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ABSTRACT: 
 
A set of ERS SAR and optical MODIS-images were classified to land cover and tree species classes. Different methods for pixel and 
decision based data fusion were tested. Classifications of featuresets were carried out using Bayes rule for minimum error. The 
results were not very successful, the classification accuracies of land cover classes varied from 43% to 75%, depending on the used 
features and classes. The decision based data fusion method, where the a’posteriori probabilities representing the proportions of 
different land cover classes of low resolution classification are used as a’prior probabilities in high resolution classification looks 
promising. Using this method, the increase of overall and classwise accuracies can be more than 10 and 25 %-units, respectively. 
 
 

1. INTRODUCTION 
 
Forest assessment deals with the methods of obtaining 
information on forest resources: estimation of growing stock, 
growth and health of the forest. That information is a basis for 
decisions of the forest industry, the official forest policy and the 
forest owners. For countries such as Finland, where 30% of 
exports is based on forestry products and the percentage of the 
forest area (76%) is the highest in the world, development of 
inventory methods are a necessity. 
 
The national forest inventory of Finland was the first national 
inventory in the world to use satellite images (Tomppo 1991). It 
is based on the use of optical data like Landsat images. 
Unfortunately weather conditions limit the use of optical data. 
For example, here in Finland summertime is usually quite 
cloudy. There are usually only several days in summer when 
large area of Finland is cloud-free, and during wintertime it is 
dark also daytime and snow everywhere. These facts have lead 
to investigate the use of SAR-images in forest inventory. 
 
The previous single frequency / polarization spaceborne SAR-
instruments have not been that successful from land cover or 
forest classification point of view (Herold et.al., 2004, 
Kurvonen et.al., 2002, Törmä, 1999). This is due to the low 
information content of individual images and noise which is 
difficult to remove. Utilization of texture (Kurvonen et.al., 
2002, Törmä, 1999), coherence (Gaveau et.al., 2003, Törmä, 
1999) or polarization information (Randon et.al., 2001) improve 
results. The instruments in the new Envisat satellite seem 
promising due to the multipolarization SAR and low resolution 
optical instrument MERIS. So, the natural alternative to 
enhance the information obtained using Envisat SAR is to fuse 
it with MERIS. Unfortunately, our project has not yet received 
any Envisat-images, so we have made our early experiments 
using ERS SAR and MODIS-images. 
 
The aims of this study are  

• to evaluate the value of ERS SAR-intensity images in 
land cover and tree species classification,  

• to select the best texture features for classificatiion 
and their benefits, 

• study different factors like the use of temporal data, 
the effect of the soil of forest stand, the effect of the 
age of forest stand,  

• compare pixelwise and standwise classification, and  
• study the possibilities to enhance the classification 

with low resolution MODIS data. 
 
 

2. TEST AREA AND DATA 
 
Test area used in this study is situated at Hyytiälä in middle 
Finland (Lat. 61d50’N, Long: 24d22’E). Hyytiälä has a forestry 
research station which belong to the Faculty of Forestry and 
Agronomics at Helsinki University. The area is covered by 
standwise forest inventory.  
 
2.1 Satellite images 
 
The SAR dataset consists of 8 ERS-2 SAR intensity images 
taken during 1999. The image resolution is 25 meters, and the 
raw images have a pixel spacing of 12.5 meters. The 
characteristics of of ERS-images are illustrated in table 1 
(Kramer, 1996). The DEM produced by National Land Survey 
used in the image processing has a pixel size of 25 meters. The 
image processing was conducted using Gamma Ltd. Software. It 
performs topographic correction with a very high positional 
accuracy (Wegmüller et al. 1998). The images were averaged 
from 12.5 meter to 25 meter pixel spacing after the image 
processing. 
 
The optical dataset consists of 176 MODIS-spectrometer 
images (table 1) taken during 2000. MODIS-spectrometer has 
36 channels (Masuoka et.al., 1998) with three different spatial 
resolution levels. Channels 1 (red: 0.62 – 0.67 µm) and 2 (nir: 
0.841 – 0.876 µm) were used due to their relatively high spatial 
resolution (250 meters) compared to other channels.  
 

