) is 0.5 and that in case (a) is 
0.875. Obviously the misclassification pixel in case (b) is more 
isolated than the one in case (a), accordingly the weight in case 
(b) is larger than that in case (a). When the misclassification 
pixel is completely isolated, the weight is equal to 1, and it is 
equal to 0 when the misclassification pixel is completely 
adjacent with the same class pixels. Through considering the 
spatial information of error pixels, the new accuracy assessment 
index is expected to predict the LIP error better than traditional 
indices.
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Weight= 4/8

True False

Weight= 7/8
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b)

True False

Weight= 4/8

True False

Weight= 7/8
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Fig. 1 Illustration of the weight calculation (a. adjacent 
misclassification pixel; b. isolated misclassification pixel) 

3. SIMULATION STUDY 

3.1 Data Simulation 

A serious of correct and incorrect classification maps were 
simulated in this study instead of using actual classification and 
reference maps, because it is very difficult to collect a larger 
number of actual classification maps from literature to perform 
our analysis. A map simulation software entitled as Simmap 
(Saura and Martinez-Millan, 2000) was used to generate a total 
of 75 correct base maps to represent the various landscapes 
without classification error (See Fig.2 for example). The size of 
the map is 200×200-pixel and the number of classes is three. 
We varied the class proportions and aggregation level. There 
were five sets of proportion configuration: 0.125-0.125-0.75; 
0.125-0.25-0.625; 0.125-0.375-0.5; 0.25-0.25-0.5; 0.333-0.333-
0.333. And three levels of aggregation (p), 0.1, 0.3 and 0.5, 
were considered. For each combination of proportion and 
aggregation configuration, five maps were generated. 

0.125, 0.125, 0.75 0.333,0.333,0.333Proportion:

p=0.1

p=0.5

…

…

… … …

0.125, 0.125, 0.75 0.333,0.333,0.333Proportion:

p=0.1

p=0.5

…

…

… … …

Fig. 2 Example of simulated “correct” landscapes with a range 
of proportion and aggregation configurations 

We created incorrect maps through changing the class of certain 
proportion of pixels to the other two classes, and the transition 
probabilities of two classes are both equal to 0.5 (Fig.3). 
Regarding the spatial distribution of classification error, two 
types of error were considered: (a) randomly located 
misclassification; (b) double misclassification rates near patch 
boundaries. For each correct based map, five levels of 
classification error rate were added (2%, 4%, 6%, 8%, 10% for 
randomly located misclassification; 4%, 8%, 12%, 16%, 20% 
for misclassification of edge pixels). Therefore, totally 75
5=375 incorrect images were simulated.
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Correct Map Incorrect MapCorrect Map Incorrect Map
Fig. 3 Example of the simulated classification error 

3.2 Measuring Fragmentation and LPI Error 

We applied FRAGSTATS 3.0 (McGarigal et al, 2002) to 
calculate the LPIs. In this study, four LPI indices were 
calculated: (a) Number of Patches (NP); (b) Mean Patch Size 
(MPS); (c) Total Edge (TE); (d) Aggregation Index (AI). All of 
these indices were calculated on both the landscape level and 
class level.

For each LPI on landscape level, we defined the LPI error as 
follow:

correct incorrect max min_ ( ) /( )LPI error LPI LPI LPI LPI� � �  (4) 
where LPIcorrect  is LPI of correct classification map,  LPIincorrect
is LPI of incorrect classification map,  LPIimax and LPImin  are 
the maximum and minimum value of LPIs in the series of 
simulated correct based maps, which normalize all the LPI error 
in the same scale. 

3.3 Measuring the Classification Error 

Overall accuracy, Kappa coefficient and the proposed new 
index were used to measure the classification error. 
Corresponding to the landscape level and class level of LPIs, 
both of these two levels of accuracy assessment indices were 
calculated. For the landscape level, the indices are consistent 
with the original definition (Eq.1-3). For the class level, some 
minor modification was conducted. Firstly, three-class map is 
combined into two-class map, one class is the objective class 
and the other one is the combination of the background classes. 
Then, the accuracy assessment indices are calculated based on 
the two-class map.

