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ABSTRACT: 
 
LiDAR (Light Detection and Ranging) is widely used in such fields as Digital Surface Model (DSM) production. It provides 
intensity data that reflect the material characteristics of objects, so it is possible that intensity data could be used for land-cover 
classification. 
In this study, we assessed the possibility of land-cover classification using LiDAR intensity data instead of the multi-spectral data 
that has commonly been used for classification. We converted LiDAR point data to a grid and assessed the separability of intensity 
data on some classes, including asphalt road, grass, house roofs, and trees. However, the grid data was very noisy because of errors 
during data acquisition or from the resampling processes. To solve this problem, we examined some resampling and filtering 
methods that can remove noise effectively while the original information is preserved as much as possible. 
From this study, we concluded that LiDAR intensity data could be used for land-cover classification. 
 

1. RESEARCH BACKGROUND AND OBJECT 

Since the Light Detection and Ranging (LiDAR) technique with 
high vertical accuracy was developed, LiDAR has been used in 
such fields as Digital Surface Model (DSM) production, 
extraction building, and 3D city modeling. Research on land-
cover classification has also used DSMs extracted from LiDAR. 
Norbert Haala and Claus Brenner (1998) accomplished 
classification using DSM and CIR (Color Infra Red) images. 
Hans Gerd Maas (1999) classified land cover using textures 
extracted from DSM that indicated height, roughness, 
maximum inclination, and so on. 
LiDAR provides both height data and intensity data that reflect 
material characteristics of objects. In this study, we assessed the 
separability of LiDAR intensities for four classes: asphalt road, 
grass, house roofs, and trees, and evaluated the possibility of 
land-cover classification using LiDAR intensities. 
 

2. LIDAR SYSTEM 

 
2.1 

2.2 

LiDAR System 

A laser system is almost free from intervening air effects, 
because laser light travels in straight lines and has strong 
penetration with small Instantaneous Field Of View (IFOV). 
Further, because the laser scanner is an active sensor that emits 
light and measures reflected light, it does not require sunlight. 
Generally, the wave length of lasers used for LiDAR is 0.9 ㎛, 
and a LiDAR system has the high accuracy of 30 ㎝ vertically 
and 15 ㎝ horizontally. LiDAR systems are usually called Laser 
Detection and Ranging (LADAR) or Airborne Laser Scanners 
(ALS). 

LiDAR altimetry uses the laser scanner, a GPS receiver, and an 
Inertial Navigation System (INS) including IMU (Inertial 
Measurement Unit). The laser scanner can be considered as 
separate operations of distance measurement and scanning, 
which are integrated and operated by a controller. There are 
also additional components such as data storage media, a 
ground GPS receiver, data processing software, and a 
navigation system. 
 

LiDAR Intensity 

Intensity is defined as the ratio of strength of reflected light to 
that of emitted light, and is influenced mainly by the reflectance 
of the reflecting object. Reflectance varies with material 
characteristics as well as the light used, and different materials 
have different reflectances. Consequently intensities may be 
useful information for classifying land cover. 
Table 1 shows intensities of various materials for 0.9 ㎛ lasers. 
This wavelength belongs in the infra-red, and intensities of 0.9 
㎛ infra-red ray are also shown in Figure 1. 
Of the four classes in this study, ‘asphalt’ has the intensity 
value of 10%~20%, ‘grass’ about 50%, ‘tree’ 30%~60%, and 
‘house roof’ of 20% (for shingle)~30% (for concrete). Thus, 
each class has a different intensity and separability can be 
established. 
 

Materials Reflectivity(%
) 

White paper 
Dimension lumber 
Snow 
Beer foam 
White masonry 
Limestone, clay 

Up to 100 
94 

80~90 
88 
85 

Up to 75 



 

Newspaper with print 
Tissue paper, with ply 
Deciduous trees 
Carbonate sand(dry) 
Beach sands 
Carbonate sand(wet) 
Coniferous trees 
Rough wood pallet (clean) 
Concrete, smooth 
Asphalt with pebbles 
Lava 
Black rubber tire wall 

69 
60 

Typ. 60 
57 

Typ. 50 
41 

Typ. 30 
25 
24 
17 

8 
2 

 
Table 1. Reflectivity of 0.9 ㎛ Laser (company Riegl) 

 

 

Figure 1. Reflectivity of Various Wave Length of Infra-red 
(Jensen, 1989) 

 
However, LiDAR intensity data are very noisy and possibly 
have low separability if the wavelength of the laser used is not 
suitable for the materials. The main source of intensity noise is 
the angle of reflection, as some materials have different 
intensity values as the angle of reflection varies. Therefore, to 
make intensity represent only reflectance and not be affected by 
reflection angle, it is necessary to normalize intensity data by 
the angle of reflection. In this study, however, this was not 
accomplished because of the lack of ALS orientation 
information.  
 