Data ERS (microwave) MODIS (optical) 
Wavelenght 5.7 cm (C-band, 

5.3 GHz) 
1: 0.62 – 0.67 µm 

2: 0.841 – 0.876 µm 
Number of 
images and 
acquisition 

times 

8: 31.3., 16.4., 5.5., 
9.6., 14.7., 8.10., 

27.10. and 
12.11.1999 

176: 1.4. – 30.9.2000 

Spatial res. (m) 25 – 30 250 
 

Table 1: Overview of the acquired satellite images. 



2.2 Ground truth 
 
The area of Hyytiälä research station is covered by standwise 
forest inventory made during 1995 - 2001. Data collection is 
based on visual interpretation of aerial photographs and field 
measurements. Inventory contains almost 4000 stands, but these 
are not all applicable in this study. Stands are rather small; the 
average, median and maximum sizes are 2.1, 1.2 and 428.6 
hectares, respectively. 
 
2.3 Classification systems 
 
In order to study the information properties of the satellite 
images, different kind of classification systems were created 
using standwise forest inventory. Training and test sets for 
classification were selected using random sampling. The desired 
number of samples per class was 1000 but it is smaller for some 
small classes. The border pixels between stands were removed 
before sampling. 
 
Training data for MODIS-classification was acquired by 
estimating the proportions of land cover classes for each 
MODIS-pixel. This approach was chosen because the size of 
MODIS-pixel is 6.25 ha and the average size of stands is 2.1 ha. 
 
2.3.1 Land cover / use classification: This classification was 
used to determine the suitability of the used satellite images to 
discriminate general land cover types. There were 2223 stands 
in this classification and their average, median, minimum and 
maximum sizes were 2.6, 1.6, 0.07 and 428.6, respectively. The 
classes in this classification are, including statistics as number 
of stands, average size (ha), number of pixels, number of pixels 
in training set and number of pixels in test set:  
1. Water: 23, 7.1, 2133, 556, 518 
2. Pine dominated forest: 1382, 2.5, 45367, 1347, 1361 
3. Spruce dominated forest: 558, 2.1, 15314, 1065, 1114 
4. Deciduous tree dominated forest: 88, 1.8, 2304, 573, 531 
5. Agricultural land: 1, 77.9, 1197, 317, 276 
6. Open bog: 36, 14.3, 2031, 520, 498 
7. Open land: 135, 2.5, 4723, 1024, 1022 
 
2.3.2 Tree species vs. development class: This classification 
was used to determine the suitability of the used satellite images 
to discriminate tree species according to the amount of trees. In 
other words, is it better to use these images to separate tree 
species or the amount of trees. There were 1652 stands and their 
average, median, minimum and maximum sizes were 2.6, 1.8, 
0.14 and 63.0, respectively. The classes in this classification 
are: 
1. Pine, sapling: 275, 2.6, 9015, 1021, 996 
2. Pine, young stand: 443, 2.7, 15515, 1075, 1130 
3. Pine, middle aged stand: 290, 3.4, 11856, 1079, 1073 
4. Pine, regeneration maturity: 112, 2.1, 3073, 973, 865 
5. Spruce, sapling: 97, 2.5, 3037, 959, 854 
6. Spruce, young stand: 63, 1.9, 1748, 566, 492 
7. Spruce, middle aged stand: 162, 2.3, 4823, 1050, 1049 
8. Spruce, regereration maturity: 133, 2.3, 4201, 955, 952 
9. Deciduous, sapling: 27, 2.2, 898, 245, 203 
10. Deciduous, young stand: 35, 1.9, 965, 261, 215 
11. Deciduous, middle aged stand: 15, 1.6, 288, 113, 120 
 