3.4 Analysis of Result 

Based on the 375 simulated classification maps, we investigated 
the correlation between LPI error and the accuracy assessment 
indices on both the landscape level and class level. For the class 
level, we chose only one class to analyze because there are no 
differences among three classes.

Sample size is an important factor in assessment of 
classification error. The effect of sample size was also 
examined for the new index. For each incorrect classification 
map, new index was calculated based on a range of sample 
sizes, ranging from 10% to 90% with a step of 10%. We 
randomly sample 10 times for each level of sample size. Then, 
the average and the variation of the correlation coefficient for 
each sample size were prepared for analysis.  

4. RESULT

4.1 Correlation Between LPI Error and Classification 
Accuracy Indices 

Here, we used the stratified random sampling method and 10% 
sampling size, since 10% is close to the practicable sampling 
amount. Table 2 and 3 show the correlation coefficients 
between LPI error and the classification accuracy assessment 
indices respectively on landscape level and class level. The new 
index is better correlated with LPIs error than overall accuracy 
and kappa. Especially, the error of NP, TE, and AI are well 
correlated with new index. However, the error of MPS is not 
well correlated with new index, because MPS describe the 
shape information of the patches, which are not necessarily 
related with the degree of fragmentation. 

Table 2 Correlation coefficient between classification accuracy 
assessment indices and LPI error on landscape level 

Correlation
Coefficient

Overall
Accuracy Kappa New Index

Number of Patches -0.574** -0.659** 0.967** 
Total Edge -0.801** -0.836** 0.952** 

Mean Patch Size 0.029 -0.086 0.630** 
Aggregation Index -0.801** -0.835** 0.952** 

** Correlation is significant at the 0.01 level (2-tailed) 

Table 3 Correlation coefficient between classification accuracy 
assessment indices and LPI error on class level 

Correlation
Coefficient

Overall
Accuracy Kappa New Index

Number of Patches -0.430** -0.759** 0.884** 
Total Edge -0.809** -0.867** 0.932** 

Mean Patch Size 0.035 -0.144** 0.445** 
Aggregation Index -0.641** -0.701** 0.856** 

** Correlation is significant at the 0.01 level (2-tailed) 

4.2 Effect of Sample Size 

Fig.4 shows the correlation coefficient against sample size 
respectively on the landscape level. MPS was not considered 
because the new index can not predict the error of MPS well 
(Section 4.1). It can be seen that the correlation between new 
index and LPI error increases and the variation of correlation 
decrease, when the sample size increases. This result is 
consistent with other studies on hard and soft classification 
(Stehman, 1996; Chen et al., 2010). 
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Fig. 4 Correlation between LPI error and new accuracy assess 
index using different sample size (a. NP, b. TE, c. AI) 
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5. DISCUSSION AND CONCLUSION 

Estimating LPI error is important for landscape analysis, while 
traditional accuracy assessment indices can not predict LPI 
error well because they do not consider spatial information. In 
this paper, a new accuracy assessment index is proposed to 
indicate LPI error. Through analysis of a series of simulated 
images, the new index is found to be well correlated with error 
of NP, ED and AI, indicating that new index is a better 
predictor for these LPIs’ error compared with traditional indices. 
However, different LPIs reflect different aspects of landscape 
pattern and it is impossible for one index to indicate error of all 
the LPIs. MPS are found not to be correlated well with new 
index in this study. However, the new index is still very 
meaningful as fragmentation is a very important characteristic 
of landscape pattern. New index is potential to be a reliable 
indicator of the error of LPI related with fragmentation.  

One limitation of this study is that our conclusion is derived 
based on simulated data. The gap between simulated and actual 
data is obvious and difficult to be eliminated. However, the 
simulated data still can behalf of some representative cases. 
Most characteristics of landscape patterns can be captured by 
Simmap model (Li et al., 2004). Also, although the spatial 
autocorrelation is not considered, the error model can well 
represent the salt-and-pepper error, which usually occurs for 
per-pixel classification methods. On the other hand, simulation 
study provides sufficient data for analysis, through which 
statistically meaningful result can be derived. Therefore, the 
conclusion of this study is valid in many cases, and the 
proposed new index is potential to be a practicable measure of 
classification error for landscape analysis as supplement of 
overall accuracy and Kappa coefficient. 
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