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ABSTRACT: 

Landslides are natural phenomena for the dynamic balance of earth surface. Due to the frequent occurrences of Typhoons and 
earthquake activities in Taiwan, mass movements are common threatens to our lives.  Moreover, it is a common practice for the 
agencies of water reservoirs in Taiwan to make a reconnaissance of the landslides of the watershed every 5 to 10 years for the 
purpose of conservation. It is found that the application of aerial photo-interpretation technique for this purpose has been recognized 
as an effective approach since 1970s.  However, an efficient and automatic interpretation scheme has never been established. 
Therefore, two issues are to be resolved for creating a useful and timely landslide database, i.e. the consistency of the sub-datasets 
and the completeness of the coverage.  As the manual interpretation and automatic recognition are compared, the former is a 
practical and operational method, but the result it derived is largely dependent on the professional background of interpretation 
operator. 
In this paper, the interpretation knowledge is quantified into recognition criteria.   Multi-source data, e.g. a Quickbird satellite image, 
DTM reduced from a LIDAR data, road and river vector data, are fused to construct the feature space for landslides analysis.  Then, 
those features are used to recognize landslides by a multilayer perceptron (MLP) Neural Network Method.  The extraction result is 
evaluated in comparison with the manual-interpretation result.  The experiments indicate that the conducted method can assist 
landslide investigation efficiently and automatically.  Moreover, the ANN method is better than some statistic classification methods, 
e.g. Maximum Likelihood method, due to its adaptability for multi-resource data and no predefined assumption. 
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1. INTRODUCTION 

Landslides are natural phenomena for the dynamic balance of 
earth surface. The potential or intrinsic factors of landslide 
include geological and morphological factors and the external 
or triggering factors include earthquake, climate, hydrology, 
and human activities. When the geology is highly fractured and 
landforms are in high relief. In addition, the frequent 
earthquakes and heavy rainfalls are together imposing further 
stress to the earth to break the balance of the nature. And, thus, 
mass movements such as landslides, slumping, and mudflows 
take places.  

1.1 Motivations 

Moreover, it is a common practice for the agencies of water 
reservoirs in Taiwan to make a reconnaissance of the landslides 
of the watershed every 5 to 10 years for the purpose of 
conservation. It is found that the application of aerial photo-
interpretation technique for this purpose has been recognized as 
an effective approach since 1970s.  However, an efficient and 
automatic interpretation scheme has never been established. 
Therefore, two issues are to be resolved for creating a useful 
and timely landslide database, i.e. the consistency of the 
datasets and the completeness of the coverage.  As the manual 
interpretation and automatic recognition are compared, the 
former is a practical and operational method, but the result it 
derived is largely dependent on the professional background of 
interpretation operator.  
It is usually taking a long time to make a large-scale and real-
time mapping of landslides after a torrential rainfall. The first 
general mapping of landslides in Taiwan was conducted by Soil 
and Water Conservation Bureau in 1982-1989 and a landslide 

map of Taiwan in a scale of 1/50,000~1/100,000 (COA, 1991). 
In 8 years of survey, there were more than 10 times of torrential 
rainfalls and 100 times of earthquakes and new balance of the 
nature took time and time again. In reality, to map all the 
landslides in one time is not feasible. And, it is understandable 
that the difficulties of obtaining a survey with completeness of a 
whole Taiwan coverage. It has been a common practice to 
interpret aerial photographs by visual inspection of an expert 
geologist. It is a time consuming task.  Therefore, the purpose 
of this study is to implement the human rules and quantifies the 
criteria to install an automatic system by a back-propagation 
Neural Network Method. 

1.2 Overview and References to related works 

Landslides cause approximately 1000 deaths a year worldwide 
with a property damage of about US$4 billion, and pose serious 
threats to settlements and structures that support transportation, 
natural resource management and tourism. In many cases, over-
expanded development and activities, such as slope cutting and 
deforestation, can sometimes increase the incidence of landslide 
disasters. Recent development in large metropolitan areas 
intrudes upon unstable terrain. This has thrown many urban 
communities into disarray, providing grim examples of the 
extreme disruption caused by ground failures (Singhroy & 
Mattar, 2000). 
Aerial photography has been used extensively to characterize 
landslides and to produce landslide inventory maps, particularly 
because of their stereo viewing capability and high spatial 
resolution (Liu, 1985, Liu, 1987). However, the conventional 
photo-interpretation is a time-consuming and costly approach 
(Liu et al., 2001). 