2.3.3 Tree species vs. soil type: This classification was used to 
determine the suitability of the used satellite images to 
discriminate tree species according to soil type. In other words, 
does the soil type have some effect to the tree species 
classification. There were 1718 stands and their average, 

median, minimum and maximum sizes were 2.6, 1.7, 0.07 and 
63.0, respectively. The classes in this classification are: 
1. Pine on mineral soil: 970, 2.8, 33693, 986, 1023 
2. Pine on hardwood swamp : 27, 1.4, 813, 226, 182 
3. Pine swamp: 199, 2.6, 6971, 1011, 1044 
4. Spruce on mineral soil: 337, 2.3, 10012, 1026, 1017 
5. Spruce on hardwood swamp: 112, 2.2, 3801, 1100, 1037 
6. Deciduous on mineral soil: 47, 2.1, 1317, 344, 310 
7. Deciduous tree on hardwood swamp: 26, 1.6, 728, 251, 

197 
 
 
3. INTERPETATION METHODS 
 
In order to extract relevant information and produce as good 
classification as possible, there is need to fuse these two 
different kinds of satellite data sets. Data fusion can be 
performed on different levels (Pohl and van Genderen, 1998):  
• Pixel based fusion: This means that the measurements or 

measured physical parameters have been fused. In other 
words, the feature vector is combined directly from 
different datasources. 

• Feature based fusion: This means that features have been 
extracted from different data sources using e.g. image 
segmentation. In this case the features can be e.g. size, 
shape and average intensity level of areas. These features 
form feature vectors describing the extracted objects. 

• Decision based fusion: This means that the objects have 
been identified from individual data sources and then these 
interpretation results are combined using e.g. rules to 
reinforce common interpretation. 

 
Data fusion in this study is mostly based on pixel based fusion, 
but also one kind of decision based fusion is tested. Pixel based 
fusion is performed by constructing different featuresets.  
 
There is a large amount of data, so different methods for feature 
extraction and selection are needed. Feature selection means 
that the best set of images is chosen from all images using some 
criteria like the separability of classes. Feature extraction means 
that new images are computed from the original ones containing 
as much relevant information as possible. The classification of 
featuresets using different classification systems was carried out 
using Bayes rule. Different classification methods were tested 
with MODIS NDVI-mosaics and in the end these were 
classified using Maximum Likelihood classifier. 
 
3.1 Feature selection 
 
3.1.1 Bhattacharyya-decision theoretic distance: Class 
separability was measured using the Bhattacharyya distance. It 
is a probabilistic distance between two classes. Classes are 
supposed to be normally distributed, so classes are defined by 
their mean vectors and covariance matrices (Devivjer et.al, 
1982). Then Bhattacharyya distance was transformed so that the 
range of distance would be between 0 and 2, the latter meaning 
perfect separability.  
 
3.1.2 Branch-and-bound algorithm: Branch-and-Bound 
feature selection algorithm was used to select the best subset of 
images from all images according to the separability of classes. 
The selection criteria was the average interclass divergence. The 
divergence is a measure of separability between two classes, 
computed using class means and covariances. It is assumed that 
the classes are normally distributed (Devivjer et.al., 1982). 
 
 



3.2 Feature extraction 
 
3.2.1 Weekly NDVI-mosaics from MODIS: In order to 
decrease the amount of MODIS-data it was decided to compute 
weekly NDVI-mosaics. Normalized Difference Vegetation 
Indices were computed using red and near-infrared channels as 
(NIR–RED)/(NIR+RED). Then these NDVI-images were 
grouped according to their acquisition week. Finally, the weekly 
mosaic was constructed by selecting the maximum NDVI-value 
of individual images as mosaic value in order to get rid of 
clouds. 
 
3.2.2 Texture features from ERS-images: Texture can be 
defined as a variation of the pixel intensities in image 
subregion. The assumption is that the intensity variation of 
different land-use classes are different and by characterizing 
texture by using some measure we can help class 
discrimination. Texture features describing the spatial variation 
of image grey levels were computed from original intensity 
images (12.5 m pixel size) using Haralick's co-occurence matrix 
(Haralick et.al., 1973). A co-occurrence matrix is a two-
dimensional histogram of grey levels for a pair of image pixels 
which are separated by a fixed spatial relationship. Following 
texture measures were computed from co-occurrence matrix: 
Angular Second Moment, Contrast, Correlation, Dissimilarity, 
Entropy, Homogeneity, Mean and Standard Deviation. 
 
