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ABSTRACT: 
 
Recently, hyperspectral image analysis has obtained successful results in information extraction for earth remote sensing system. The 
data produced with this type of analysis is an important component of geographic databases. The domain of interest of such data 
covers a very large area of applications like target detection, pattern classification, material mapping and identification, etc.  
Material mapping techniques may be considered like multi-step target detection. Among the strategies for target detection, one of the 
most applied is the use of some similarity measures. In case of hyperspectral data, there are two general types of similarity measures: 
first are deterministic measures and second are stochastic measures. 
In this paper the deterministic measures for spectral matching are tested. These methods use some similarity measures like the 
euclidian distance (Ed), the spectral angle (SA), the Pearson spectral correlation (SC) and the spectral similarity value (SSV). In 
parallel, we have implemented a constrained energy minimizing (CEM) technique, for finding the most similar pixels on our 
materials of interest. These techniques are applied to two data sets which were taken with the Compact Airborne Spectrographic 
Imager (CASI), over the city of Toulouse in the South of France. 
Whereas each method has advantages and limits, a fusion technique is used to benefit from all the strong points and ignores the weak 
points of the methods. Results show that fusion may enhance the final target map; however, the primary algorithms are important and 
are useful for pure pixel targets. 
 
  

1. INTRODUCTION 

Land cover information obtained from remotely sensed data are 
needed for a lot of applications. Historically, there was a great 
interest in the spectral signature presented in these kinds of data 
for the identification of objects and materials and the production 
of Land cover information. Recently, hyperspectral imagery 
systems have proposed a remarkable answer to this need and 
interest. They may provide hundreds of contiguous spectral 
bands which makes possible the reconstruction of the spectral 
reflectance of materials. 
Pattern recognition and remotely sensed data analysis have been 
the subject of intensive research. The emerging techniques, and 
particularly statistical techniques, are well adapted for both 
multi and hyper spectral images (Kruse 1993, Richards 1999, 
Landgreb 1999 and Landgrebe 2002). However, some of 
hyperspectral data properties, such as large volume of data, 
need for prior knowledge about the scene and 
hardware/software needs are new challenges in image analysis 
and processing.  These limitations cause some inabilities of the 
classical techniques (Jia 1996).  Spatial based image processing 
techniques are not able to extract the existing information in the 
hyperspectral cube (Chang 2002). Therefore another type of 
technique with basic in signal processing has come to 
hyperspectral image analysis. 
In hyperspectral image analysis, there is a class of techniques 
that efficiently use the information of the spectral signature. 
They are called Spectral Matching methods. These techniques 
belong to supervised pattern recognition approaches. They 
define some kind of similarity measures between an unknown 
pixel and a reference target. In these techniques, we use the 

minimum of information about the classes of interest. This 
property is really important when we work with a large “data 
cube” volume. 
There are two similarity measure categories for the analysis of 
hyperspectral data: stochastic measures and deterministic 
measures. In the first category, one uses the property of sample 
data as self information and defines some spectral information 
criteria such as divergence, probability, entropy, etc (Chang 
2002). On the contrary, in the second category deterministic 
criteria are defined to measure the similarity. These criteria are 
such as the spectral angle, the distance and the correlation 
between an unknown pixel and a reference spectrum. 
The definition of the spectral measures needs some a priori 
knowledge on the nature of the data, objects, materials of 
interest and problems which must be solved. For example, in 
urban area we are facing some problems such as complexity of 
topography and change in materials (Alimohammadi 1998).   
In this paper we present some similarity measures for material 
mapping. These measures belong to the second category of 
criteria, deterministic measures. They are spectral distance, 
spectral angle and correlation. A more sophisticated method, 
called Constrained Energy Minimizing, has also been 
investigated: it is a linear operator which maximizes the 
response difference between target and non-target pixels.   
As it will be shown, each method has some facilities and 
benefits beside of its limitations. Then a fusion strategy has 
been developed at the decision level to obtain better results.  