 

Satellite imagery can also be used to collect data on the relevant 
parameters involved such as soils, geology, slope, 
geomorphology, land use, hydrology, rainfall, faults, etc. 
Multispectral images are used for the classification of lithology, 
vegetation, and land use, Stereo SPOT imagery is used in geo-
morphological mapping or terrain classification (Liu, 1987; Wu 
et al., 1989; Liang, 1997; Liu, 1999; Hsu, 2002). 
For landslide inventory mapping the size of the landslide 
features in relation to the ground resolution of the remote 
sensing data is very important. A typical landslide of 40000 m2, 
for example, corresponds with 20x20 pixels on a SPOT Pan 
image and 10*10 pixels on SPOT multi-spectral images. This 
would be sufficient to identify a landslide that has a high 
contrast, with respect to its surroundings e.g. bare scarps within 
vegetated terrain, but it is insufficient for a proper analysis of 
the elements pertaining to the failure to establish characteristics 
and type of landslide. Imagery with sufficient spatial resolution 
and stereo capability such as SPOT or IRS can be used to make 
a general inventory of the past landslides. However, they are 
mostly not sufficiently detailed to map out all landslides (Hsiao 
et al., 2003).  It is expected that in the future the Very High 
Resolution (VHR) imagery, such as from IKONOS-2, might be 
used successfully for landslide inventory (Westen, 2000). By 
using the criteria for visual interpretation, artificial intelligent of 
expert system and automatic procedures can be developed to 
improve the efficiency and accuracy of landslide mapping 
(Kojima et al., 2000, Liu et al., 2001).  
Artificial Neural Networks (ANNs) have been used successfully 
in many applications such as pattern recognition, function 
approximation, optimization, forecasting, data retrieval, and 
automatic control (Robert, 1990, Zurada, 1992). ANNs have 
been found to be powerful and versatile computational tools for 
organizing and correlating information in ways that have 
proved useful for solving certain types of problems too complex, 
too poorly understood, or too resource-intensive to tackle using 
more traditional computational methods.  

2. METHODOLOGY 

2.1 Traditional landslide interpretation methods  

Individual landslides are generally small and located in certain 
locations of a slope. Landslides occur in a large variety, 
depending on the type of movement such as (slide, topple, flow, 
fall, spread), the speed of movement (mm/year-m/sec), the 
material involved (rock, debris, soil), and the triggering 
mechanism (earthquake, rainfall, human interaction). Survey 
methods usually include ground survey, aerial or space-borne 
survey, or a combination.  
Ground survey can be high accurate, but slow. When hazards 
take places, accessibility is low. Therefore, it is impossible to 
make the survey in near real-time or in a complete coverage 
after a torrential rainfall.  
Photographic or image interpretation approach can be adopted 
and implemented manually, automatically, or semi-
automatically. Manual interpretation requires well-trained 
geologist to delineate the landslides under a stereoscopic 
environment. The advantage of this approach is that individual 
landslide can be defined very clearly. However, the subject 
judgement is the disadvantage. Automatic classification of 
landslides is based on certain criteria and computing algorithms. 
The advantage for image classification is the objectiveness of 
the approach. In a real case, limitations are due to the spatial 
and spectral resolutions of the images. More than 50% of the 
rainfall-induced landslides in Taiwan are less than 50 m in 
length. Landslides of this scale are not readily identifiable using 

images of a pixel-size larger than 10 m. By pixel-wise 
classification, landslides can occupy only individual or just a 
few pixels without forming an outer shape of landslides. 
Moreover, commission and omission errors can further 
complicate the situation.  
2.2 Interpretation Signatures 

Key rules for this study are summarized from literatures, case 
studies, and expert experiences, as shown in Table 1. 
Key Rule Contents 
Colour Tone 
Criterion 

Brown, deep brown, bright brown, green 
brown  

Location 
Criterion 

In the vicinity of ridge lines, road sides, and 
the cut-off side of a river channel 

Shape 
Criterion 

Lenticular-shaped or spoon-shaped, or 
cumulated as tree-shaped in river basins, or a 
triangular or rectangular-shape if located near 
river banks  

Direction 
Criterion 

The longitudinal axis is in the direction of 
gravity or perpendicular to flow-lines 

Shadow 
Criterion 

Shadows are applied to assist the interpreter to 
percept river bottoms and ridges in 2D images

Table 1  rules of interpretation for landslides  

The rules of interpretation for landslides in Table 1 are to be 
implemented as computing algorithms for automatic 
identification. For example, the colour tone of a new landslide 
is usually an expression of bare lands with unique spectral 
signature. NDVI (Normalized Vegetation Index) is one of the 
20 vegetation indices, useful for this purpose. Equation of 
NDVI is as follows: 

RNIR
RNIRNDVI

+
−

=     (1) 

This index is derived from the reflectance of red band and NIR 
band. It is also an indicator of biomass. The value of NDVI is in 
the range of –1 and +1. A negative value designates a bare land. 

