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ABSTRACT: 
 
The second suspension bridge connecting the continents Asia and Europe, namely, Fatih Sultan Mehmet Bridge, has been monitored 
by using GPS technique. For this end permanent GPS observations with 0.1 seconds epoch interval were recorded for the same days 
of consecutive weeks. In addition to GPS observations, some other data belong to influencing factors such as traffic volume and 
weather conditions for the corresponding observation time were collected. At first step the time series of the respective point 
component displacements (deformations) were composed and linked to the data such as time, traffic volume and weather conditions. 
Then a detailed comparison of the individual observation days was investigated. Further on, an artificial neural network, from the 
family of soft computing methods is adapted in order to describe the deformation processes with respect to influencing factors. Such 
studies have been of special interest after the 17 August Earthquake in North Anatolian Fault Zone (NAFZ) since new earthquakes 
are expected. Therefore, monitoring of big engineering structures like bridges will bring important information for disaster 
management and risk analysis. The results present that artificial neural networks are efficient tools for modelling complex behaviours 
of deforming objects regarding the causing factors especially in case of continuous monitoring systems. 
 

 
1. INTRODUCTION 

 
Monitoring of engineering structures has become of importance 
particularly after the possibility of destructive natural 
catastrophes has been assumed to be increased. For this end, big 
engineering structures like suspension bridges, viaducts, tunnels 
and high buildings etc. have been subjected to continuously 
monitoring surveys. The technological developments in high 
precision point positioning systems together with no-human 
data transmission techniques without any atmospheric 
obligation have led to easily adapting such monitoring systems 
for the objects in question. 
Fatih Sultan Mehmet Bridge is the second suspension bridge 
connecting the Asia and Europe. The construction has been 
completed in 1987 and since July 1988, it served as the second 
connection between Anatolian and European side for the 
Istanbul dwellers. Daily, an average of sixty thousand vehicles 
including automobiles, motorbikes, long vehicles, buses, 
minibuses and trucks pass over the bridge. This number shows 
how frequent the bridge is used. Therefore, any disaster which 
may ruin the bridge will not only bring structural loss but also 
many people will be damaged or even died. 
It has long been a problem to geodesists to find efficient 
solutions to approximate functions that define geodetic 
deformations, especially when dealing with continuously 
monitored processes. A deforming object can be considered as a 
dynamic system (Pfeufer 1994, Welsch 1996, Heunecke and 
Pelzer 1998, Miima and Niemeier 2004) whereby, forces acting 
on the object (both internal and external loads) are regarded as 
input signals that lead to geometrical changes e.g., 
displacements and distortions as output signals. In most cases, 
mathematically description of a dynamic deformation process is 
very complex and using deterministic functions is not adequate 
to depict the behaviour of the deforming object. Up to now, 
many different methods were developed, it is however generally 
agreed upon that, there exist no single method that can 
satisfactorily describe the structural deformation as its 

underlying processes are normally so complex to be expressed 
by one simple expression.        
The present study motivates the use of artificial neural networks 
for modelling the behaviours of deforming objects regarding the 
causing effects such as atmospheric conditions, traffic volume. 
Artificial neural networks are inspired from biological systems 
in which large numbers of neurons, which individually perform 
rather slowly and imperfectly, collectively perform 
extraordinarily complex computations that even the fastest 
computers may not match. This new field of computing method 
is recently widely used by different disciplines such as 
prediction and control engineering, image processing and 
identification, pattern recognition, robotic systems etc. It is very 
efficient tool for complex system identification in general. 
 
 

2.  STRUCTURAL DEFORMATION AS A DYNAMIC 
SYSTEM 

 
A dynamic system, in general, is characterized by input signals, 
including all possible influences acting on the object leading to 
the output signals. In case of structural deformation, acting 
forces are regarded as input signals whereas the resulting 
changes in the coordinate components are output signals (Fig. 
1). 
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Figure 1. Schematic representation of the bridge as a system 
 

Heunecke (1995) and Welsch (1996) have classified dynamic 
system identification models into three main types; parametric 
or white box, grey and non-parametric or black box models. 
If the physical relationship between input and output signals, 
i.e. the transmission or transfer process of the signals through 
the object – in other words – the transformation of the input to 
output signals, is known and can be described by differential 
equations, then the model is called a parametric or white box 
model (Welsch and Heunecke 1999). Models using chosen a 
priori model structure or partially motivated physical analysis 
are the so-called grey box models whereas non-parametric or 
black box models experimentally identify the dynamic process. 
Artificial neural networks are from the family of black box 
models which can map input domain into any given output 
domain. Despite mapping of complex relationships between 
input and output signals is successfully provided, one can not 
make any inference just by looking at the transmission or 
transfer phase of the neural network. The following sections 
describe the neural networks and their use in deformation 
modelling. 
 