3. INSTENSITY PROCESSING 

 
3.1 

3.2 

Conversion Point Data to Grid 

Generally, as LiDAR data are provided in the form of point data, 
it is necessary to convert the data to grid form. In this study, we 
used the Inverse Distance Weight (IDW) and the Kriging 
interpolation methods. Kriging is a set of linear regression 
routines which minimize estimation variance from a predefined 
covariance model. 
 

Filtering the Grid Data 

A LiDAR intensity grid, especially one generated using the 
IDW method, includes much ‘salt and pepper’ noise, with 
values that vary even inside the same feature. The origin of this 
noise can be thought of as grid conversion error or systematic or 
accidental errors in surveying. The systematic and accidental 
errors are specified as forms of vertical position error, which 
can be generated from GPS, distance measurements or IMU. 

Similar reasoning can be applied to horizontal errors (B.K. Lee, 
2001). The sizes of systematic and accidental errors are affected 
by the type of land-cover and the magnitude of the slope.  
According to Huising and Gomes Pereira (1998), each error can 
be of magnitude 5~20 ㎝ for some land-cover types, and as 
much as 20~200 ㎝ on grassland, copses or sloping land. 
Therefore the noise on the intensity grid can be the result of 
incorrect surveying because of the above errors. To remove 
noise from the images, mean filters or median filters are usually 
used. The median filter serves to reduce pixel value distortion, 
preserving the feature boundary and effectively softening rough 
surfaces. The ‘salt and pepper’ noise must be removed, and 
some rough surfaces should be made homogeneous because 
they can have a negative influence on the accuracy of 
classification and the shape of the classified feature.   
 

 
 

Figure 2. Original Intensity Grid (IDW) 
 

 
 

Figure 3. 3ⅹ3 Median Filter Applied to the Intensity Grid 
 

 
 

Figure 4. Intensity Grid (Kriging) 
 

Figure 2 is an original intensity grid interpolated by the IDW 
method and Figure 3 is the intensity grid after applying a 3×3 



 

median filter. Figure 4 is the intensity grid interpolated using 
the Kriging method. It has little ‘salt and pepper’ noise and 
resembles Figure 3 because of the characteristic smoothing 
effect of the Kriging method. 

 
4. EVALUATION 

 
4.1 Data Specification 

Table 2 shows details of the LiDAR data of this study. As 
training data for signature analysis, we used ortho-rectified 
black and white aerial digital images. 
 

Data Components x , y Coordination, Height, 
Range, Intensity 

No. of Points 660�425 
Average of Point Distance 0.602m 

Average of Intensity 44.736 
Standard Deviation of Intensity 11.216 

Coordinate System UTM WGS84 
north zone 11 

 
Table 2. LiDAR Data in Study 

 
4.2 Intensity Analysis 

Table 3 shows the statistics of intensity data interpolated using 
the IDW method, and shows that the variance of intensity is 
diminished by median filtering. 
 

 Average Deviation 

Class Before 
Filtering 

After 
Filtering 

Before 
Filtering 

After 
Filtering

Asphalt 35.197 35.178 2.125 1.604 
Grass 47.115 47.052 4.841 3.655 
Roof 38.409 38.335 4.348 3.697 
Tree 50.288 49.987 7.234 4.709 

 
Table 3. Statistics of the Intensity Grid (IDW) 

 
The intensities for ‘asphalt road’ and ‘house roof’ are larger 
than the expected 10%~20%. 
The reasons for the larger intensity estimations can be stated as 
follows. First, the wavelength of the laser in this study is 
different from that used in Table 1. Second, the compositions of 
real materials are more complex than those of laboratory 
references, and poor estimates of intensity could be caused by 
various error factors in the surveying step. Finally, the objects 
may be composed of materials that cannot be recognized by the 
black and white reference image. 
‘House roof’ has similar intensity to ‘asphalt road’. This 
probably occurs because asphalt shingle is used widely as a 
roofing material. Asphalt shingle is an asphalt-coated building 
material to withstand weathering. From the reference image, 
many house roofs are seen to be made of asphalt shingle 
(Figures 5 and 6). 