3.2.3 Principal component analysis: Principal component 
transformation is a linear transformation which rotates the 
coordinate axis of the feature space according to the covariance 
of data (Richards, 1993). The result of the transformation is a 
new set of images, where in principle, the first images 
correspond to the information needed in classification and the 
latter images correspond to the random components like 
speckle. It should be noted that the image variance is used as a 
measure of image information and it can depend on the scaling 
of images. 
 
3.3 Computed featuresets 
 
Pixel based data fusion was performed by constructing different 
featuresets for classification. The selected dimension of feature 
space was six. These featuresets were: 
1. The six best median filtered ERS-intensity images chosen 

from all ERS-intensity images using Branch-and-Bound 
algorithm. The size of filtering window was 3x3 pixels. 
The chosen images were taken 31.3., 16.4., 5.5., 9.6., 14.7., 
8.10.1999. 

2. The principal component analysis was performed to all 
median filtered ERS-intensity images. The six first 
principal component images were chosen.  

3. The three first PCA-images were computed from median 
filtered intensity images.  Texture images were computed 
using features Mean and Angular Second Moment for all 
unfiltered intensity images (12.5 m pixel size), averaging 
them to 25 m pixel size, normalizing features to zero mean 
and unit variance and performing the principal component 
analysis. Three first principal component images were 
chosen. 

4. The three first PCA-images were computed from median 
filtered intensity images. The two first PCA-images were 
computed from texture features as previously. MODIS 
NDVI-mosaic (week 31) was selected as the sixth feature. 

5. The two first PCA-images were computed from median 
filtered intensity images. The two first PCA-images were 
computed from texture features. The principal component 

analysis was also performed for all MODIS NDVI-mosaics 
and the two first principal component images were chosen.  

6. The two first PCA-images were computed from median 
filtered intensity images. The two first PCA-images were 
computed from texture features. Two features were 
computed from the a’posteriori probabilities of Maximum 
Likelihood classification of MODIS NDVI-images. The 
first MODIS NDVI-feature was the a’posteriori probability 
of forest classes. The second feature was the sum of 
a’posteriori probabilities of classes agricultural land and 
open land. 

 
3.4 Classification algorithms 
 
3.4.1 Bayes rule: Classifications of featuresets were performed 
using Bayes rule for minimum error with k-nearest neighbor 
density function estimation method (Devivjer et.al., 1982). 
Number of nearest neighbors, k, varied from 1 to 15. A'priori 
probabilities for classes were equal or a’posteriori probabilities 
of MODIS NDVI-classification were used as a’priori 
probabilities. This is one way to perform decision based fusion; 
use the result of low-level interpretation as input to a higher 
level interpretation (Schneider et.al., 2003). Classification errors 
were estimated using resubstitution and holdout methods, 
meaning that the ground truth data was divided to training and 
test sets. In resubstitution method the same set is used as 
training and test set (optimistically biased method) and in 
holdout method data is divided to training and test sets 
(pessimistically biased) (Devivjer et.al., 1982). 
 
3.4.2 Classification of MODIS-images: The aim of the 
classification of MODIS NDVI-mosaics was to produce the 
proportions of different land cover classes for each MODIS 
pixel. The classifications were made using Spectral Angle 
Mapper (Kruse et.al., 1993), Spectral Unmixing (Kruse et.al., 
1997), fuzzy Maximum Likelihood (Wang, 1990) and 
traditional Maximum Likelihood (Lillesand and Kiefer, 1994) 
classifiers.  
 
3.5 Error measures 
 
The success of classification was measured using error matrix in 
the case of featuresets and computing bias, RMSE and 
correlation in the case of MODIS NDVI-classification. 
 