 

3. ARTIFICIAL NEURAL NETWORKS 
 
Artificial neural networks are the simulation of human brain 
regarding the functional relationship between the neurons. A 
neuron is the basic processing unit in the human brain which 
have synaptic connections with other neurons in order to 
produce a decision or inference as the output signals. Biological 
systems are able to perform extraordinarily complex 
computations in the real word without recourse to explicit 
quantitative operations. This property of the biological nervous 
system has encouraged scientists to adapt the same structure as 
a mathematical tool for identification of complex systems. 
Indeed this idea was not quite new; the major improvement of 
artificial neural networks has begun in the last decades with the 
development in computer technology. The learning capability of 
organic neurons were then easily imitated by using computers, 
since the computations of the network parameters in an iterative 
procedure including derivatives and gradients of the 
performance functions was extremely difficult to handle. Figure 
2 depicts the structure of a single neuron in an artificial neural 
network. The function of an artificial neuron is similar to that of 
a real neuron: it integrates input from other neurons and 
communicates the integrated signal to a decision making centre.   

   
Figure 2. Single artificial neuron 

 
The functional operation of a neuron is summarized as 
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where yi is the activity output of neuron i, ai is the weighted 
sum of the neuron i from the input of the neurons in the 
previous layer, bi is the bias term of the neuron i, xj is the input 
from the neuron j, wij is the weight between two neurons i and j, 
and the constant �  is threshold value which shifts the activation 
function f(a) along the x axis. An activation function is a non-
linear function that, when applied to the input of the neuron, 
computes the output of that neuron. There exist various types of 
activation functions in neural computing applications such as 
hyperbolic tangent, Heaviside, Gaussian, multi-quadratic, 
piecewise linear functions, etc (Haykin, 1994). The one given in 
Eq. (1) is the most commonly used so-called sigmoid function. 

 
3.1. Multilayer Networks 
 
Multilayer networks are the most commonly known feed-
forward networks. Neural networks typically consist of many 
simple neurons located on different layers and operate in 
cooperation with the neurons on the other layers in order to 
achieve a good mapping of input to output signals. The 
expression “feed-forward” emphasize that the flow of the 
computation is from input towards the output. There are three 
different types of layers in the concept of neural networks: the 
input layer (the one to which external stimuli are applied to), 
the output layer (the layer that outputs result), and hidden layers 
(intermediate computational layers between input and output). 
Theoretically, there is no limitation given for the number of 
hidden layers in a network configuration. That is, however have 
a great effect in the computation time as well as the number of 
neurons in hidden layers. Therefore, a compromise has to be 
found in order to achieve an optimal network configuration with 
an acceptable convergence time and quantitative precision.    
Figure 3 gives a sample configuration of a multilayer feed-
forward (MLFF) network with one input, one output and one 
hidden layer. Note that the network consists of five inputs and 
one output.  
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Figure 3. A schematic representation of a multilayer feed-
forward (MLFF) neural network 

 
3.2. Optimization of the network parameters 
 
When a network configuration is fixed, the parameters of the 
network, i.e., the weights which link the neurons in consecutive 
layers has to be calculated so that a chosen function of the 
difference between the actual (desired) output and the output 
performed by the network is minimum. This function is usually 
called cost function or performance index. Most commonly 
used cost function is the sum of the squares of the residuals: 
 
 

 ( )� −= 2' )()( kykyE ii          

(3) 
 
 

where Eand)(),( ' kyky
ii are the actual output, network output 

and the corresponding cost function, respectively.  
There is wide spectrum of different mathematical optimization 
tools like steepest gradient descent, Levenberg-Marquardt 
method, Gauss-Newton method etc. based on the iterative least-
squares estimation of the network parameters. In order to 
respect the page limit, they are not discussed in detail. The 
reader is referred to standard text books like Haykin (1994) and 
Bishop (1995). The procedure for the optimization of the 
network parameters is usually called learning or training in 
neural computing literature. 
 
 

4. APPROXIMATION OF STRUCTURAL BEHAVIOR 
BY NEURAL NETWORKS 

 
In order to characterize the behaviour of the second bridge, 
Fatih Sultan Mehmet suspension bridge, under certain external 
forces, a satellite based continuous monitoring system was 
designed, and a multilayer feed-forward neural network using 
Levenberg-Marquardt learning algorithm was applied. 
The steps of the entire study can be summarized as follows: 
 

• Data collection and preprocessing 
• Generation of the training patterns 
• Identification of the network architecture 
• Optimization of the network parameters and 

validation of the network by using test data set 
 
4.1. Data Collection and Preprocessing 
 
In order to provide a continuous mapping of the bridges motion 
under the certain forces, a kinematic GPS survey with data 
sampling rate of 0.1 seconds was adopted. For this goal, two 
GPS receivers were set up: one on the top of the pole, and one 
on the platform that is located about the middle of the body of 
the bridge. Additionally, another receiver was set up as a 
reference station on the roof of ITU, Faculty of Civil 
Engineering. The GPS observations were processed using the 
software Leica SKI 2.1 and coordinate components for each 
observation epoch was derived. Hence, the time sequences of 
positions for each station located on the bridge were generated.  
More over, hourly based corresponding atmospheric data as 
well as traffic volume statistics given in the left hand side of 
Fig. 1 were collected from the relevant institutions.  