 

 
 

Figure 5. 'Asphalt Shingle' as Roof Material 
 

 
 

Figure 6. Roofs in the Study Area 
 

The estimated intensity for ‘grass’ is about 50%, and also for 
‘tree’. The variance for ‘tree’ is higher than other classes, 
possibly because intensity varies with the kind of tree and the 
shape of leaf. For example, the intensity of a conifer is about 
30% while that of a broadleaf tree is usually 60%. 
 
4.3 Separability Assessment of Intensity 

To assess the separability of intensities, a transformed 
divergency method was used. This is a modified divergency 
method that allows users to easily interpret the separability. It is 
possible to obtain relative separabilities between classes by the 
divergency method, but the resulting values do not indicate the 
absolute separability, to consider whether real classification is 
possible. The transformed divergency method represents the 
separability in the range 0~2000 and one can estimate the 
separability level (Table 4). 
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where       ji : comparison classes ,
              C  : covariance matrix of  class i, j 

ji C,
               

ji µµ , : average vector of class i, j 

tr : trace function 
 

TD Level of Separability 
Up to 1900 Excellent 
1700~1900 Good 

~1700 Poor 
 

Table 4. The Level of Separablity for Assessment 
 

We assessed separability of intensity on three intensity grids: 
interpolated with the IDW method, median filtered, and 
interpolated with the Kriging method. The results are as follows. 
 



 

 Asphalt 
Road Grass House  

Roof Tree 

Asphalt Road 0 1844.83 560.05 1964.43 
Grass 1844.83 0 731.8841 156.43 

House Roof 560.05 731.88 0 1012.44 
Tree 1964.43 156.43 1012.44 0 

 
Table 5. Separability of Intensity (IDW) 

 
 

 Asphalt  
Road Grass House  

Roof Tree 

Asphalt Road 0 1972.70 794.368 1996.55 
Grass 1972.70 0 1009.79 155.51 

House Roof 794.37 1009.79 0 1277.70 
Tree 1996.55 155.51 1277.7 0 

 
Table 6. Separability of Intensity (IDW, median filtered) 

 

 Asphalt  
Road Grass House  

Roof Tree 

Asphalt Road 0 1986.67 945.75 1997.94 
Grass 1986.67 0 1026.01 106.75 

House Roof 945.75 1026.01 0 1244.14 
Tree 1997.94 106.75 1244.14 0 

 
Table 7. Separability of Intensity (Kriging) 

Separabilities for ‘asphalt road’ vs. ‘grass’ and ‘asphalt road’ vs. 
‘tree’ are rather high, ‘house roof’ vs. ‘tree’ are medium, and 
‘asphalt road’ vs. ‘house roof’ and ‘grass’ vs. ‘tree’ are very 
low (Table 5). This result could be expected from the above 
intensity analysis. If DSM is added to the classification process, 
‘asphalt road’ vs. ‘house roof’ and ‘grass’ vs. ‘tree’ will be 
classified because they have different heights. 
In Table 6 and Table 7, it can be seen that filtering and other 
interpolation methods enhance separability. In particular, very 
high separabilities are obtained between ‘asphalt road’ and 
‘house roof’, and ‘grass’ and ‘tree’. 
 

5. CONCLUSION 

This study is intended to evaluate the suitability of LiDAR 
intensity data for land-cover classification. We converted 
LiDAR point data to grid form using two interpolation methods 
and filtering, and assessed the separability of intensity data on 
four classes: asphalt road, grass, house roof, and tree. 
The conclusions are as follows. 
First, while LiDAR intensity does not exactly conform to 
theoretical reflectances of materials, it does follow relative 
magnitudes of reflectance, thus permitting separability. 
Therefore LiDAR intensity can be used for land-cover 
classification. 
Second, LiDAR intensities and the intensity grid contain much 
noise originating from various sources. To enhance separability 
of intensity, adequate methods of interpolation and filtering 
must be applied. 
Third, LiDAR is a very cost-effective and accurate surveying 
technology because position and intensity data for the same site 
can be estimated simultaneously. 
Fourth, as more processing, such as normalization, and DSM 
are added, LiDAR intensity will have the potential to identify 
more classes. 
Advanced research subjects include intensity normalization 
using orientation information from ALS, and the development 
of more adequate interpolation and filtering methods for the 
intensity grid. 
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