The location criterion of a landslide can be realized by using 
DTM (Digital Terrain Model) for generating a ridgeline and by 
digitising roads from the 1:5000 orthophoto maps, which are 
the most common maps in Taiwan. Subsequently, a vicinity 
analysis can be implemented. 
 The direction criterion is implemented by intersection 
operation of the ridgelines and buffer zones generated by river-
lines.  
The shape criterion and shadow criterion are not implemented 
in this study. However, slope criterion is added. Statistics shows 
that highest possibility of landslides take place on slopes of 
15°~30°, and then on slopes of 30°~45° (Hsiao et. al., 2003). 
A synergy of satellite images, DTM, existing roads, and 
drainage lines is better implemented in a neural network system 
as adopted in this study. A scoring scheme is used to transform 
the above-mentioned criteria into the neurons of input layer of 
the artificial neural network as shown in Table 2. 
Colour Criterion  Direction 

Criterion 
Location Criterion 
(Ridge line) 

NDVI 
Value 

Score Buffer 
size 

Score Buffer 
size 

Score 

< 0.0 1.0 < 50 m 1.0 < 50 m 1.0 
0.0~0.25 0.8 50~100 0.8 50~100 0.8 
0.25~0.5 0.6 100~150 0.6 100~150 0.6 
0.5~0.75 0.4 150~200 0.4 150~200 0.4 



 

0.75~1.0 0.2 200~250 0.2 200~250 0.2 
Location Criterion 
(Roads) 

Slope (1)  Slope (2)  

Buffer 
size 

Score SLOPE 
value 

Score SLOPE 
value 

Score 

< 50 m 1.0 < 5° 0.0 60°~75° 0.0 
50~100 0.8 5°~15° 0.09 >75° 0.0 
100~150 0.6 15°~30° 0.52   
150~200 0.4 30°~45° 0.35   
200~250 0.2 45°~60° 0.04   

Table 2  Interpretation Criteria  

2.3 An Artificial Neural Network (ANN) Classifier 

An Artificial Neural Network (ANN) is a simulation of the 
functioning of the human nervous system that produces the 
required response to input (Robert, 1990). ANN is able to 
provide some of the human characteristics of problem-solving 
ability that are difficult to simulate using logical, analytical 
techniques. One of the advantages of using ANN is that it 
doesn’t need a predefined knowledge base. ANN can learn 
associative patterns and approximate the functional relationship 
between a set of input and output. A well-trained ANN, for 
example, may be able to discern, with a high degree of 
consistency, patterns that human experts would miss. In a 
neural network, the fundamental variables are the set of 
connection weights. A network is highly interconnected and 
consists of many neurons that perform parallel computations. 
Each neuron is linked to other neurons with varying coefficients 
of connectivity that represent the weights (sometime is refereed 
as strengths in other literature) of these connections. Learning 
by the network is accomplished by adjusting these weights to 
produce appropriate output through training examples fed to the 
network (Zurada, 1992). 
The multilayer perceptron (MLP) is one of the most widely 
implemented neural network topologies. The article by 
Lippman is probably one of the best references for the 
computational capabilities of MLPs. Generally speaking, for 
static pattern classification, the MLP with two hidden layers is a 
universal pattern classifier. In other words, the discriminant 
functions can take any shape, as required by the input data 
clusters. Moreover, when the weights are properly normalized 
and the output classes are normalized to 0/1, the MLP achieves 
the performance of the maximum a posteriori receiver, which is 
optimal from a classification point of view. In terms of mapping 
abilities, the MLP is believed to be capable of approximating 
arbitrary functions. This has been important in the study of 
nonlinear dynamics, and other function mapping problems.  The 
MLPs are trained with error correction learning, which means 
that the desired response for the system must be known, as well 
known as backpropagation algorithm (Zurada, 1992).  The 
objective of learning is to minimize the error (RMS in this case) 
between the predicted output and the known output. 
An MLP type neural network model was utilized in this work 
using NeuroSolutions 4.24 software (NeuroDimension, 2004) 
developed by NeuroDimension, Inc. The architecture of a 
network that consists of (a) one input layer that contains 4 input 
variables, (b) one hidden layer of 5 nodes, (c) one output layer 
that contains 1 output variable, and (d) connection weights that 
connect all layers together. 
There are two important parameters including a learning rate 
coefficient (Eta) and a momentum factor (Alpha) during 
training. In general, Eta’s valid range is between 0.0 and 1.0. 