3.5.1 Error matrix and measures: One of the most common 
means to examine the classification result is to form 
classification error matrix which compares the relationship 
between reference data and classification result on class-by-
class basis. The columns of error matrix correspond to the 
reference data, showing into which classes the reference pixels 
have been classified. The rows of error matrix correspond to 
classes in the classification result. Several accuracy measures 
like Overall accuracy, Producer’s accuracies of individual 
classes, User’s accuracies of individual classes and Kappa 
coefficient were computed from error matrix (Lillesand and 
Kiefer, 1994). 
 
3.5.2 Error measures for MODIS-classification: The result of 
the classification MODIS NDVI-mosaic was the proportions of 
the land cover classes within MODIS-pixels. In this case the 
accuracy of classification was evaluated by computing bias, 
root-mean-square-error and correlation between training data 
and estimated proportions. 
 
 
 



4. RESULTS 
 
4.1 Feature selection for ERS SAR-images 
 
4.1.1 Individual ERS-images: Figure 1 represents the average 
separabilities of land cover classes as function of average 
transformed Bhattacharyya-distance. The best separabilities 
have been acquired using images taken 5.5.1999, 16.4.1999 and 
8.10.1999, but even in these cases the average separability is 
rather low. The corresponding weather conditions have been 
full snow cover with raining wet snow, 50% snow cover with 
raining wet snow quite heavily, and it has been raining 
(Pulliainen, 2004). So, it seems that the best conditions in order 
to separate these land cover classes are wet snow or ground. The 
worst separabilities have been acquired using images 14.7.1999 
(no rain) and 27.10.1999 (some rain). Class water is the most 
separable class, the worst are agricultural field and open land. 
Median filtering of the intensity images increases the 
separability. The separabilities are higher with 25m pixel size 
than 12.5m pixel size. 
 

 
Figure 1. The average separabilities of land cover classes as 

function of average transformed Bhattacharyya-distance, dashed 
line means that separabilities have been computed from original 

ERS-intensity images, solid median filtered intensity images, 
solid line with "x" texture feature Mean and solid line with "o" 

texture feature Angular second moment. 
 
In the case of tree species vs. development class, the 
separabilities between classes are very low. The best image is 
taken 14.7.1999 in dry and warm conditions. In the case of tree 
species vs. soil type, the separabilities between classes are very 
low. The best image is taken 31.3.1999, in full wet snow cover 
and rainy (water) conditions. 
 
4.1.2 Texture features: The separabilities of texture images 
varied a lot depending on the used texture feature. The best ones 
were Angular Second Moment and Mean, their average 
separabilities as function of image are represented in figure 1. 
The behaviour of the average separability is very similar than in 
the case of intensity images. In the case of texture feature 
Angular Second Moment, the most separable land cover class is 
water, the worst are pine forest and open land. In the case of 
texture feature Mean, the most separable land cover class is 
water, the worst pine, deciduous forest and open land.  
 
As the classification system is tree species vs. development 
class, the separabilities are rather low. The most separable 
classes are middle aged pine in image taken 8.10.1999 and 
spruce sapling in image taken 31.3.1999. As the classification 

system is tree species vs. soil type, the separabilities are low. 
The most separable classes are pine and spruce on mineral soil.  
 
4.1.3 Best SAR-images: The best subsets of ERS-images were 
selected using Branch-and-Bound algorithm with average 
interclass divergence as selection criteria. The four most 
important images were taken 5.5., 16.4., 8.10. and 9.6.1999, in 
the case of intensity images and land cover classes. Two of 
these images have been taken in wet snow conditions, one in 
rainy and on in rather dry conditions. 
 
The most important texture features varied a lot depending on 
the classification system. The three most important features for 
land cover classification were Mean, Entropy and Standard 
deviation, and the worst was Homogeneity. The three most 
important features for tree species vs. development class 
classification were Homogeneity, Contrast and Dissimilarity, 
and the worst was Angular Second Moment. The three most 
important features for tree species vs. soil type classification 
were Angular Second Moment, Mean and Correlation, and the 
the worst was Dissimilarity. 
 