 

2. SPECTRAL SIMILARITY MEASURES 

In spectral matching issue, the algorithms need the definition of 
some criteria for measuring the similarity and closeness of 
pixels. 
As mentioned, regarding deterministic measure, there are tree 
major types of measures. They are distance based measures, 
angle based and correlation based measures. 
In this paper we have used a classical notation, which may be 
finding in the literature. If we consider a set of hyperspectral 
images as a cube, then, each pixel can be consider as an 
observation vector (see Figure 1). 
 

 
Figure 1.  Each pixel corresponds to a vector of observations 

 
This consideration corresponds to spectral space beside of the 
image and feature spaces, defined in (Landgrebe 1999). With 
this definition, the spectra are variations within pixels as a 
function of wavelength. From here, we define a pixel vector as 

p
ρ  and a target vector as t

ρ
. The number of hyperspectral 

channels is n. In other word, n is the dimensionality of sample 
data. 
 
2.1 Spectral Distance Similarity (SDS) 

In statistical analysis and signal processing, the metric of 
distance is frequently used for measuring the separation or the 
closeness of data samples.  Based on the distance, the use of 
different norms generates different metrics. For example, City 
block distance, Euclidian distance and Tchebyshev distance are 
some measures corresponding to �1, �2, and �� -norms (Keränen 
2002). We use here the Euclidian distance defined as:  

2

1

( )
n

orig i i
i

Ed t p
=

= −�                     (1) 

For a logical comparison, we prefer to scale the distances 
between 0 and 1: 

( ) /( )origEd Ed m M m= − −  (2) 

where m and M are the minimum and maximum of Edorig values 
respectively.  
 
2.2 Spectral Correlation Similarity (SCS) 

The Pearson statistical correlation, � can be used as a similarity 
measure. It shows how two vectors are correlated. We define it 
here as: 
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where � and � are the mean and standard deviation of target 
vector and pixel vector, respectively. To have the value between 

0 and 1 as the previous measure, negative values are 
disregarded. 
 
2.3 Spectral Similarity Value (SSV) 

The spectral similarity value is a combined measure of the 
correlation similarity and the Euclidian distance. It can be 
formulated as: 

( )22 1SSV Ed ρ= + −   (4) 

Identical vectors have identical magnitudes and directions. For 
a spectrum considered as a vector, the magnitude corresponds to 
the average spectral reflectance (brightness) and the direction 
corresponds to the spectral shape (including all the absorptions 
and emissions due to physical processes). Both dimensions of 
vector identity must be quantified when determining the 
similarity, or ‘closeness’ between two spectra. Euclidean 
distance primarily measures the brightness difference between 
two vectors. Correlation compares the shapes of two spectra. By 
definition, the SSV combines brightness and shape similarity. It 
has a minimum of zero and a maximum of the square root of 
two. In other word, smaller SSV indicates spectra that are more 
similar (Granahan 2001). 
 
2.4 Modified Spectral Angle Similarity (MSAS) 

Given two vectors as the target and pixel spectra, a spectral 
angle between this pair of vectors can be defined (Yuhas 92). In 
the case of a hyperspectral image, the "hyper-angle" is 
calculated with: 
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The smaller angle means more similarity between the pixel and 
target spectra. Here, we prefer to use a modified spectral angle 
presented by (Schwarz 2001). In above equation � is between 0 
and �/2, so we can easily obtain: 

2
MSAS

α
π

=     (6) 

by this rescaling the values of measure convert to [0, 1]. It can 
be helpful for comparison with other measures. 
 
2.5 Constrained Energy Minimizing (CEM) 

The CEM technique (Harseany 93) has become quite popular in 
recent years as a mean for constructing a linear operator to 
perform matched filtering of hyperspectral images. The CEM 
algorithm tries to maximize the response of the target spectral 
signature while suppressing the response of the unknown 
background signatures. In other words, in this technique we try 
to find a linear operator or filter such as �, which could reduce 
all bands of hyperspectral images to one image. It emphasizes 
on target spectrum and minimizes the background energy 
(Farrand 97), as:  

i
t

i ry .ω=     (7) 

Where r, is the set of total image pixels. If t is our target 
spectrum of interest, then this operator must grant:   

1. =ωtt     (8) 
In other words the operator � minimizes the filter output energy 
subject to the constraint (8). With this consideration we obtain: 
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where R is the autocorrelation matrix of the image. Now we can 
compute the output matrix y. The value of each pixel is ideally 
related to the abundance of the target material. Theoretically, 
the value of 1 means that the pixel has a spectrum like the target 
and 0 means the absence of target spectrum in the pixel. 
 