 
4.2. Generation of the training patterns 
 
After processing of the GPS observations, they had to be 
coupled by the relevant causing effects, i.e., pressure, 
temperature, humidity, wind speed and traffic volume data 
which will then compose the input space of the network 
architecture. Wind speed is considered as a directed influence, 
and is divided into two components such that wind speed in the 
south-north and the east-west directions. Although the data 
sampling rate is 0.1 seconds, in order to reduce the size of data, 
solutions for every five seconds were considered. Since the 
atmospheric and traffic volume data is sampled in hourly basis, 
following assumptions have been adopted for coupling with the 
output data. The atmospheric values were assumed to be 
linearly varying values whereas the traffic volume was assumed 
to be equally distributed, between consecutive recording hours. 
Then the training and test data sets were generated in the 
following manner given in Fig. 4. 
 
 
 
 
 
 
 
 

Figure 4. Generation of the training and validation data 
sequences. 

 
The above given procedure was applied to all sequences both in 
input and output space of the network and matched to each 
other to be used in training and the validation of network 
parameters. 
4.3. Identification of the Network Architecture 
 
While the number of neurons in input and output layers is due 
to the number of acting forces and the resulting position 
component changes, the number of hidden layers and the 
number of neurons in these layers are the main concept of the 
determination of the network architecture. This is usually done 
by trials, however, some aspects have to be taken into account 
in order to achieve a successful and an efficient network. First 
of all, the number of layers and the neurons increase the training 
time. Second, a network that is too complex may fit the noise, 
not just the signal, leading to overfitting. Overfitting is 
especially dangerous because it can easily lead to predictions 
that are far beyond the range of training data, which yields poor 
generalization. The idea of partitioning the data set as training 
and test sets is for preventing network to fit the noise in the 
output sequences. Therefore, a compromise has to be found 
regarding the above mentioned criteria.  
In this study, only the vertical motion of the bridge platform 
was investigated. As a sample study set, two different hourly 
data for each observation day was selected. Optimal network 
configuration has been found to be with multi layer feed-
forward networks with two hidden layers. The number of 
neurons in each network varies from 10 to 20. 
 
4.4. Optimization of the network parameters and validation 
of the network by using test data set 
 
Although, this section is separately given, the training 
procedure has to be considered in combination with the content 
given in previous section, i.e. the network architecture. The 
number of neurons in hidden layers as well as the external 
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parameters of the network such as the learning rate has been 
determined by trials (Heine, 1999, Miima et al., 2001).  
The optimization of the networks has been done by using 
Levenberg-Marquardt optimization method. The threshold 
values for the cost function was selected due to the mean 
standard errors obtained from the position accuracies 
determined by the adjustment of GPS measurements. The 
training was cut where the mean standard approximation errors 
reach minimum for both training and test data sets in order to 
avoid overtraining. 
After successful training, the resulting weights for each signal 
were obtained as an intrinsic representation of the mapping 
function between inputs and output for the vertical motions of 
the bridge platform for respective time interval of each 
observation day. To validate the modelling process, a residual 
analysis of the modelling errors was performed. For this end, 
the error mean µ and the coefficient of determination r2 for 
each model prediction were calculated for the residual signals as 
follows, respectively (Chatfield, 1975). Further on, the 
frequency content in residual signals is investigated by Fast 
Fourier Transform (FFT) in order to prove the randomness of 
the residuals. 
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where )(ky i and m denotes the mean of the actual output 

vector and its size, respectively. For a perfect approximation, 
the mean error and the coefficient of determination should be 0 
and 1. 
 
 

5. SAMPLE RESULTS 
 

Modelling results for the vertical motion of the platform in July 
2 2001 between 7:20 – 8:20 and 10:15 – 11:15 are given in Fig. 
5 and Fig. 6, respectively. 
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Figure 5. Actual (black) and predicted (grey) height changes 

(top) and corresponding prediction errors in July 2 2001, 
between 7:20-8:20 
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Figure 6. Actual (black) and predicted (grey) height changes 

(top) and corresponding prediction errors in July 2 2001, 
between 10:15-11:15 

 
Some information about the prediction quality for the time 
spans given in Fig. 5 and Fig. 6 are summarized in Table 1. 
 