Although a higher Eta provides faster learning, it can also lead 
to instability and divergence. A small Eta offers improved 
numerical convergence, however training time is greatly 
increased. When a new ANN training is initiated, the user must 
provide a starting Eta value. It is advisable to start with a small 
number because it is conservative. When a value in the range of 
0.001 to 0.1 is used, it normally starts a smooth training process 
without the risk of divergence. 
The Alpha damps high frequency weight changes and helps 
with overall algorithm stability, while promoting faster learning. 
For most of the networks, Alphas are in the range of 0.8 to 0.9. 
However, there is no definitive rule regarding Alpha. Higher 
momentum values (between 0.8 and 0.9) are most commonly 
used since the damping effect usually helps training 
characteristics. If training problems occur with a given alpha 
value, different values can be tried.  In NeuroSolutions, the user 
can define this parameter. After several times of test, the alpha 
value is set to be 0.7 in this study. 
The transfer function for PEs serves the purpose of controlling 
the signal strength for its output. The input for the transfer 
function is the dot product of all PEs’ input signals and weight 
vectors of the PE. The four commonly used transfer functions 
are the Sigmoid, Gaussian, Hyperbolic Tangent and Hyperbolic 
Secant. In general, the Sigmoid function {1/(1+e-x)} will 
produce the most accurate model, but the learning rate will be 
slower as compared to other functions. The Sigmoid function 
acts as an output gate that can be either opened at 1 or closed at 
0. Since the function is continuous, it allows the gate to be 
opened partially (any value between 0 and 1). Hyperbolic 
Tangent is selected as the transfer function in this study. 
Cross validation is a highly recommended method for stopping 
network training in the NeuroSolutions. This method monitors 
the error on an independent set of data and stops training when 
this error begins to increase. This is considered to be the point 
of best generalization.  The testing set is used to test the 
performance of the network. Once the network is trained the 
weights are then frozen, the testing set is fed into the network 
and the network output is compared with the desired output. 
Twenty percentage of training data is used to be a cross 
validation and test dataset in this work. 

3. CASE STUDY AND DISCUSSIONS 

3.1 Test datasets and Pre-processing  

Jiu-fen-ell mountain is selected as the test area, which is a 
typical area of landslides especially after by the big shock of the 
Chi-Chi earthquake at Nantou County of central Taiwan on 
1999/09/21. Datasets collected for this study include Quickbird 
images, digital vector maps including river lines and roads 
obtained from 1:5000 photomaps, DTM, and airborne LIDAR 
data (Shih, 2002). 

Quickbird images are registered to the vector datasets by using 
image-to-map function of ENVI 3.5, which is applying an 
affine transformation as shown in Figure 1, where the false 
color image is a composite of bands NIR, G, and B. Roads are 
designated as yellow colour and river as blue colour. 

NDVI for colour tone criterion is executed using the function 
TRANSFORM>NDVI of ENVI 3.5, as shown in Figure 2.  
Digital Elevation Model (DEM) of the study area is abstracted 
from airborne LIDAR data, retrieved by a Fortran program 
developed by the authors, to match with the satellite image. 
Thus, regular DEM is generated by interpolation of inverse 
distance and used for generating ridge-lines and slope gradients. 



 

The criteria of location and direction are fulfilled by 
synergizing these results.  

3.2 Results 

The area size of the test area is in 1229x1209 pixels with pixel 
size of  2.44 m. A correlation analysis is carried out for the four 
factors, namely NDVI, slope, direction, and locations (Table 3). 
As indicated in Table 3, correlation coefficients are very low in 
general except V3 and V4 with a coefficient of 0.19. The 
highest value of correlation with the target V5 is colour tone V1 
with a value of 0.25; and then the slope V2.  Principle 
component analysis is also applied to extract 4 components, and 
thus to reduce the correlation between factors. The relation 
between factors and the targets are also reduced accordingly. 
Therefore, the components are not adopted for the input of 
neural network. Subsequently, information obtained by visual 
interpretation as shown in Figure 4. is used to extract inputs of 
neural network by extracting 5%, 10%, 15%, 20%, and 25%  of 
data. Under 4-6-1 neural network structure, various subsets of 
random samples apply on 1000 training cycles. Learning errors 