3. THRESHOLDING 

For decision making to separate target from non target pixels, a 
threshold is necessary. One of most reliable way to find a 
threshold is using Receiver Operating Characteristic (ROC) 
Curves. It has been used with the Neyman-Pearson method in 
signal detection theory (Bradley 1997). It can be used to 
visualize a classifier performance in order to select the proper 
decision threshold. The ROC Curves compare a series of 
similarity image classification results for different threshold 
values with ground truth information. A probability of detection 
(Pd) versus a probability of false alarm (Pfa) curve and a Pd 
versus a threshold curve are reported for each selected class 
(rule band).  
For calculating of ROC curves, Confusion Matrix is needed. A 
confusion matrix is a form of contingency table showing the 
differences between the ground true data and classified images 
and it is computed by cross tabulation technique. In case of a 
single class classification or target detection we obtain a 
confusion matrix such as given on Table 1.  
 

Classified Classes  Confusion Matrix 
0 1 sum 

0 Tn Fp Cn True 
Classes 1 Fn Tp Cp 

 sum Rn Rp N 
Table 1.  A Confusion Matrix For Target Detection Case 

 
The elements of this matrix are defined as: 
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Tn (true negative) is the number of non target pixels which are 
correctly classified as non target. P(Tn) is its probability or rate 
as calculated using :  P(Tn)=Tn/Cn. 
Tp (true positive) is the number of target pixels which are 
correctly classified as target and P(Tp) is its rate as obtained 
using: P(Tp)=Tp/Cp. It is also called probability of detection: 
Pd. 
Fp (false positive) is the number of non target pixels which are 
incorrectly classified as target and P(Fp) is its probability as 
calculated by:  P(Fp)=Fp/Cn. It is also called probability of 
false alarm: Pfa. 
Fn (false negative) is the number of target pixels which are 
incorrectly classified as non target and P(Fn) is its probability as 
calculated by:  P(Fn)=Fn/Cp. 
This matrix and its elements must be calculated for a set of 
thresholds. In practice we fix a number of thresholds between 
the minimum and maximum values of rule data. Then, for each 
threshold, a Pd and Pfa could be calculated. With each triple of 
(thr, Pd, Pfa) we can plot two curves: A ROC that contains the 
Pd against the Pfa and another curve that contains the Pd 
against the threshold. An example of ROC curves are presented 
on Figure 2. 

 
Figure 2.  (a) Curves  of  the Pd versus the Pfa  and  (b) the Pd 

versus the thresholds. 
 
With these curves we can easily find a convenient threshold by 
defining a level of false alarm or probability of false positive. 
 

4. IMAGERY 

We have applied the above techniques to CASI (Compact 
Airborne Spectrographic Imager) hyperspectral images. CASI is 
an airborne push-broom sensor that covers a range of 
electromagnetic waves from 0.41µm to 0.95µm. CASI has a 
flexible spectral resolution capability. It means that the image 
data may have different numbers of bands, maximum to 288. 
Spatial resolution of CASI is a function of its IFOV and altitude 
of airborne platform. It can vary from 1 to 10 meters. Dynamic 
range of sensor is another parameter which produces the image 
data with 12 bits or 4096 grey levels. CASI also is equipped 
with a GPS and an INS for In/Off fly rectification and geo-
referencing of images. 
The data for this experiment consists of two images on the same 
scene. The first image was acquired at the altitude of 1293m; 
the spatial resolution of the image is then 2m. The number of 
bands for this image was fixed to 32 channels. The second 
image was taken at 2540m, with 4m in spatial resolution and 48 
spectral bands. Both images were acquired over the city of 
Toulouse in the South of France on March 2001.  
 