4.2 Classification of MODIS-images 
 
Fuzzy means were calculated using weekly NDVI maximum 
images and training data for every class. The idea was that the 
fuzzy means could be used as training data in a supervised 
classification. Figure 2 represents these means for land cover 
classes. The beginning of the growing season can be seen 
during weeks 16-18 from the beginning of the year. Lower 
values during the weeks 23 and 27 are probably due to bad 
weather. 
 

 
 

Figure 2. The fuzzy means of different land cover classes 
computed from MODIS NDVI-mosaics. 

 
The aim of the classification of MODIS NDVI-mosaics was to 
produce the proportions of different land cover classes for each 
MODIS pixel. First, the fuzzy means were used as training data 
for Spectral Angle Mapper and Spectral Unmixing 
classifications. Unfortunately the results were quite poor. Fuzzy 
supervised classification was also carried out. After calculating 
the fuzzy means and fuzzy covariance matrix, the membership 
values for each class were computed. Results of this method 
were slightly better than previous ones. 
 
Due to poor results of previous algorithms, the Bayesian 
Maximum Likelihood classification was carried out. Training 
data pixels whose proportion of the main class was more than 
50 % formed the training set of that class. These pixels were 
decided to represent absolute and single classes. The 



a’posteriori probabilities produced by BML were used to 
represent the proportions of different land cover classes within 
each MODIS-pixel. 
 
The a’posteriori probabilities were compared to training 
proportions of different classes and measures like bias, RMSE 
and correlation computed. The best classes were Agricultural 
land (bias –15.7, RMSE 40.2, correlation 0.61), Open bog (-2.8, 
17.4, 0.55) and Water (-3.3, 27.1, 0.43). The worst classes were 
forest classes, then the correlations were very low (0.20-0.04). 
 
4.3 Classification of featuresets 
 
The classification errors of land cover classes are represented in 
figure 3. For each featureset, classifications were performed 
with varying k for both training and test sets. The a'priori 
probabilities of classes were equal. The final overall accuracy 
was estimated as the mean overall accuracy of the training and 
test sets with highest test set overall accuracy. Overall 
accuracies of different featuresets are rather low, the feature 
extraction using principal component analysis and texture 
increase the accuracy only a little. The use of MODIS-features 
increases the overall accuracy more, from 43% to about 50%.  
 

 
Figure 3. Solid line represents the overall accuracy of land 

cover classes, dashed line the mean of producer's accuracies and 
dash-dot line the mean of user's accuracies of classes. Lines 
with ”x” perpresent the cases when the a’prior probabilities 
have been estimated from MODIS images. Lines with ”o” 
represent the cases when classes have been merged to four. 

 
The best class is water, its classwise accuracies are about 90% 
and the variation between featuresets is quite low. The classwise 
accuracies of forest classes are low, varying from 20% to 45%. 
Forest classes are mainly mixed with each other but also to 
agricultural land with featuresets 1-3. The class agricultural land 
is classified reasonably well with featuresets 4-6, then the 
classwise accuracies are more than 80%. Agricultural land 
benefits from the use of MODIS-features. Classwise accuracies 
are lower with featuresets 1-3, producer's accuracies are less 
than 30% and user's accuracies about 80%. This means that if 
image pixel is classified as agricultural land, then it quite likely 
that it is agricultural land in the field. Agricultural land is 
mainly mixed with open land and pine dominated forest. The 
accuracies of class open bog are moderate with featuresets 1 and 
2, between 60-70%. The use of texture and MODIS-
classification decrease the classwise accuracies. Open bog is 
mainly mixed with pine and spruce dominated forest. The class 
open land is classified rather badly, classwise accuracies are 
aroung 40%. It is mainly mixed with forest classes and 

agricultural land. The mixing of different classes happen a quite 
similar way with different featuresets.  
 
The overall accuracies of tree species vs. development class 
classification varied from 20% (featuresets 1 and 2) to 30% 
(featureset 5). When the classes are merged to three tree species 
classes, then the overall accuracies vary from 38% to 45%. 
When the classes are merged to four development classes, the 
overall accuracies vary from 49% to 57%. This means that the 
features are a bit more sensitive to the size of the trees than 
species. 
 