 

July 2, 2001 
 7:20 – 8:20 10:15 – 11:15 
µµµµ (m)  0.000  0.000 
r2  0.853115  0.840395 
Mean abs. error (m)  0.013  0.018 
Standard deviation (m)  0.020  0.027 
Max. error (m)  0.086  0.118 
Min. error (m) -0.066 -0.102 

 
Table 1. Quality measures of the prediction results for July 2, 

2001. 
 

Fig. 7 and Fig. 8 show the prediction results for the date July 9, 
2001 between 7:20 – 8:20 and 10:15 – 11:15, respectively. 
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Figure 7. Actual (black) and predicted (grey) height changes 

(top) and corresponding prediction errors in July 9 2001, 
between 7:20-8:20 
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Figure 8. Actual (black) and predicted (grey) height changes 

(top) and corresponding prediction errors in July 9 2001, 
between 10:15-11:15 

 
Note that the epoch numbers given in both days at 10:15 – 
11:15 interval are less than those at 7:20 – 8:20 intervals. These 
data gaps are due to the inconvenient satellite constellation 
resulting with unsuccessful integer ambiguity solution for the 
relevant epochs of kinematic GPS observations. 
 
The quality measures of the predictions for the relevant time 
spans in July 9, 2001 are given in Table 2. 
 
  

July 9, 2001 
 7:20 – 8:20 10:15 – 11:15 
µµµµ (m)  0.000  0.000 
r2  0.844668  0.845583 
Mean abs. error (m)  0.012  0.018 
Standard deviation (m)  0.020  0.025 
Max. error (m)  0.079  0.082 
Min. error (m) -0.105 -0.080 

 
Table 1. Quality measures of the prediction results for July 2, 

2001. 
 
 
The resulting standard deviations are obtained as the same 
values with the mean square errors of the point heights derived 
from the adjustment of GPS observations. Recalling the figures 
5, 6, 7 and 8, there are some parts of time sequences very 
precisely estimated whereas a very small part are slightly less 
precisely predicted. This is due to the sampling rate of the input 
values which were assumed to be either linearly varying or 
constant values during each hourly period. However, in general 
very good approximations were achieved. 
In addition to the criterion given in Table 1 and Table 2, the 
remaining residual sequences are investigated by using fast 
fourier transform in order to examine the frequency content of 
the residuals. Fig. 9 shows the frequency content of the 
remaining residual series of the approximations. 
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Figure 9. The frequency content of each neural approximation 
residuals. Note the chaotic form of the residual frequencies for 

all four models. 
 

The frequency content in the remaining residual reflects a wide 
spectrum of frequencies exist which approve that the resulting 
prediction errors are highly normally distributed random errors 
with zero mean and variances equal to the mean variances of  
adjusted heights from GPS observations (See Table 1, Table 2). 
 

6. CONCLUSIONS  
 

The use of artificial neural networks for modelling deformation 
process of engineering structures as well as natural hazards such 
as landslides offers geodesists a good alternative for the 
description of resulting deformations as a function of causing 
effects which are generally more or less non-geodetic 
observations.  In case of neural modelling, the determined 
parameters, i.e. the weights between consecutive neurons 
implicitly describe the mapping between the inputs and outputs, 
but cannot be used in any other way as representing a typical 
mathematical function for deformation process.  
One has to note that the results from the neural network are 
particularly depend on the selection of inputs and outputs, and 
the architecture of the network to be used as they are capable of 
learning anything. One disadvantage of neural network 
applications is that there is no single similar solution to any 
given input-output data set as the estimated parameters of the 
network depends on various settings, which are especially 
considered during learning process. In most cases, these settings 
are selected by personal human judgement. Therefore, the 
solution of neural network is referred as sub-optimal solution. 
This means that the obtained solution is just the one among 
other solutions which provide the similar precision of 
approximation and/or prediction. 
In this study, Matlab Version 6.5 Neural Toolbox is used for 
computations. During the network architecture and learning 
process, the number of layers and the neurons in each layer as 
well as the number of training run has been cared to be kept as 
minimum as possible in order to avoid overfitting and 
overtraining.  
The results given in Table 1 and Table 2 show that a very good 
approximation can be succeeded even if the input data sampling 
rate is very low, i.e. every one hour, a measurement of input 
data has been used to generate the input matrix of training and 
testing data sets. The more frequently the input data is measured 
the better approximation can be obtained by using neural 
network methods. On the other hand, the more accurate output 
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data, in other words the less noise in output data would increase 
the approximation quality as well. 
Neural networks can be considered as efficient tools for the 
description of deformations, especially in continuous 
monitoring of engineering structures where there is no a priori 
knowledge on the underlying deformation processes or where 
the relations between the acting forces and the behaviour of the 
monitored object is very complex to be described by 
conventional mathematical tools. 
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