5. EXPEREMENTS 

To perform tests with the proposed measures, we have selected 
an area containing man-made objects like roads, buildings and 
green spaces: two windows of the CASI images above this area 
were selected. The first part has a size of 64x64 pixels with 48 
bands and a spatial resolution of 4 meters (Figure 3a), and the 
second is 128x128 pixels with 32 bands and 2m for spatial 
resolution (Figure 3b). To compare and evaluate the results, we 
extracted a true data map by visual interpretation of the building 
materials of the scene for both images (Figures 3c and 3d). A 
target spectrum of building materials has been extracted by 
collecting and averaging the spectra of manually selected pixels 
for both sample data (Figures 3e and 3f). 
We have applied the three mapping methods corresponding to 
the three spectral similarity measures and matching operator. As 
they are explained above: Modified Spectral Angle Similarity 
(MSAS), Spectral Value Similarity, (SSV) and output of 
Constrain Energy Minimizing operator or simply CEM. As 
mentioned, since the values of SSV are in [0,�2], we have 
stretched them linearly to [0,1]. Due to the noises, the values of 
CEM output are not exactly in [0,1], then we have stretched 
them to [0 1].  But as the most similarity between the target and 
an unknown vector should be zero, the stretching is the 
following: 
 

1 ( ) /( )CEM CEM CEMCEM CEM Min Max Min= − − −  (11) 

 



 

 
Figure 3. False colour images: (a) CASI-48 with R=0.948µm, 

G=0.675µm, B=0.456µ. (b) CASI-32 with 
R=0.914µm, G=0.620µm, B=0.451µm, Ground truth 
data: (c) for CASI-48 and  (d) for CASI-32. The 
extracted spectra of building material: (e) for CASI-48 
bands, (f) for CASI-32 bands. 

 
where MinCEM and MaxCEM  are respectively the minimum and 
maximum values over the image. 
The result maps for each method have been obtained after the 
segmentation of the similarity images using an adapted 
threshold. The thresholds have been found graphically from 
ROC curves. After the application of this threshold to the 
similarity image, each connected component of the resulting 
binary image is detected, and regions with a surface less than a 
given threshold are eliminated. The remaining pixels constitute 
the final decision images. The resulted similarity and target 
maps for CASI-48 and CASI-32�images are illustrated in Figure 
4 and Figure 5.  
For a quantitative evaluation of the results, we retain two 
elements derived from the confusion matrix: the overall 
accuracy (OA), and the overall kappa (OK). The overall 
accuracy is calculated by summing the number of both target 
and non target pixels correctly classified and dividing by the 
total number of pixels. Because the OA is not a very complete 
and reliable criterion, the OK is computed with other elements 
of the confusion matrix (Rosenfield 1986) and presented in 
Table 2. 
 

6. EVALUATION OF RESULTS 

From the result images (for both data sets), we can evaluate that 
the deterministic measures can be used for material 
identification and mapping. In urban area, the spectral 
reflectance of building roofs is corrupted by topographic effects. 
But results show a relative success in detection of materials due 
to the nature of the measures. On the similarity images, it is 
visible that the topographic effect is still present with the CEM, 
especially on the rooftops, while it has disappeared with the 
MSAM and the SVM, since these two measures are robust to 
linear perturbation. On the other hand, it is clear that the CEM 
has succeeded to separate efficiently the target pixels, as we see 
nearly two classes of pixels in the CEM similarity image. In 
contrast to CEM technique, the two other approaches are able to 
distinct non-target pixels surrounded by target material pixels. 
For example, single pixels corresponding to chimneys and roof 
windows are detected.� 
From a quantitative aspect the CEM technique provides better 
results for both datasets (see Table 2).  
 

CASI-48 CASI-32 
 MSA

M  
SV
M 

CE
M 

MSA
M 

SV
M 

CE
M 

Overall 
Accuracy 0.96 0.96 0.98 0.95 0.95 0.96 

Overall 
Kappa 0.85 0.85 0.86 0.83 0.82 0.84 

Table 2.  Accuracy Parameters of applied Methods. 
 