for ANN training are shown in Table 4. The MSE (Mean Square 
Error) is higher than the threshold of 0.1 required by ANN. The 
correlation coefficient is 0.64, indicating that input datasets are 
not highly correlated with the targets. So many as 1000 training 
cycles are applied  to observing  learning error curve to see 
whether it is possible to reduce the MSE to as low as 0.1. As 
shown in Figure 5, after 100 training cycles the network 
becomes stable. Classification is further conducted using the 
trained network as shown in Table 5. A successful rate of 
classification is 85% for landslide and 73% for non-landslide. 
The omission and commission error are 0.27 and 0.15, 
respectively. The accuracy could be affected by following 
factors: 
 
a. The criteria for visual interpretation are not suitable for ANN 

in terms of the correlation between the factors and the target. 
Part of the reason may be attributed to the mismatch of the 
date of various information sources such as Quickbird images 
were taken on 15 Jan 2003; the LIDAR point clouds, in May 
2002;  digital vectors, in August 2002; the landslides, in 1999. 
Evidence is given by that the NDVI of manually-interpretated 
landslide area was as high as 0.25, indicating the area is 
vegetated other than bare. 

b. Selected signatures are not good enough to represent the 
features as required. Criteria for manual interpretation such as 
the cut-off slopes and others are not implemented in this study.  

 

 Correlation between Vectors of Values   

  V1 V2 V3 V4 V5 

V1 1.000 .013 .012 .009 .230

V2 .013 1.000 -.044 .011 .087

V3 .012 -.044 1.000 .161 -.010

V4 .009 .011 .161 1.000 .002

V5 .230 .087 -.010 .002 1.000

Table 3. Correlation between four signatures and target. 

 

(a) 5% samples (b) 10% samples 

MSE 0.46 MSE 0.44 

ERROR(%) 13.8 ERROR(%) 13.0 

r 0.62 r 0.64 

(c) 15% samples (d) 20% samples 

MSE 0.39 MSE 0.41 

ERROR(%) 11.6 ERROR(%) 12.3 

r 0.68 r 0.67 

(e) 25% samples (f) all samples 

MSE 0.38 MSE 0.51 

ERROR(%) 11.2 ERROR(%) 14.8 

r 0.70 r 0.55 

Table 4. Learning errors for ANN training 

 

(a) 5% landslide Non- (b) 10% landslide Non-

landslide 84% 16% landslide 81% 19% 

Non- 28% 72% Non- 23% 77% 

(c) 15% landslide Non- (d) 20% landslide Non-

landslide 85% 15% landslide 86% 14% 

Non- 21% 79% Non- 23% 77% 

(e) 25% landslide Non- (f) all landslide Non-

landslide 86% 14% landslide 88% 12% 

Non- 22% 78% Non- 45% 55% 

Table 5. Accuracy for ANN Training 

When the pixels with NDVI larger than 0.25 are filtered out for 
the area according to manually-interpretated landslides. Result 
shows that the correlation between colour tone and the target is 
raised to 0.47. With this condition, the MSE becomes accepted 
with a value smaller than 0.1 in a new ANN training cycle. And 
the correlation between the factor and the target becomes 0.75. 
However, the accuracy of non-landslide is not improved.  

4. CONCLUSIONS 

Some of the criteria for manual interpretation such as shape 
criterion and shadow criterion have not been implemented in 
this study due to inadequacy of information. This can be the 
reason that the final successful rate of identification of landslide 
is only 85%. Further research is required to improve both the 
spatial analysis algorithm and the data sources. Nevertheless, 
some findings are concluded in this study. 
1. It is feasible to gain a synergy of information on high 

resolution images, digital terrain models, existing roads and 
drainage systems and automate the information for landslide 
identification. 

2. The correlation analysis of the four criteria for manual 
interpretation shows that only direction and location criteria 
are correlated. And, only colour tone criterion is better 
correlated with the target. 

3. Under 4-6-1 ANN network structure, the MSE is 0.43 after 
training cycles, not acceptable to the threshold of 0.1. 
Furthermore, a correlation coefficient of 0.64 indicates that 
the neurons and the targets are not highly correlated. These 
could be due to the mismatch of the date of various data 
sources.  

4. Result of the classification shows a successful rate of 85% 
for landslide and 75% for non-landslide. The omission and 
commission error is  0.27 and 0.15, respectively。 

5. As shown in this study, GIS functions such as buffering, 
spatial intersection, overlay, and terrain analysis are 
employed. A system for landslide interpretation would 
require capabilities both from a GIS and an image analysis 
system.  
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Figure 1. Quickbird image as registered on vector rivers 

and roads.  

 
Figure 2. NDVI image of the study area.  

 
Figure 3. Hillsheded relief overlaid with ridge lines.  

 
Figure 4. The landslides map obtained by visual interpretation. 

  

 
Figure 5. ANN learning curve 

 
 