The overall accuracies of tree species vs. soil type classification 
varied from 30% (featuresets 1 and 2) to 38% (featureset 5). 
When the classes are merged to three tree species classes, the 
overall accuracies vary from 51% to 57%. When the classes are 
merged to three soil type classes, the overall accuracies vary 
from 47% to 53%. This means that the features are a bit more 
sensitive to the tree species than soil type. 
 
4.3.1 A’priori probabilities from MODIS: The use of the 
a'posteriori probabilities of MODIS NDVI-classification as 
a'priori probabilities of Bayes classification increases the overall 
accuracies of featuresets 1-3 from about 43% to more than 50% 
(figure 3). The increase is smaller for featuresets 4-6, which 
already use information from MODIS in one way or another. 
The increase of overall accuracy is about 1-3 %-units. The 
increase of classwise accuracies are very small for class water, 
otherwise the increase can be even 25 %-units with the 
featuresets 1-3. Increase is much smaller for featuresets 4-6. 
When the mixing of classes is studied, it can be seen that forest 
classes are more mixed between each other than using equal 
a'priori probabilities. 
 
In the cases of tree species vs. development class or soil type 
the a’prior probabilities of classes were acquired from the 
a’posteriori probabilities of classes pine, spruce and deciduous 
tree of MODIS-classification. These did not increase the overall 
accuracies much, only 1-3 %-units depending on the featuresets 
or classes. 
 
4.3.2 Merging of classes: The merging of classes to four classes 
(water, forest, agricultural and open land, and open bog) 
increases the overall accuracies to about 65%-75%, depending 
on the featureset (figure 3). The accuracies are lower with 
featere sets 1-3 when equal a'priori probabilities are used, but 
increase as MODIS-features are used. When a'priori 
probabilities have been acquired from MODIS-classification, 
the overall accuracies do not vary much between different 
featuresets, they are always around 75%. 
 
4.3.3 Comparison of pixelwise and standwise classification: 
Tree species classes of land cover classification system were 
used to compare pixelwise and standwise classification. Data 
for standwise classification was acquired by computing the 
stand means of the featuresets. Stand means were divided to 
training and test sets and classified using Bayes rule for 
minimum error. Figure 4 illustrates the overall accuracies as 
well as the mean of user's and producer's accuracies as the 
function of featuresets. In general, standwise classificaton 
increases the overall classification accuracy, the gain is 10%-
units or more. But the drawback is that as the classwise 
accuracies of pine increase, those accuracies for deciduous tree 
decrease. This is most likely due to that the pine stands are 
larger than deciduous tree stands, so mean values are more 
reliable for pine and the amount of stands for deciduous tree is 
rather small, especially compared to pine.  



 
Figure 4. The classification accuracies of pixelwise and 

standwise tree species classifications. The solid line with ”o” 
represents the overall accuracies, solid line the mean of user’s 
and producer’s accuracies of pine, dashed spruce and dashdot 
deciduous trees. The accuracies of standwise classifications 

have been represented with ”x”. 
 
 

5. CONCLUSIONS 
 
These results illustrate that it is difficult to make accurate land 
cover classification using one frequency, one polarization 
microwave information even if there are some temporal 
resolution or low resolution optical data available. More 
information about the target would be needed, like 
interferometric coherence, or more than one frequency or 
polarization. The feature extraction increased classification 
accuracy a bit but not much. The standwise classification 
increases accuracy due to feature averaging.  
 
The decision based data fusion using a’posteriori probabilities 
of low resolution classification as a’priori probabilities of high 
resolution classification shows promise, but needs some 
development. The increase of overall and classwise accuracies 
in this study were more than 10 and 25 %-units, respectively. 
One alternative could be to compute lower resolution images 
from ERS-images and form them to hierachical series. 
Interpretation would begin from lowest level and higher level 
could use lower-level interpretation as input. 
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