7. FUSION STRATEGY  

Because of limits and for benefiting of all abilities of each 
measure, we decide to use a fusion strategy in decision level. So 
we have defined a new 3-D space in which, each measure is 
defined as an axis. In this space, we have applied each measure 
as a target binary map. Then we can imagine a cube in this 
space that the interesting points are the corners. In this space, 
we have four types of corners: 
 

• (0,0,0) which is corresponds to non target pixels. 
• (1,0,0), (0,1,0), (0,0,1) which are correspond to  

detected pixels as target at least by one technique. 
• (1,1,0), (1,0,1), (0,1,1) which are correspond to 

detected pixels as target at least by two techniques. 
• (1,1,1) which is corresponds to pixels detected as 

target by all three techniques. 
 

Surely; if we decide to consider the first and forth types of 
corners, we are certain that all target pixels is detected and all 
non target pixels are rejected by our techniques. But here we are 
interested in benefiting of the other possibilities. Therefore we 
define a decision tree based on three rules explained below: 
 
R1: the output pixel is target if at least, 1 technique detects it. 
R2: the output pixel is target if at least, 2 techniques detect it. 
R3: the output pixel is target if at least, 3 techniques detect it. 
 
The figure 6 is helpful to explain these rules: R3 contains only 
the white point, R2 contains the white and black points, and R1 
contains the white, black and grey points. The result target maps 
are shown on the figure 7 for both CASI-48 and CASI-32 
images.  Again, from confusion matrix, the overall accuracy and 
overall kappa are calculated for the fusion images, these 
parameters present in Table 3. 



 

 
Figure 4. The similarity and decision images for the analysis of 

the CASI-48 image: (a) and (b) for the SVM, (c) and 
(d) for the MSAM, and (e) and (f) for the CEM. 

 
CASI-48 CASI-32  

R1 R2 R3 R1 R2 R3 
Overall 
Accuracy 0.98 0.96 0.96 0.94 0.96 0.97 

Overall 
Kappa 0.86 0.87 0.83 0.79 0.83 0.88 

Table 3.  Accuracy Parameters of Fusion images. 
 

 
Figure 6 The 3-D space of decision fusion. 

 

 
Figure 5. The similarity and decision images for the analysis of 

the CASI-32 image: (a) and (b) for the SVM, (c) and 
(d) for the  MSAM, and (e) and (f) for the CEM. 

 
8. CONCLUSION  

From the primary evaluation, i.e. from the initial techniques, it 
can be conclude that these techniques may be useful for some 
applications. For example, if the goal of material mapping is to 
extract the boundary of building, the results of CEM are more 
reliable for both quality and quantity evaluations. However, in 
both image sets, the results are a more or less similar. But at this 
level of evaluation, we can also find that spectral similarity 
measure can be useful, especially when the used measure can 
compensate the linear effects due to the geometry of the scene: 
in that case, the result of similarity measures such as the MSAM 
should be  considered for target detection. In other hand, the 
size of pixels is a sensible parameter in the context of this study. 
In urban area, the sizes of manmade objects like residential or 
non-residential buildings are various. In our case, related to this 
subject, we can say that the analyses of CASI-32 with two 
meters of resolution provide better results. Moreover, the high 
spectral resolution is a capability of hyperspectral imagery but 
the different between 32 and 48 bands is not considerable. Also, 
we can say that the spectral resolution could be of importance 
when the materials are nearly similar, for example different type 
of roof materials, vegetations, etc. In addition, it must be added 
that these techniques are useful for pure pixel material mapping 
and that for resolving the problem of mixing like it might occur 
at the border of the buildings, another kind of modelling have to 
be considered. 



 

 
Figure 7. The results of applying the decision rules: (a) R1, (c) 

R2, (e) R3 for the CASI-48 image and (b) R1, (d) R2, 
(f) R3 for the CASI-32 image.  

 
About the fusion of primary results, we can say that the final 
target maps is more reliable and precise. Especially for CASI-32 
images, the results of R3 in which all of the techniques have 
detected the pixel under test as target material. Also, they are 
able to identify the single non-target pixels surrounded by target 
pixels.  But for CASI-48 images the results of R2 are better than 
others. So, results of fusion are more affected by the size of 
resolution than the rules. Then, however the fusion technique 
can enhance the results, but the role of primary mapping 
techniques is important and may be applied for pure target 
mapping. 
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